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Abstract: The present paper considers the problem of autonomous synchronization
of attitudes in a swarm of spacecraft. Building upon our recent results on consensus
on manifolds, we model the spacecraft as particles on SO(3) and drive these
particles to a common point in SO(3). Unlike the Euler angle or quaternion
descriptions, this model suffers no singularities nor double-points. Our approach
is fully cooperative and autonomous: we use no leader nor external reference. We
present two types of control laws, in terms of applied control torques, that globally
drive the swarm towards attitude synchronization: one that requires tree-like or
all-to-all inter-satellite communication (most efficient) and one that works with
nearly arbitrary communication (most robust).
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1. INTRODUCTION

Many modern space mission concepts involve
the use of multiple satellites flying in formation.
Mostly, the objective is to get (virtual) struc-
tures in orbit that are substantially larger than
what current launch technologies can directly
handle. Potential applications arising in current
studies include resolution enhancement through
multiple-spacecraft SAR (the InSAR concept, or
ONERA’s Romulus study), interferometry (ESA’s
Darwin project, NASA’s equivalent Terrestrial
Planet Finder project or NASA’s Constellation-X
project) or supersized focal length (ESA’s XEUS



project, derived from the Symbol-X concept of
CNES), sensitivity increasing through screens on
secondary spacecraft (the American New World
Discoverer concept for the JWST) or large-scale
measurements (the ESA-NASA cooperative mis-
sion LISA), and autonomous in-orbit assembly of
large real structures (projects are still at a draft
level; see Izzo and Pettazzi [2005] and McInnes
[1996] for example). Other advantages of space-
craft formations are their robustness with respect
to single spacecraft failure, and the reconfigura-
bility of the swarm to fit specific observation re-
quirements.

A central problem in formation flight control is to
ensure proper synchronization of the spacecraft,
i.e. to bring them to and keep them in the desired
formation. Many interesting studies are devoted
to position synchronization; a thorough survey
would require a longer discussion and we refer the
interested reader to citations in the references of
the present paper.

Attitude synchronization has attracted somewhat
less attention. Algorithms that asymptotically
stabilize synchronized satellite attitudes are pre-
sented in Lawton and Beard [2002] and VanDyke
and Hall [2004]. Interconnections among satel-
lites are limited, and convergence is proved for
a behavioral algorithm combining tracking of a
desired attitude, eigenaxis rotations and synchro-
nization of the swarm. However, these results
strongly depend on the tracking of a common
external reference: when the latter is suppressed,
the limited attraction region for which synchro-
nization is guaranteed vanishes to the empty set.
In Bondhus et al. [2005] and Krogstad and Grav-
dahl [2006], attitude synchronization is considered
with a leader/follower approach. In that case,
the leader spacecraft can be seen as a reference
which is tracked by the followers. Robustness of
this approach strongly relies on the reliability of
the leader spacecraft and on the ability of all
the followers to track it. Control algorithms are
presented that globally stabilize attitude synchro-
nization, but the use of the convenient but non-
unique quaternion representation of rigid-body
orientations produces unwanted artifacts in the
satellites’ motions: sometimes a satellite that has
an attitude very close to the leader moves in the
opposite direction to come back from another side.
It seems that quaternions are absolutely reliable
as long as relative orientations are considered in-
dividually, but can run into problems when sev-
eral orientations are combined without a common
external reference. Nair and Leonard [2004] con-
sider the attitude synchronization problem with-
out external reference on SO(3). In fact, their
artificial coupling potentials use the same distance
measure as we do in the present work. Using the
Method of Controlled Lagrangians, local stability

of a synchronized state is studied and achieved
in a specific situation (final synchronized rotation
around the short principal axis, the satellites in-
terconnected in a path topology). In addition to
being local, this result is not asymptotic, meaning
that the satellites remain close to the equilibrium
but do not converge towards it.

Our goal is to provide control laws that drive
the swarm towards attitude synchronization from
any initial configuration, without using any leader
or external reference, and for various satellite in-
terconnection topologies. We also formulate the
problem directly on SO(3) to avoid problems re-
lated to the Euler angle and quaternion represen-
tations.

