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SUMMARY

A 2D numerical flow model, developed at the Research unit of Hydrology, Applied Hydrodynamics and
Hydraulic Constructions at ULg, has been applied to flows in a macro-rough channel. The model solves the
shallow water equations (SWE) with a two length scale, depth-integrated k-type approach for turbulence
modeling. Data for the comparison have been provided by experiments conducted at the Laboratory of
Hydraulic Constructions at EPFL. In the experiments with different non-prismatic channel configurations,
namely large-scale cavities at the side walls, three different 2D flow characteristics could be observed in
cavities. With the used numerical model features, especially regarding turbulence and friction modeling, a
single set of bottom and side wall roughness could be found for a large range of discharges investigated in
a prismatic channel. For the macro rough configurations, the numerical model gives an excellent agreement
between experimental and numerical results regarding backwater curves and flow patterns if the side wall
cavities have low aspect ratios. For configurations with high aspect ratios, the head loss generated by the
preservation of important recirculation gyres in the cavities is slightly underestimated. The results of the
computations reveal clearly that the separation of turbulence sources in the mathematical model is of great
importance. Indeed, the turbulence related to 2D transverse shear effects and the 3D turbulence, generated
by bed friction, can have very different amplitude. When separating these two effects in the numerical
models, most of the flow features observed experimentally can be reproduced accurately. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most of the flows occurring in rivers and channels, even highly transient, can be reasonably seen as
shallow, except in the vicinity of some singularities, as for example weirs. Indeed, vertical velocity
components remain generally low compared with velocity components in the horizontal plane.
Such flows may be considered as quasi-two-dimensional. A depth-integrated approach for flow
modeling, taking into account a hydrostatic pressure distribution, is therefore suitable for many
problems encountered in river, especially when modeling flows in channels with rather flat bottom.

It is generally assumed that turbulence effects might be neglected in many practical engineering
applications, especially if external forces due to the solid boundary friction are predominant (steady
flow) or if major advection effects are present (unsteady flow). However, the predominance of
transport terms in the hydrodynamic equations can be less important, mainly in low-velocity
flows, close to hydraulic structures or for specific geometrical configurations [1, 2] that leads to
an increasing effect of recirculation currents and velocity gradients.

Various approaches exist to handle turbulence in mathematical models, starting from direct
numerical simulations (DNS) to large eddy simulations (LES) and mean flow variables simula-
tions [3]. The modeling approach presented hereafter is based on a Reynolds-averaging of the
instantaneous flow variables. The new fluctuation terms in the resulting Reynolds averaged equa-
tions, called the Reynolds stresses, should be modeled by applying a proper turbulence model. For
the shallow water equations (SWE), several approaches are proposed in the literature, as rather
simple algebraic expressions of turbulent viscosity [4, 5] or more complex models with one or two
additional equations [6–8].

In this paper, a new two-length-scale depth-integrated k–ε type model, involving two additional
partial differential equations, is presented. This turbulence model integrated into the SWE [2]
already proved to be relevant on test cases from the literature such as for a flow through a sudden
enlargement [9] and in a channel with a groin [10]. In the present paper, this mathematical model
is applied to another test case namely to backwater-curve computations in a laboratory channel
with large-scale cavity roughness at both channel banks [11, 12].

Such geometrical arrangements of river banks are used as a solution to mitigate the negative
effects of hydro-peaking downstream of high-head hydropower plants. They contribute to reduced
peak discharge and water depth variations. The reliable numerical computation of steady states
in such modified channels is a first step towards further analysis of transient flows and thus to
systematic design of real arrangements.

The geometrical configurations of macro-roughness investigated with systematic hydraulic model
tests produce recirculation zones, vertical mixing layers and wakes due to high-velocity gradi-
ents in the main flow plane [11]. These flow characteristics are closely related to turbulence
generation/dissipation and transport effects, particularly regarding head losses through turbulent
friction in the shear layer and wake dissipation. Thus they constitute a true challenge for numerical
flow modeling.

2. NUMERICAL MODEL

2.1. Mathematical model

The flow model is based on the two-dimensional depth-averaged equations of volume and
momentum conservation (SWE). In the ‘shallow-water’ approach, it is assumed that the velocities
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normal to a main flow plane are significantly smaller than those in the main flow direction.
Consequently, the pressure field is almost hydrostatic everywhere.

