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Preamble 

 

The common carp, cultivated for human consumption, is one of the most important freshwater 

species in aquaculture with a world production of 3.2 million metric tons per year (estimation from the 

FAO for 2009). While the common carp is a cheap source of animal proteins, its coloured subspecies 

koi is grown for personal pleasure and competitive exhibitions and can be sold for thousands of Euros 

per animal. In the 1990s, a highly contagious and fatal disease started to cause severe economic losses 

in these two carp industries worldwide. The causative agent of the disease was initially called koi 

herpesvirus (KHV). It has been recently renamed cyprinid herpesvirus 3 (CyHV-3) and classified in 

the Alloherpesviridae family of the Herpesvirales order. 

The structure of this manuscript is as follows. It starts with an introduction devoted to the 

Herpesvirales order and to CyHV-3. The objectives of the thesis are then briefly exposed followed by 

the result section organised into four chapters corresponding to four published or in press publications. 

In the last section of this manuscript “Discussion et perspectives”, the main results are discussed and 

potential perspectives are presented. According to the rules applied to PhD theses in Veterinary 

sciences, this last section is in French. 
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Introduction: The order Herpesvirales 

Introduction 

 
At the border of living and non-living, viruses are submicroscopic biological agents consisting 

of nucleic acid and protein shell which may be multilayered. They can’t replicate in the extracellular 

medium and reproduce as obligate intracellular parasites in the host organism. Since the description of 

the tobacco mosaic virus at the end of the 19th century, thousands of viruses were described in every 

ecosystem. They infect bacteria, plants and animals (Dimmock et al., 2007).  The International 

Committee on Taxonomy of viruses (ICTV) developed universal systems for classifying viruses. In 

the current ICTV taxonomy, six orders have been established, the Caudovirales, the Herpesvirales, the 

Mononegavirales, the Nidovirales, the Picornavirales and the Tymovirales (King et al., 2012). 

Members of the order Herpesvirales are enveloped viruses with a linear double-stranded DNA 

(dsDNA) genome. They share an identical structure consisting in a densely packed DNA core in an 

icosahedral capsid. The capsid is embedded in a complex proteinaceous layer called the tegument. A 

lipid envelope containing numerous viral glycoproteins forms the outermost structure of the viral 

particle (McGeoch et al., 2008). Most of the members of the order Herpesvirales have been shown to 

realize two distinct phases in their life cycle: lytic replication characterized by a transcription program 

where immediate-early (IE), early (E), and late (L) genes are expressed successively; and latency, 

consisting of the maintenance of the viral genome as a non-integrated episome and the expression of a 

limited number of viral genes and microRNAs (Roizman & Pellet, 2007). Upon reactivation, latency 

reverses to a lytic replication. 

The origin of the order Herpesvirales has been estimated at several hundred million years ago 

(Davison, 2002). So far, approximately 135 members have been isolated from oyster, fish, amphibian, 

reptile, bird and mammal species, including human(Davison et al., 2009). Herpesviruses have mainly 

co-evolved with their host and in most cases are well adapted to them. This adaption is demonstrate 

that the ability of most herpesviruses to persist in the host species without inducing lethal infection. 

The order Herpesvirales contains three families, the Herpesviridae (infecting reptiles, birds 

and mammals), the Alloherpesviridae (infecting fish and amphibians) and the Malacoherpesviridae 

families. Below, we will first provide a general and brief description of the structure, the genome, the 

common biological properties and the replication cycle of the members of the order Herpesvirales. 

Next, we will discuss briefly the biological specificities of the three families. 

 

Virus structure 
Every virus classified in the order Herpesvirales possesses an identical structure (Ackermann, 

2004). Their genome is protected by an icosahedral capsid with diameter of approximately 100 nm. 