Building on our recent results on consensus on
manifolds, the proposed approach considers atti-
tude synchronization as a consensus problem on
SO(3). As in the traditional consensus approach,
we start by generating desired trajectories on a
first-order, kinematic model. In a second step,
the related satellite dynamics are incorporated to
derive control laws in terms of torques.

Since our approach focuses on states that are far
away from the desired equilibrium and inherently
includes strong robustness considerations, the re-
sulting control laws might most probably be use-
ful for initial deployment of the formation or for
recovery after strong transient perturbations. In
general, most theoretical studies are far from final
science operations requirements, where the key
issue for navigation and control is accuracy; see
Beugnon et al. [2005] for an example of a practical
GNC implementation for the Darwin mission.

The paper is organized as follows. In Section 2,
we review the consensus strategy in the specific
setting of synchronization on SO(3). In Section
3, two types of kinematic consensus algorithms
are presented. The first one just requires relative
attitude sensing, but only retains its global sta-
bilization property for specific requires fixed and
bidirectional satellite interconnections. The sec-
ond one requires explicit inter-satellite communi-
cation but assuredly globally converges for a very
large class of interconnection topologies, including
varying ones. Section 4 considers the dynamical
implementation in order to asymptotically track
the kinematic trajectories defined in Section 3.
Classical tracking approaches (computed torque
and high gain control) lead to some specific “con-
sensus tracking” control torques.



2. CONSENSUS ON SO(3)

2.1 The special orthogonal group

The special orthogonal group SO(3) is the natural
state space to describe rigid-body orientations in
R3; it can equivalently be defined as the group
of rotations or as the group of positively oriented
orthonormal bases in R3. SO(3) is a compact, con-
nected and homogeneous manifold of dimension 3.

In its canonical representation, a point q of SO(3)
is characterized by a real 3× 3 orthogonal matrix
Q with determinant equal to +1; in this paper,
we represent the position of an agent k on SO(3)
by such a matrix Qk. In this representation,
the inverse of a group element is simply the
inverse or transpose matrix and the group action
is represented by matrix multiplication. Hence if
Q1 and Q2 ∈ SO(3) are the positions of two
elements with respect to an inertial frame, then
QT

1 Q2 ∈ SO(3) represents the relative position
of 2 with respect to 1. The gradient Dq[F ](q1)
of a function F along SO(3) at a point q1 is
simply the projection of the gradient DQ[F ](q1)
in R3×3 onto the tangent space to SO(3) at q1.
The representation of the tangent space at the
identity I3 is the set of skew-symmetric matrices.
Using group operations, we deduce

Dq[F ](q1) = Q1
QT

1 DQ[F ](q1)−DQ[F ](q1)T Q1

2
.

The following lemmata will be useful; their proofs
can be found in Sarlette and Sepulchre [2006]. Just
a note about the polar decomposition. Any matrix
B ∈ R3×3 can be decomposed into a product UR
where U is orthogonal and R is symmetric positive
semi-definite. R is always unique, U is unique if
B is non-singular. If B has rank 2, U is unique in
SO(3).

Lemma 1: The matrix QT B with Q ∈ SO(3) and
B ∈ R3×3 is symmetric iff Q = UHJHT where

J =
(
−Il 0
0 I3−l

)
,

B = UR is a polar decomposition of B, l is
even if det(U) > 0 and odd if det(U) < 0,
and the columns of H contain (orthonormalized)
eigenvectors of R.

Lemma 2: For any B ∈ R3×3, the local maxima
of a linear function F (Q) = trace(QT B) are
always global maxima as well.

2.2 Cost function

The objective of consensus is basically to reach
agreement in a set of agents - here on the atti-
tude to adopt (pardon the pun). Mathematically,

this requires defining a measure of disagreement
between the agents which is then driven to zero.
In the present case, an obvious measure of dis-
agreement is the set of all pairwise distances be-
tween agents on SO(3). Computing the inherent
Riemannian distance d(q1, q2) between two points
q1 and q2 along SO(3) is a complex task. Instead,
we choose to approximate this distance by the Eu-
clidean distance d(Q1, Q2) between the matrices
Q1 and Q2 ∈ SO(3) in the embedding space R3×3:

d(Q1, Q2) = ‖Q1 −Q2‖F

=
√

trace ((Q1 −Q2)T (Q1 −Q2)) .