A two-length-scale turbulence modeling approach is used, as described for example by Babarutsi
and Chu [13]. It is well suited for the applications where the water depth is small compared
with the horizontal dimensions of the flow and thus for SWE. The large-scale transverse-shear-
generated turbulence, associated with the horizontal length-scale of the flow, and the small-scale
bed-generated turbulence having a characteristic dimension in the order of magnitude of the water
depth are considered separately. This approach is based on the assumption that large-scale velocity
fluctuations are confined in the main flow plane between the channel bottom and the free surface,
while the small-scale fluctuations are 3D [13].

This assumption is consistent with the shallow water approach, where the depth-averaged
velocity components in a main flow plane, i.e. the velocity components due to confined large-scale
fluctuations, are computed explicitly.

The turbulence modeling is performed following a two-step Reynolds averaging procedure of
the equations of motion, as suggested by Babarutsi and Chu [13]. The first stage filters out the
bed-generated turbulence by treating the small-scale fluctuations of the instantaneous 3D velocity
components with an algebraic model. The second stage considers the transverse-shear-generated
turbulence by means of the additional fluctuations of the mean velocity components in the main
flow plane, modeled by two additional transport equations: one for the depth-averaged turbulent
kinetic energy k′ and one for the depth-averaged turbulence dissipation rate ε′.

Following analytical developments, the new final form of the depth-averaged equations of mass
and momentum conservation together with the depth-averaged kinetic energy and dissipation rate
transport equations can be written using vector notations as follows [2]:

�s
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�y

+ �fd
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=S (1)

where s=[h hu hv k′ ε′]T is the vector of the conservative unknowns. f and g represent the
advective and pressure fluxes in directions x and y, while fd and gd are the diffusive fluxes and S
is the vector of the source and non-conservative terms:
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In Equations (1)–(4), t represents the time, x and y the space coordinates, h the water depth, u and
v the depth-averaged velocity components, zb the bottom elevation, g the gravity acceleration, Jx
and Jy the bottom slopes, �xx and �yy the viscous and turbulent normal stresses, �xy and �yx the
viscous and turbulent shear stresses. �∗ =�+�T,3D is the sum of the water viscosity � and of the
eddy viscosity �T,3D related to the bed-generated turbulence and �T,2D the eddy viscosity related
to the large-scale transverse-shear-generated turbulence.

The bottom friction is conventionally modeled with an empirical law, such as the Manning
formula. In addition, the friction along the side walls is reproduced through a process-oriented
formulation proposed by Dewals [1]. Finally, the friction terms become:
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where the Manning coefficients nb and nw characterize, respectively, the bottom and the side walls
roughness. These relations have been written for the Cartesian grids used in the present study.

The production term of turbulence by the transverse shear and the term reflecting the effect of
bottom friction forces on the turbulence motion are given by Equations (7) and (8). The later has
been derived as suggested by Babarutsi and Chu [13].

P ′ =�T,2D[(�xuh−�yvh)(�xu−�yv)+(�yuh+�xvh)(�yu+�xv)] (7)

F ′ = gn2b
h4/3

(
3k′√u2+v2−�T,2D

(�xuh−�yvh)(u2−v2)+2(�yuh+�xvh)uv√
u2+v2

)
(8)

The viscous and turbulent stresses �i j are the sum of three terms representing the viscous effects
�Vi j , the bed-generated turbulence contribution �T,3D

i j and the large-scale transverse-shear-generated

turbulence one �T,2D
i j .
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In the momentum equations, the viscous stresses are depth-averaged terms. In analogy with the
general formulation for a Newtonian fluid, their gradients are modeled, for example, along the
x-direction, as:

�xh�Vxx +�yh�Vxy =�(�2xuh+�2yuh) (9)

The corresponding turbulent stresses gradients associated with the bed-generated turbulence are
modeled in the same manner, following an approach similar to the one of Chapmann and Kuo [14]:

�xh�T,3D
xx +�yh�T,3D

xy =�T,3D(�2xuh+�2yuh) (10)

The corresponding turbulent viscosity �T,3D is obtained based on a local equilibrium hypothesis
[15], assuming equality between the production of turbulence by the bottom friction and its
dissipation:

�T,3D=c�hU
∗ (11)

where U∗ is the bottom friction velocity and the value of the proportionality constant c� �0.08 is
recommended for non-stratified flows of uniform density over the depth [15].