The capsid is composed of 162 capsomers (150 hexons and 12 pentons) (Figure 1). This nucleocapsid 

is surrounded by an amorphous layer of proteins termed tegument, which contains proteins mainly 
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Introduction: The order Herpesvirales 

involved in gene expression regulation. Finally, a lipid envelope bearing viral glycoproteins is 

covering the elements listed above to form a spherical particle of approximately 150 to 300 nm in 

diameter (Figure 1). 

 

Genomic features 
Herpesvirus genome is a long dsDNA molecule, linear in the capsid, but circular once it 

penetrates the nucleus of the host cell (Roizman & Pellet, 2007). Depending of the virus species, the 

guanine plus cytosine (G+C) percentage varies from 31 to 75% while the genome length varies from 

120 to 295 kilobase pairs (kb) (Aoki et al., 2007; Roizman & Pellet, 2007). The genome contains 

variable internal and terminal repeated sequences. Based on the arrangement of these sequences, 

herpesvirus genomes have been classified in 6 different groups (Figure 2) (Roizman & Pellet, 2007). 

All herpesvirus genomes contain at their termini conserved signals for packaging of the DNA into 

capsids (Roizman & Pellet, 2007). 

 

Common biological properties 
Herpesviruses seem to share 4 important biological properties (Ackermann, 2004). Firstly, 

they encode their own enzymes for nucleic acid synthesis. Secondly, both viral DNA replication and 

assembly of the nucleocapsid take place in the nucleus of the infected cell. Thirdly, production of 

progeny viral particles leads to the lysis of the infected cell. Finally, even if this is not firmly 

demonstrated for the Alloherpesviridae and Malacoherpesviridae families, all studied herpesviruses 

are able to establish a latent infection in their natural host. 

 

Biological cycle 
Herpesviruses have two distinct phases in their life cycle: lytic and latent infection. The 

characterization of these two phases is based on the study of the members of the Herpesviridae family. 

 

Lytic infection 

The herpesvirus multiplication cycle is illustrated in Figure 3. It starts with the virion 

attachment on the host cell surface mediated by the interaction of viral glycoproteins with their 

cellular receptors. For example, human herpesvirus 1 (HHV-1) first binds to the cells through 

interaction of glycoproteins gC and gB with some cellular proteoglycans such as heparan sulfate 

(Spear, 2004). A stronger attachment is then mediated by the interaction of gD to its specific cellular 

receptor (Spear, 2004). 

After fusion of the viral envelope with the plasma membrane (or eventually endocytic 

vesicles), the nucleocapsid and tegument proteins are delivered in the cytoplasm where microtubules 

bring the nucleocapsid surrounded by the tegument close to the nucleus (Figure 3)(Sodeik et al., 
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1997). The genome is then released and enters the nucleus through a pore of the nuclear membrane. 

As soon as the genome enters in the nucleus, the viral DNA circularizes prior to viral protein synthesis 

(Garber et al., 1993). This circularization is realized by direct ligation of single unpaired 3’ end 

nucleotides present at both ends of the genome (Davison, 1984). Tegument proteins migrate with 

genome into the nucleus where they regulate virus and cellular gene expression. 

Herpesvirus gene expression is characterized by a transcription program where immediate-

early (IE or α), early (E or β), and late (L or γ) genes are expressed successively (Figures 3 and 4) 

(Honess & Roizman, 1974; 1975; Jones & Roizman, 1979). IE gene expression is initiated by 

tegument proteins which interact with cellular transcriptional proteins, such as RNA polymerase II, to 

activate the transcription. IE genes encode mainly for transcription factors which inhibit IE gene 

expression and promote E gene expression. The maximum of E gene expression is usually observed 

between 4 and 8 hours post-infection (Figure 4). They are mainly coding for enzymes involved in 

nucleotide metabolism and viral DNA replication (Figure 3). Similarly as IE genes, E genes down 

regulate their own expression while stimulating the expression of L genes. Maximum L gene 

expression occurs after virus DNA replication (Figures 3 and 4). L genes are further divided in L1  

(or γ1) and L2 (or γ2) subclasses. L1 gene expression is increased by viral DNA synthesis genes while 

L2 gene expression starts only after the synthesis of the viral genome (Figure 4) (Wagner et al., 1998). 