This is strictly similar to approximating the dis-
tance between two points along the circle S1 ∼=
SO(2) by the length of the chord between these
points. For that reason, this approximation is
sometimes called the chordal distance, as intro-
duced by Conway et al. [1996] for the Grass-
mann manifold. Thanks to the finite curvature
of SO(3), the chordal distance and the Rieman-
nian distance are asymptotically equivalent when
they converge to zero; in particular, d(q1, q2) =
0 ⇔ d(Q1, Q2) = 0 and d(q1, q3) > d(q1, q2) ⇔
d(Q1, Q3) > d(Q1, Q2). Our main motivation
for choosing the chordal distance is that, un-
like for the Riemannian distance, the derivative
Dq1 [d

2(Q1, Q2)](q1, q2) has no discontinuities. In
practice, the chordal distance has the advantage
of being easily computable: its square is simply the
sum of the squared elements of the matrix Q1−Q2.
In Moakher [2002], this distance is used to define
the projected arithmetic mean of N particles on
SO(3) as the (set of) point(s) Q that minimize(s)
the sum of the squared chordal distances from
the point Q to all the particles. It is shown that
this mean is simply the orthogonal projection on
SO(3) of the Euclidean centroid Ce of the particle
positions in R3×3,

Ce =
1
N

N∑
k=1

Qk .

Moakher [2002] also shows that the projected
arithmetic mean and the Karcher mean, which
uses the inherent Riemannian distance, are strictly
equivalent for N = 2.

To obtain a scalar disagreement measure, it is
natural to take some weighted sum of pairwise
disagreements. This sum needs not to include
all terms to possess the synchronized state as
its global minimum. Explicitly, consider that the
satellites are interconnected according to a di-
rected graph G and denote by j  k the fact that
j sends its relative attitude to k (or k measures
the relative attitude of j). For later reference,
we also define the undirected graph associated to



a directed graph G to be equivalent to G with
directions discarded. We define the consensus cost
function

PG(Q1...QN ) =
1

2N

N∑
k=1

∑
j k

(d(Qj , Qk))2 . (1)

Since QT
k Qk = I3, this can be rewritten as

PG(Q1...QN ) =
1
N

N∑
k=1

∑
j k

3− trace(QT
j Qk) .

For the particular case where each satellite is
connected to all the others, we drop the index G;
in that case we may rewrite (1) as

P (Q1...QN ) = N(3− ‖Ce‖2) . (2)

The second term in (2) is analogous to the or-
der parameter used to study synchronization on
the circle, most famous in the framework of the
Kuramoto model. See Scardovi et al. [2007] for
consensus algorithms on the circle similar to those
of Section 3 in the present paper.

2.3 Synchronization strategy

It is obvious that the synchronized state is the
unique configuration that globally minimizes (1)
whenever the satellites are weakly interconnected
(i.e. when you can find a path from any satellite
to any other satellite by travelling along intercon-
nections only, but discarding their orientation).
This suggests to simply apply consensus cost func-
tion minimization in order to drive the swarm
towards synchronization. However, because of the
manifold structure of SO(3), this is not always a
convex problem; unlike in Euclidean spaces, the
consensus cost function could have local minima.
This is the fundamental reason why algorithmi-
cally, global attitude synchronization is a much
more difficult task than position synchronization.
The following proposition identifies two situations
where there are no local minima.

Proposition 1: If G, the undirected graph asso-
ciated to the satellite interconnections is a com-
plete graph or a tree, then attitude synchronization
is the only minimum of PG.

Proof: At a minimum of PG, each satellite must
be at a local minimum for its own movements.

For the complete graph, consider P with all
agents fixed except k. Qk must be a maximizer of
trace(QT

k

∑
j 6=k Qj); according to Lemma 2, there

are only global maxima. Furthermore, it is obvi-
ous that trace(QT

k Qk) > trace(Y T Qk) whenever
Y 6= Qk ∈ SO(3). As a consequence, Qk is at the
only maximizer of trace(Y T Ce) over Y ∈ SO(3);
since this must hold ∀k, all the satellites must be
synchronized at the same attitude.

For the tree, start with all agents fixed except
a leaf k. The obvious unique global maximum
of PG(Qk) occurs when k is synchronized with
its parent. Now consider synchronized moves of
a parent j and its leaves. Variations of PG only
involve the link between j and its own parent,
which brings us back to the previous situation. An
inductive argument is then used up to the root.