In the same way, the turbulent stresses terms associated with the large-scale transverse-shear-
generated turbulence are modeled by a Boussinesq-type approximation. For example, for x-
momentum equation terms they write as:

h�T,2D
xx =�T,2D(�xuh−�yvh)−k′ (12)

h�T,2D
xy =�T,2D(�yuh+�xvh) (13)

The associated turbulent viscosity �T,2D is evaluated according to Rodi [8], as a function of the
turbulence variables k′ and ε′, transported by the main flow:

�T,2D=c�
k′2

ε′ (14)

The calculations are performed with a set of coefficients �k =1, �ε =1.3, c1,ε =1.44, c2,ε =1.92
and c� =0.09 assumed to be the same as for unconfined 3D flow [15]. c3,ε =0.8 as proposed by
Babarutsi and Chu [13] to model transverse mixing layer in shallow open-channel flows.

2.2. Grid and numerical scheme

The solver includes a mesh generator for a Cartesian grid. Compared with unstructured grids, the
main advantages of such structured grids are a lower computation time and a gain in accuracy. To
overcome the main problem of Cartesian grids, i.e. the high number of cells needed for an enough
fine discretization, multiblock features can increase the domain areas that can be discretized with
a constant cells number and enable local mesh refinements near areas of interest [16].

The space of Equation (1) is discretized with a finite volume scheme. This ensures a correct
mass and momentum conservation, which is a must for handling properly discontinuous solutions
such as moving hydraulic jumps. As a consequence, no assumption is required regarding the
smoothness of the solution. Reconstruction at cell interfaces can be performed with a constant
or linear approach. For the latter, together with slope limiting, a second-order spatial accuracy is
obtained.
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Appropriate flux computation has always been a challenging issue in computational fluid
dynamics. The fluxes f and g are computed by a flux vector splitting (FVS) method [2] where the
upwinding direction of each term of the fluxes is simply dictated by the sign of the flow velocity
reconstructed at the cells interfaces. It can be formally expressed as:
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where the exponents + and − refer to, respectively, an upstream and a downstream evaluation
of the corresponding terms. A stability analysis has shown that this FVS ensures a stable spatial
discretization of the terms �f/�x and �g/�y in Equation (1) [2]. Owing to their diffusive character,
the fluxes fd and gd can be determined by means of a centred scheme. The non-conservative terms
are obtained in the upstream direction by analogy with the corresponding advective terms.

Besides low computation costs, this FVS has the advantages of being completely Froude
independent. Furthermore, the adequacy of discretization of the bottom slope term is facilited
[1, 2, 16–18].

2.3. Time discretization and boundary conditions

As the model is applied to compute steady-state solutions, the time integration is performed by
means of a 3-step first-order accurate Runge–Kutta algorithm, providing adequate dissipation in
time. For stability reasons, the time step is constrained by the Courant–Friedrichs–Levy condition
based on gravity waves. The bottom friction term is treated semi-implicitly, without increasing
computational time [1].

For each application, the value of the specific discharge can be fixed as an inflow boundary
condition. The transverse specific discharge is usually set to zero at the inflow even if a different
value can be used if necessary. In the case of supercritical flow, a water surface elevation can be
provided as additional inflow boundary condition.

The outflow boundary condition may be a water surface elevation, a Froude number or no
specific condition, if the outflow is supercritical. At the solid walls, the component of the specific
discharge, normal to the wall is set to zero.

Regarding turbulence variables, the shear velocity on solid walls is computed according to
the law of the wall. The corresponding depth-averaged kinetic energy and dissipation rates are
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calculated, in analogy with Rodi [8] and Younus and Chaudhry [19], respectively,

k′ = h(U �)2√
c�

(17)

ε′ = h2(U �)3

�d
(18)

where U � is the shear velocity assuming a logarithmic velocity profile near the wall, � the von
Karman constant and d the distance to the wall. Furthermore, this approach assumes that the
laminar boundary layer is within the mesh next to the wall. At inlets, values of k′

0=10−4q20/h and

ε′
0=10k′3/2

0 /
√
h are used [20] to link the turbulence variables intensity to the discharge boundary

condition q0.