Most of the L genes code for the proteins incorporated in mature virions; these proteins are called 

structural proteins. The structural proteome of a virus is defined as all the proteins which enter in the 

virion composition. Produced capsid proteins encoded by L genes are assembled in the nucleus to 

form the nucleocapsid containing newly synthesized viral DNA (Figure 3). 

The replication of the viral genome is initiated from one or several origins of replication. 

Specific viral proteins are involved in viral DNA synthesis through a rolling-circle mechanism 

(Ackermann, 2004; Jacob et al., 1979). This process generates concatemers consisting of complexe 

structure of high molecular weight made of several genomic units linked head-to-tail (Figure 3). A 

viral protein complex brings concatemers close to the portal complex of a capsid through which a 

single genomic unit is internalized and cleaved from the concatemer(Mettenleiter et al., 2009). 

Different models were proposed for the egress of the nucleocapsid from the nucleus to the 

extracellular space (Granzow et al., 2001; Johnson & Spear, 1982; Wild et al., 2005). In the 

envelopment-deenvelopment model (Figure 3), the temporary enveloped virus in the peri-nuclear 

space fuses with the external nuclear membrane to deliver the naked capsid in the cytoplasm. 

Tegument proteins are associated with the capsid before it buds into trans-golgi vesicles to form the 

envelope (Browne et al., 1996; Granzow et al., 2001; Masse et al., 1999; Smith, 1980). The virion is 

finally released from the cell by exocytosis or cell lysis (Figure 3) (Flint et al., 2000; Mettenleiter, 

2004; Mettenleiter et al., 2009). In the luminal model, the capsids bud in the internal nuclear 

membrane then migrate in the endoplasmic reticulum (ER). The enveloped virions are then  

(i) incorporated in a transport vesicle and delivered in the golgi apparatus (vesicular model) or  
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Figure 5. Acquisition process of herpesvirus envelope. (A) Primary enveloped virions in the perinuclear
space. The electron-dense sharply bordered layer of tegument underlying the envelope and the absence of
envelope glycoprotein spikes is noteworthy. (B) After translocation into the cytosol, capsids of HSV-1, PrV
and BoHV-4 appear “naked”, whereas those of HCMV and KHV are covered with a visible layer of “inner”
tegument. (C) Secondary envelopment and (D) presence of enveloped virions within a cellular vesicle during
transport to the plasma membrane. The same stages can be observed for members of the Herpesviridae
family and KHV, a member of the Alloherpesviridae family. HSV-1: Herpes simplex type 1; PrV:
Pseudorabies virus; HCMV: Human cytomegalovirus; BHV-4: Bovin herpesvirus 4; KHV: Koi herpesvirus.
Bars represent 100 nm. Reproduced from Mettenleiter et al. (2009).
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(ii) reach the golgi apparatus through connexions between the latter and the ER (intra-cisternal model). 

Independently of these models, the enveloped virions are released by exocytosis (Darlington & Moss, 

1968; Johnson & Spear, 1982). Recently, a new model was described for BoHV-1 where capsids 

present in the nucleus are able to reach the cytoplasm trough enlarged nuclear pore (Wild et al., 2005). 

The capsids, once in the cytoplasm, bud with golgi-derived vesicles before egress from the host cell by 

exocytosis.  

A recent study by electron microscopy on the morphogenesis of different herpesviruses 

belonging to the Herpesviridae and Alloherpesviridae families, concludes that the nucleocapsids 

follow the envelopment-deenvelopment model before being released in the extracellular space by 

exocytosis (Figure 5) (Mettenleiter et al., 2009). 