M

Note that the much “cheaper” tree interconnec-
tion has a similar disadvantage as the leader-
follower approach: if a satellite fails, all its children
and further dependence are disconnected from the
rest of the swarm.

3. CONSENSUS ALGORITHMS

3.1 Gradient control for undirected graphs

Gradient control leads to descent algorithms for
PG. Explicitly, we write

QT
k Q̇k =−αk QT

k Dq[PG](qk)

= αk (Ck − CT
k ) (3)

with Ck =
1

2N

∑
j k

QT
k Qj +

∑
k j

QT
k Qj

 . (4)

The left member of (3) is the attitude variation of
k with respect to an inertial frame, expressed in
the reference frame of k. Note that the coefficients
αk(t) ≥ α > 0 may depend on time and be chosen
independently for each satellite. This leaves some
freedom for adaptation to practical constraints.

According to the definition (4) of Ck, each satellite
k must know the relative orientation of the satel-
lites to which it is connected in either direction.
This only makes sense if the interconnection graph
is undirected, i.e. k sends information to j iff it
gets information from j. The following proposition
is obvious from Proposition 1 and the properties
of gradient systems.

Proposition 2: If the graph corresponding to the
satellite interconnections is an undirected tree or
complete graph and each satellite orients itself
according to (3), then the only stable configuration
for the swarm is attitude synchronization.

Note that according to the discussion of the pre-
vious section, attitude synchronization is still a
locally stable equilibrium of (3) for other undi-
rected graphs, though other local equilibria may
exist for some of them. In fact, simulations with
directed (dropping the second term of (4)) and
randomly time-varying graphs, modeling extreme
conditions of link failures, invariably converge to



synchronized attitudes, suggesting the strong ro-
bustness of algorithm (3).

3.2 Auxiliary variables for general graphs

The goal of this second approach is to derive an al-
gorithm whose convergence is theoretically proven
when the satellite interconnections are varying
and/or directed. A strong convergence result has
been obtained for Euclidean spaces by Moreau
[2004]. The precise assumption on the intercon-
nections is uniform connectedness. A time-varying
graph G(t) is called uniformly connected if there
exist a node k and time horizons δ and T such
that ∀t, there is a directed path from k to all other
nodes, in the graph that contains all the intercon-
nections appearing for at least δ seconds in [t, t +
T ]. This is a very weak condition on the satellite
interconnections. The argument of Moreau [2004],
based on convexity, cannot be extended to SO(3).
However, we can use it to achieve consensus on
auxiliary variables Xk in R3×3. We then drive
the satellite attitudes to the projection of the
consensus value X∞ on SO(3). One easily verifies
that the latter corresponds to the maximizer of
trace(QT X∞) over Q ∈ SO(3). As a consequence
of Lemmata 1 and 2, it can be computed by
local maximization and it is unique whenever the
smallest eigenvalue of X∞ has multiplicity 1. By
translational invariance, the latter condition is
ensured with probability 1 for randomly chosen
Xk(0). This leads to the algorithm

d
dt (Q

T
k Xk) = βk

∑
j k

(QT
k Qj)(QT

j Xj) (5)

+(QT
k Q̇k)T (QT

k Xk)

QT
k Q̇k = αk (QT

k Xk −XT
k Qk) (6)

with βk(t), αk(t) > 0. Again, we chose to express
the variables in the body frames of the satellites.
This is important because (5) absolutely requires
inter-satellite communications. When the relative
attitudes QT

k Qj are measured as geometric quan-
tities, the values QT

j Xj are communicated as sets
of scalars.

Proposition 3 : If the graph G(t) associated to
the satellite interconnections is piecewise continu-
ous and uniformly connected, then the only stable
equilibrium of (5),(6) is attitude synchronization.

Proof: In an inertial frame, (5) is simply

Ẋk = βk

∑
j k

Xj (7)

Without going into details, the result of Moreau
[2004] ensures that the independent system (7)
exponentially converges to a consensus value X∞
under the given conditions. Therefore Xk may

asymptotically be replaced by X∞ in (6), which
then converges to the projection of X∞ on SO(3);
the latter is a single point except for the Xk(0) in
a set of measure zero in (R3×3)N .