3. PHYSICAL EXPERIMENTS AND SELECTED TEST CASES

Hydraulic model tests of macro-rough channel configurations have been performed in a flume with
a useful length of 38.33m and a mean bed slope of 1.142 (Figure 1). The channel is divided
from upstream to downstream into an inlet reach (length 7.41m), a reach with large-scale cavity
roughness at the banks (26.92m) and an outlet reach (4.0m). The channel bottom is made of
painted steel. The sidewalls of the inlet reach are constructed by wooden boards. The sidewalls of
the reach including the large-scale depressions, namely rectangular cavities, and the outlet reach
are formed by smooth limestone bricks. The channel bed is fixed and no sediment transport is
taken into account.

The channel base width is B=0.485±0.002m and remained constant during all the tests. Three
geometrical parameters, namely the length of the cavity Lb, the distance between two cavities Lc
and the depth of the cavities �B, have been systematically varied (Figure 1). Table I summarizes
the range of the investigated geometrical parameters Lb, Lc and �B as well as derived ratios such
as the aspect and expansion ratios of the cavity defined as AR=�B/Lb and ER=(B+2�B)/B,

Figure 1. Plane view of the test flume (above) and definition of the parameters of the macro-rough
geometrical configurations (below).
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Table I. Summary of test range of geometrical parameters Lb, Lc and �B and derived ratios.

Cavity length Lb (m) 0.5, 1.0, 2.0
Distance between cavities Lc (m) 0.5, 1.0, 2.0
Depth of the cavity �B (m) 0.1, 0.2, 0.3, 0.4
Aspect ratio AR=�B/Lb (-) 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.60, 0.80
Expansion ratio ER=(B+2�B)/B (-) 1.41, 1.82, 2.24, 2.65

Figure 2. Prismatic and macro-rough selected test cases. The positions of the ultrasonic elevation probes
along the channel axis are indicated with •.

Table II. Geometrical characteristics and specific discharges q (m2/s) of the prismatic and the
macro-rough selected test cases.

Case Lb (m) Lc (m) �B (m) AR (–) ER (–) q1 q2 q3 q4 q5 q6 q7 q8 q9

Prismatic — — — — — .0134 .0275 .0451 .0651 .0996 .1391 .1769 .2193 .2781
221 1.0 1.0 0.1 0.1 1.41 .0100 .0229 .0367 .0708 .1006 .1317 .1731 .2149 —
121 0.5 1.0 0.1 0.2 1.41 .0114 .0245 .0404 .0726 .1033 .1300 .1762 .2189 —
224 1.0 1.0 0.4 0.4 2.65 .0108 .0238 .0396 .0693 .0999 .1343 .1738 .2186 —
124 0.5 1.0 0.4 0.8 2.65 .0130 .0218 .0397 .0719 .0971 .1311 — — —

Lb is the cavity length, Lc is the distance between cavities, �B is the depth of cavities, AR is the aspect ratio
and ER is the expansion ratio. –, dimensionless.∗Specific discharge at the flume entrance (x=0.0m).

respectively. The combination of three different values for Lb and Lc and four different values
of �B results in 36 different, axi-symmetric geometrical configurations covering eight aspect and
four expansion ratios. Additionally, a prismatic and a randomly generated configuration have been
analyzed [11].

Four out of the 36 different geometrical configurations (Figure 2) have been selected to be
investigated with the numerical model for various discharges (Table II). Furthermore, the prismatic
channel served as a reference for the calibration for the bottom and the wall surface roughness.
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The choice of the test cases is motivated by the different cavity flow types identified in the
experimental study [11], namely the square grooved flow type (conf. 124), the reattachment flow
type (conf. 221) and the normal recirculating flow type (conf. 121 and 224).

The discharge during the tests was controlled by an electromagnetic flow meter. The water levels
have been recorded with ultrasonic elevation probes located along the channel axis. The accuracy
of the measurements is at least ±0.002m. The ultrasonic elevation probes have been placed in the
small channel sections or at the beginning, in the middle and at the end of the widened channel
reaches (Figure 2). Thus, the variations of the flow depth at specific locations can be evaluated.

The discharge is introduced at the upstream border of the channel through a horizontal opening
of the inlet basin. At the downstream border of the channel, the flow depth is controlled by a
particularly shaped cross-section. It corresponds almost to the normal flow depth of the prismatic
channel without macro-roughness.