 

Latent infection 

Latency is observed in all members of the Herpesviridae. It consists in the virus maintenance 

in the host cell without production of viral particles. The mechanisms that induce latency are still 

poorly understood (Roizman & Pellet, 2007). Latency is supposed to occur when the virus infected 

specific cell types. The virus can then persist in the host even after the onset of an adaptive immune 

response able to clear cells supporting a replicative infection. Only few viral genes are expressed 

during latency. During latency, the genome is maintained as non integrated episome in the nucleus. 

When the latent infected cells divide (if they do so), the viral episome is replicated with the cellular 

genomic DNA. Copies of this episome are then distributed between daughter cells. The latent infection 

can be interrupted by exogenous stimulus and switched to lytic infection. Latency has been studied 

mainly in the family Herpesviridae. Regulation of latency seems to be mediated mainly by transcripts 

(LATs for latency associated transcripts) in alphaherpesviruses (Jones, 2003) while in beta- and 

gammaherpesviruses latency proteins are expressed (Ballestas & Kaye, 2001; Cardin et al., 2009; Lee 

et al., 1999). 

Recent studies described the presence of microRNAs (miRNA) in the genome of different 

herpesviruses of the Herpesviridae family (Pfeffer et al., 2005). Ever since, several studies 

demonstrated miRNA productions amongst the latency transcripts (alphaherpesvirus LATs). They 

seem to play an important role in cooperation with the beta- and gammaherpesvirus proteins during 

the viral biological cycle and essentially during the latency where they can modulate cell apoptosis 

and immune pathways, as well as the viral lytic cycle (Burnside et al., 2006; Cai et al., 2005; Lu et al., 

2008; Umbach et al., 2008; Wang et al., 2008). 
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Classification of the order Herpesvirales 
The International Committee on Taxonomy of Viruses (ICTV) has classified the order 

Herpesvirales according to viruses encoding the putative ATPase subunit of the terminase (a complex 

that is responsible for packaging virus DNA into progeny capsids) (Davison, 1992; 2002; Waltzek et 

al., 2009). This protein is specific to herpesviruses; however, it is also conserved to a lesser degree in 

the T4-like bacteriophages of the family Myoviridae (Davison et al., 2009). The Herpesvirales order is 

subdivided in three families: the Herpesviridae, the Alloherpesviridae and the Malacoherpesviridae 

(Davison et al., 2009; Roizmann et al., 1992). 

 

The Herpesviridae family 

The family Herpesviridae is highly studied and is divided in three sub-families: Alpha-, Beta-, 

and Gammaherpesvirinae  (Davison et al., 2009; Roizman & Pellet, 2007). It regroups herpesviruses 

infecting reptiles, birds and mammals, including humans. 

The alphaherpesviruses have a variable host range, a relatively short reproduction cycle, a 

rapid spread in culture, an efficient destruction of infected cells, and a capacity to establish latent 

infection in sensory neurons. As example, this subfamily contains the human herpesvirus 1 (HHV-1 or 

HSV-1) and 3 (HHV-3 or VZV), belonging to the genera Simplexvirus and Varicellovirus, 

respectively.  

In contrast to alphaherpesviruses, betaherpesviruses have a restricted host range. The 

reproductive cycle is relatively long, and the infection progresses slowly in cell culture. Infected cells 

frequently become enlarged (cytomegalia). Their latency is established mainly in secretary glands. As 

example, this subfamily contains the human herpesvirus 5 (HHV-5 or HCMV) and the murid 

herpesvirus 1 (MuHV-1 or MCHV), belonging to the genera Cytomegalovirus and the 

Muromegalovirus, respectively.  

Gammaherpesviruses have usually a host range restricted to the family or the order of their 

natural host. In vitro, all members replicate in lymphoblastoid cells, and some also cause lytic 

infections in some types of epithelioid and fibroblastic cells. Viruses in this group are usually specific 

for either T or B lymphocytes. Latent virus is frequently demonstrated in lymphoid tissue.  

As example, this subfamily contains the human herpesvirus 4 (HHV-4 or EBV) and 8 (HHV-8 or 

KSHV), belonging to the genera Lymphocryptovirus and Rhadinovirus, respectively. 