M

4. DYNAMIC IMPLEMENTATION:
CONSENSUS TRACKING

The dynamics of satellite orientations are de-
scribed by the equations

Jω̇k = Jωk × ωk + τk (8)

QT
k Q̇k = [ωk]∧ (9)

where J = diag(J1, J2, J3), with J1 > J2 > J3, is
the moment of inertia matrix in (principal) body
frame, ωk and τk are the angular velocity and con-
trol torque respectively expressed in body frame,
and the operator [·]∧ : R3 → R3×3 denotes the
skew-symmetric matrix implementing the cross-
product: [x]∧y = x × y ∀y. For x = (x1 x2 x3)T

this implies

[x]∧ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

The inverse of [·]∧ is denoted [·]∨ : R3×3 → R3.
Unlike Newton’s law for position control, equa-
tions (8)-(9) for orientation control are nontrivial,
even nonlinear, in the absence of external torques.

The consensus algorithms of Section 3 define de-
sired angular velocities ω

(d)
k = [QT

k Q̇k]∨ for each
satellite based on the current positions of them-
selves and their neighbors. It remains to design
τk to ensure that the satellites individually track
these desired velocity fields. In fact, a simpler
control strategy can be based on the approach
of Section 3.2, since a desired orientation Q

(d)
k

can be directly defined as the projection of Xk

on SO(3). In this case, it may even be useless to
move the satellites before the Xk have converged
to a consensus value X∞ by applying (5) only.
Subsequently moving the agents individually to
Q

(d)
∞ just requires a global attitude stabilization

controller instead of tracking capabilities. Atti-
tude tracking algorithms abound in the literature.
The following applies two classical approaches of
control theory to tracking of ω

(d)
k : “computed

torque” and “high gain”. Proofs for the coupled
system are omitted because of space limitations.

We want to impose an exponential convergence of
ωk towards ω

(d)
k :

d
dt (ωk − ω

(d)
k ) = −γk(ωk − ω

(d)
k ) (10)

where γk > 0. The “computed torque” method
simply implements this law on the dynamical



system by including a control torque that exactly
cancels the free rigid body dynamics. This yields

τk = J d
dtω

(d)
k − γk(ωk−ω

(d)
k )− (Jωk)×ωk . (11)

Proposition 4: Consider the control torque (11),
where ω

(d)
k is defined by a consensus algorithm

of Section 3. If the interconnection graph is uni-
formly connected and (5)-(6) is used, then the only
stable limit set is synchronization of the orienta-
tions with ωk = 0 ∀k. If the interconnection graph
is fixed and undirected and (3) is used, the stable
limit set consists of the local minima of PG with
ωk = 0 ∀k.

Some adaptation law should be added in order
to ensure that the natural dynamics are perfectly
cancelled. Alternatively, “high gain” tries to dom-
inate the natural dynamics by imposing a strong
enough control gain γk. This reduces the control
torque to

τk = J d
dtω

(d)
k − γk(ωk − ω

(d)
k ) . (12)

Proposition 5: Replacing (11) by (12), the re-
sults of Proposition 4 are recovered at least when

γk > αk
3J1√
2J3
‖Xmax(0)‖F when using (5)-(6),

γk > αk

√
6J1
J3

dk when using (3),

where ‖Xmax(0)‖F is the maximal Frobenius
norm of the Xk(0) and dk is the number of satel-
lites sending information to k.

5. CONCLUSION

The consensus approach to satellite attitude syn-
chronization leads to particularly robust control
algorithms. It also leaves sufficient flexibility for
practical implementations. Indeed, many tracking
controllers can be used in place of the theoreti-
cally simple ones considered in Section 4. The real
control performance depends on the choice of the
tracking controller.

The satellites have to measure their own absolute
angular velocities (gyroscopic sensor) in order to
implement the “consensus tracking” control laws
of the present paper. In Sarlette et al. [2007], we
discuss an alternative synchronization strategy,
based on Nair and Leonard [2004], which works
(though only locally) without absolute angular
velocity measurements. Taking an inherently dy-
namical approach, this strategy also avoids to
explicitly counter the free rigid body dynamics as
is done in the present paper.
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