Characteristic values of Froude Fr =U/(g ·h) and Reynolds Re=U ·Rh/� numbers relative to
the base width B ranged between 0.37<Fr<0.64 and 6800<Re<110000 for typical flow depths
between 0.03m<h<0.34m and mean flow velocities between 0.24m/s<U<0.80m/s. U is the
mean flow velocity in the cross-section and Rh is the hydraulic radius, both calculated relative to
the small channel section at width B.

4. RESULTS

4.1. Prismatic channel

First, the prismatic channel has been modeled both experimentally and numerically for discharges
of 0.278 and 0.0133m2/s in order to fit Manning’s roughness coefficients nb and nw values in the
numerical model. Regarding the surface materials of the flume, i.e. painted steel and limestone
bricks, the values of nb and nw have been considered constant along the channel bottom and the
side walls, respectively.

A mesh size of 0.02m has been used to model a length of 34.22m of the channel of constant
width (0.48m). The values of the free water surface elevation measured at a downstream probe
in the experimental facility have been used as the downstream boundary conditions. The constant
specific discharges injected in the channel constitute the upstream ones. The measurements realized
on nine ultrasonic elevation probes, regularly spaced along the channel (Figure 2), have been used
for the comparison to the numerical results.

The best balance between bottom and sidewall friction has been found to be nb=0.0087s/m1/3

and nw=0.0105s/m1/3. The sidewalls are rougher than the bottom, in agreement with the exper-
imental facility materials surface patterns. These values have been definitively validated by the
comparison of the numerical results with the experimental measurements for seven additional
discharges between 0.219 and 0.0275m2/s (Figure 3, Tables III and IV).

4.2. Macro-rough channels

In a second stage, four configurations with large-scale depression roughness at the side walls
(Figure 2 and Table II) have been modeled. The same mesh size of 0.02m has been used to
model a length of 36.32m of the channel. The width varies along the channel, depending on the
geometrical configurations. The only numerical model parameters are the roughness coefficients,
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Figure 3. Comparison of experimental and simulated backwater curves in the prismatic reference
configuration for nine different specific discharges q in the channel.

Table III. Absolute value of mean relative errors between computed and measured flow depths for all
investigated geometries and specific discharges q .

Absolute value of mean relative error on flow depths (%)

Geometry q1 q2 q3 q4 q5 q6 q7 q8 q9

Prismatic 4.2 3.8 3.9 1.8 1.8 0.8 0.9 0.8 0.7
221 3.2 5.7 4.3 1.5 1.0 0.8 1.1 1.3 —
121 3.4 8.2 3.0 2.2 3.8 2.5 1.1 0.6 —
224 12.2 7.2 3.9 4.4 6.4 6.1 7.3 6.3 —
124 5.9 17.4 6.3 15.0 13.8 10.7 — — —

Errors higher than 5% are indicated in italic.

Table IV. Absolute value of mean errors between computed and measured flow depths for all
investigated geometries and specific discharges q .

Absolute value of mean error on flow depths (mm)

Geometry q1 q2 q3 q4 q5 q6 q7 q8 q9

Prismatic 1.3 1.8 2.6 1.6 2.0 1.2 1.5 1.5 1.5
221 1.0 3.2 3.4 1.9 1.6 1.8 2.9 4.3 —
121 1.2 4.3 2.3 2.9 7.1 5.4 2.7 1.7 —
224 5.0 4.6 3.5 6.3 12.5 14.5 21.3 21.8 —
124 2.5 10.8 5.6 21.7 25.4 23.5 — — —

Errors higher than the precision of the measurements (±2mm) are indicated in italic.

previously found from the calibration tests in the prismatic channel (nb=0.0087s/m1/3 and nw=
0.0105s/m1/3).

The free surface elevations measured at the downstream probe have again been used as the
downstream boundary conditions. Constant specific discharges injected in the channel constitute
the upstream ones. The free surface elevation measured with 25 ultrasonic elevation probes located
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at the channel axis along the experimental flume have been used for the assessment of the accuracy
of the numerical results (Figure 2).

The backwater curves of the configuration with reattachment of the flow to the side walls are
very well reproduced. The difference between the measured and computed water depths is in the
order of magnitude of the probes accuracy and less than 2% for the higher discharges (Figure 4,
Tables III and IV). The configurations with a normal recirculating flow type are also satisfactorly
reproduced for the aspect ratio �B/Lb equal to 0.2 and a little less for �B/Lb equal to 0.4. The
configuration governed by a square grooved flow type shows a difference between the measured
and the computed flow depths reaching 15% for the higher discharges. Furthermore, the computed
flow depths are underestimated by 0.025m in maximum.

Additional simulations of the first two axi-symmetric cavities have been carried out in each
configuration with a mesh size of 0.01m in order to get a finer modeling of the flow pattern
inside the cavities. The boundary conditions have been taken from the simulations along the whole
channel.

5. DISCUSSION

5.1. Importance of turbulence modeling

In 2D flow solvers, the turbulence terms in the momentum equations play an important role on
external friction modeling, especially when the friction along the side walls cannot be neglected.
Without using any turbulence model, the velocity distribution over the channel width is rather
uniform with a sudden local decrease along rough side walls (Figure 5) and the velocity gradient
is counterbalanced only by pressure gradients. Considering the turbulence terms in the momentum
equations, this high-velocity gradient along the side walls is in addition also counterbalanced by
transverse shear stresses. Thus, the velocity distribution is more gradual (Figure 5).

The velocity distribution directly influences the roughness terms and thus the head losses.
Without using a turbulence model and when considering a high roughness of the side walls
compared with the bottom roughness, the velocity remains small in the meshes close to the side
walls. Thus, the influence of the side walls on the head losses is small even if they are very rough.
Therefore, it was not possible to fit the roughness coefficients in the prismatic channel using the 2D
flow model without any turbulence terms, despite a good representation of the side walls friction
effect. A first set of friction coefficients (nb=0.01s/m1/3−nw=0.0125s/m1/3) has been used to
compute the backwater curves for the discharges q1 and q9 without using turbulence terms. The
obtained backwater curves in Figure 6 reveal that the bottom roughness should slightly be decreased
and the side wall roughness strongly increased in order to fit the measured water depths along the
channel. For the second set of friction coefficients (nb=0.0087s/m1/3−nw=0.02s/m1/3), despite
a strong increase of the side wall roughness, the head loss along the channel generally decreases
(Figure 6) as the flow velocity along the side wall decreases. The local increase of the head loss
at the upstream end of the channel is due to the discharge boundary condition assuming uniform
velocity distribution over the channel width.

It may be concluded that without using turbulence terms in a 2D modeling approach, no set of
roughness coefficients can be found to fit the water depth measurements for various discharges.
This problem does not exist in 1D models where all friction terms in a cross-section are computed
from the mean flow velocity [11].
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Figure 4. Comparison of experimental and simulated backwater curves for different specific discharges q
in the channel for the configurations with large-scale depression roughness at the side walls.
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Figure 5. Streamwise velocity components with and without turbulence model.

Figure 6. Backwater curve computations in the prismatic channel without turbulence model.
q is the specific discharge in the channel, nb is the bottom roughness coefficient and nw

is the side walls roughness coefficient.

5.2. Flow patterns

In Figure 7, the experimental and the numerical time-averaged flow patterns are compared. Flow
patterns have been qualitatively visualized during the experiments by the help of dye injection.
A good agreement between the numerical and physical results can be observed especially in the
case of the reattachment flow type (�B/Lb�0.1), for which an elongated, triangular recirculation
gyre develops next to the cavity leading edge. Good agreement of the flow patterns is also found
for the square grooved flow type (�B/Lb∼=0.8), which is characterized by a single and almost
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Figure 7. Cavity flow patterns for the configurations with large-scale roughness (flow velocity in m/s).
Discharge is q4 according to Table II: (a) 221, reattachment flow type; (b) 121, normal recirculating flow

type; (c) 224, normal recirculating flow type; and (d) 124, square grooved flow type.

circular gyre. For the normal recirculating flow type, the experiments indicate a recirculation of
the flow with a primary and secondary gyre inside of the cavity as well as a slight expansion of
the main flow streamlines into the cavity. The size of the secondary gyre might vary and it can
become very small. Furthermore, in all cases, the secondary gyre is rotating with a much smaller
velocity than the primary gyre [11]. In the numerical simulations, the size of this secondary gyre
is underestimated.

Transversal flow oscillations have been observed during the experiments for the test cases 124
and 224 in the widened channel reaches. For both the configurations, the semi-confined water
bodies are seiching with a frequency that can be predicted with the theory of sloshing in a
rectangular basin [21]. Oscillations transverse to the main flow direction, coupled with alternating
vortex shedding at the cavity leading edge, also occurred for the geometrical configurations 124
and 224 in the numerical simulations. However, the frequency is much lower in the numerical
simulations.

The occurrence of these oscillations in the numerical model should be explained by an analysis
of the computation process. Indeed, having a symmetrical geometry along the channel and uniform
boundary conditions, non-symmetric behavior cannot be initiated by the numerical scheme. Despite
a dissipative time integration scheme, the oscillations are amplified and reach a periodic behavior
in configurations 124 and 224. On the other hand, they are not amplified in any steady solution
for configurations 121 and 221. This is in agreement with the experimental observations for which
stable flow patterns have been observed in configurations 121 and 221.

5.3. Turbulent viscosity components

Figure 8 illustrates the evolution along the channel length of both the width-integrated bed-generated
(3D) and width-integrated transverse-shear generated (2D) turbulent viscosity components. The 3D
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Figure 8. Evolution of the width integrated turbulent viscosity components along the
channel in case of the specific discharge q4.

component, computed assuming equilibrium between production and dissipation, is rather constant
along the channel axis. It is concentrated in the main channel (Figure 9), where the depth-integrated
velocities are maximum. Furthermore, the 3D turbulent viscosity components are very small in the
cavities due to the small flow velocities. Finally, whatever the channel geometry, the amplitude of
the width-integrated 3D turbulent viscosity component is rather constant for a certain discharge
(Figure 8).

The 2D turbulent viscosity is computed on the basis of two variables obtained from the additional
transport equations. From the 2D turbulent viscosity distribution (Figure 10), two effects can be
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Figure 9. 3D turbulent viscosity components (10×4m2/s) in the upstream part of the macro-rough channel
reach (7.50m<x<14.9m). Configuration 221 (up) and 224 (down) with specific discharge q4.

Figure 10. 2D turbulent viscosity components (10×4m2/s) in the upstream part of the macro-rough
channel reach (7.50m<x<14.9m). Configuration 221 (up) and 224 (down) with specific discharge q4.

seen. First, in cavities with a low aspect ratio �B/Lb, the 2D turbulent viscosity increases in the
direction of the flow. In the cavities with high aspect ratios, it is distributed homogeneously. Second,
the 2D turbulence increases due to transport in the main channel from upstream to downstream.
The width-integrated 2D turbulent viscosity increases along the macro-rough configuration and
reaches an equilibrium level after a few widenings (Figure 8). In cavities with a low aspect ratio
�B/Lb, the width-integrated 2D turbulent viscosity increases linearly with the flow expansion up
to a maximum that is reached at the sudden contraction, where the flow velocity gradients are
maximum. In cavities with higher aspect ratio, the turbulent viscosity is more constant along the
cavity since the velocity gradients are high in the vicinity of the recirculating gyre. Furthermore,
in configuration 124, a local increase of the width-integrated 2D turbulent viscosity is observed
due to the stagnation point.

5.4. Research perspectives

A way to further improve the numerical results is to change the value of the coefficients of
the turbulence model. Tests have been carried out to assess the effect of bottom friction in the
depth-averaged dissipation equation by changing the c3,ε parameter value to 1 as suggested by
Babarutsi [13]. At this stage, no significant change is seen on the numerical results. The influence
of the parameter c� in Equation (12) should be analyzed in a further step as it directly regulates
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the bed-generated turbulence intensity. There is less reason to modify the other parameters of
turbulence equations as they are generally assumed as universal constants in the 3D k–ε model.
Nevertheless, their validity for the depth-integrated approach described in this paper should be
analyzed properly.

Furthermore, to improve the flow patterns in the corners of the cavities, the boundary condition
on the depth-averaged kinetic energy and the dissipation rate along side walls might be modified
considering developments of Nassiri [22] for example. Finally, in the case of this specific application
with quite low flow velocities in the cavities, other boundary friction laws than Manning could be
applied.

6. CONCLUSIONS

A numerical flow model has been applied to flows in a macro-rough channel. The model solves
the shallow water equations (SWE) with a new two-length-scale depth integrated k–ε type turbu-
lence modeling approach. Data for the comparison were obtained from experiments performed
with different non-prismatic channel configurations, namely large-scale cavities at the side walls,
and various discharges. 2D flow features such as vertical mixing layers, wake zones and flow
recirculation in cavities could be observed.

With 2D numerical model features, and especially considering turbulence modeling, a single set
of bottom and side wall roughness for a large range of discharges investigated in a prismatic channel
can be found. It is shown that this is not possible without turbulence terms in the momentum
equations.

By the separation of 2D and 3D turbulence effects in the model, an excellent agreement between
the experimental and the numerical results could be obtained regarding backwater curves and flow
patterns in the macro rough configurations with low aspect ratios. For configurations with high
aspect ratios of the side wall cavities, the head losses generated by the important recirculation
gyres are slightly underestimated.

Furthermore, the analysis of the turbulent viscosity in geometrical configurations with macro-
roughness at side walls clearly shows the important part of the total turbulent viscosity related
to 2D transverse shear effects compared with the bed-generated 3D turbulence. Thus, in 2D flow
numerical modeling, the amplitude of 3D, bed-generated turbulence, and 2D, transverse-shear-
generated turbulence can be very different. As a consequence, the separation of the turbulence
effects in the mathematical model makes possible to reproduce accurately most flow features
depending on internal friction effects.

NOTATIONS

AR=�B/Lb aspect ratio of a cavity (dimensionless)
B channel base width (L)
c�,c�,c1,ε,c2,ε,c3,ε constants of the turbulence model (dimensionless)
d distance to the wall (L)
ER=(B+2�B)/B expansion ratios of a cavity (dimensionless)
f advective and pressure fluxes in the direction x
fd diffusive fluxes in the direction x

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1227–1246
DOI: 10.1002/fld



1244 S. ERPICUM ET AL.

F ′ effect of bed friction on turbulence motion (L3T−2)
Fr Froude number (dimensionless)
g gravity acceleration (LT−2)
g advective and pressure fluxes in the direction y
gd diffusive fluxes in the direction y
h water depth (L)
Jx bottom slope component along the x-axis (dimensionless)
Jy bottom slope component along the y-axis (dimensionless)
k turbulent kinetic energy (L2T−2)
k′ depth-averaged turbulent kinetic energy (L3T−2)
Lb length of a cavity (L)
Lc distance between two cavities (L)
nb Manning coefficient for bottom roughness (TL−1/3)
nw Manning coefficients for side walls roughness (TL−1/3)
P ′ production term of turbulence by the transverse shear (L3T−2)
Re Reynold number (dimensionless)
Rh hydraulic radius (L)
s vector of the conservative unknowns
S vector of the sink and non-conservative terms
t time (T)
u depth-averaged velocity component along the x-axis (LT−1)
U mean flow velocity in the cross-section (LT−1)
U∗ bottom friction velocity (LT−1)
U � shear velocity (LT−1)
v depth-averaged velocity component along the y-axis (LT−1)
x space coordinate (L)
y space coordinate (L)
zb bottom elevation (L)
�B depth of the cavities (L)
�x space discretization step along the x-axis (L)
�y space discretization step along the y-axis (L)
ε turbulence dissipation rate (L2T−3)
ε′ depth-averaged turbulence dissipation rate (L4T−3)
� von Karman constant (dimensionless)
�∗ sum of the water viscosity � and of the eddy viscosity �T,3D (L2T−1)
� water viscosity (L2T−1)
�T,3D eddy viscosity related to the small-scale bed-generated

turbulence (L2T−1)
�T,2D eddy viscosity related to the large-scale transverse-shear-generated

turbulence (L2T−1)
�k,�ε constants of the turbulence model (dimensionless)
�xx and �yy viscous and turbulent normal stresses (L2/T−2)
�xy and �yx viscous and turbulent shear stresses (L2/T−2)
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�Vi j components of �i j related to viscous effects (L2/T−2)

�T,3D
i j components of �i j related to the bed-generated turbulence (L2/T−2)

�T,2D
i j components of �i j related to the large-scale transverse-shear-generated

turbulence (L2/T−2)
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