 

The Malacoherpesviridae family 

Until recently, this family consisted in a single virus (Davison et al., 2005): the Ostreid 

herpesvirus 1 (OsHV-1) infecting the Japanese oyster (Crassostrea gigas). Its genome contains 207 kb 

and is composed of two unique regions (UL and US; 168 kb and 3 kb, respectively), each flanked by an 

inverted repeat (TRL/IRL and TRS/IRS of 7 kb and 10 kb, respectively). The presence of 124 ORFs are 
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Virus name 
(abbreviation) Clade Common name 

(abbreviation) Host(s) Disease 

Anguillid HV 1 
(AngHV1) 1 HV anguillae  

(HVA) 
Japanese eel Anguilla japonica 
and European eel A. Anguilla Haemorrhages of skin, fins, gills, liver 

Cyprinid HV 1 
(CyHV1) 1 HV cyprini, carp pox 

HV, carp HV(CHV) 
Common carp  

Cyprinus carpio 
High losses in fry- exophthalmia 

haemorrhages, survivors have papilloma 

Cyprinid HV 2 
(CyHV2) 1 

Goldfish 
hematopoietic necrosis 

virus  
(GFHNV) 

Goldfish  
Carassius auratus 

High mortality at all ages. Necrosis of 
hematopoietic tissue, spleen, pancreas, 

intestine 

Cyprinid HV 3 
(CyHV3) 1 

Koi HV (KHV),  
carp nephritis and gill 

necrosis virus 
(CNGV) 

Common carp 
Gill inflammation, hyperplasia, and 

necrosis, hematopoietic tissue necrosis. 
High mortality at all ages 

Ictalurid HV 1 
(IcHV1) 2 

Channel catfish virus 
(CCV), Channel 

catfish herpesvirus 

Channel catfish  
Ictalurus punctatus 

Kidney, liver and intestinal necrosis, 
haemorrhages, high mortality in young 

subjects  

Ictalurid HV 2 
(IcHV2) 2 Ictalurus melas HV 

(IcmHV) 
Black bullhead  
Ameiurus melas 

Kidney necrosis, haemorrhages, high 
mortality at all ages 

Acipenserid HV 
1 (AciHV1) 2 White sturgeon HV 1 White sturgeon  

Acipenser transmontanus diffuse dermatitis, high losses in juveniles 

Acipenserid HV 
2 (AciHV2) 2 White sturgeon HV 2 White sturgeon Epithelial hyperplasia 

Salmonid HV 1 
(SalHV1) 2 

HV salmonis (HPV) 
Steelhead herpesvirus 

(SHV) 

Rainbow trout  
Oncorhynchus mykiss 

Mild disease associated with low losses at 
10 °C. Adults: female shed virus in ovarian 

fluid. Asymptomatic infection 

Salmonid HV 2 
(SalHV2) 2 Oncorhynchus masou 

virus (OMV) 

Cherry salmon O. masou, coho 
salmon O. kisutch, sockeye 

salmon O. nerka, coho salmon 
O. keta, rainbow trout, 

Viremia, external haemorrhages 
exophthalmia, hepatic necrosis. High 

mortality in young subjects. Survivors have 
oral papilloma. Infected female shed virus in 

ovarian fluid 

Salmonid HV 3 
(SalHV3) 2 

Epizootic 
epitheliotropic disease 

virus (EEDV) 

Lake trout Salvelinus 
namaycush, lake trout × brook 

trout S. fontinalis hybrids 

Epithelial hyperplasia, hypertrophy, 
haemorrhages on eye and jaw. High 

mortality in juveniles at 6–15 °C 

Gadid 
herpesvirus 1 

(GaHV1) 
2 Atlantic cod 

herpesvirus (ACHV) 
Atlantic cod  

Gadus morhua 
Hypertrophy of cells in gills. High mortality 

in adults. 

Ranid HV 1 
(RaHV1) 2 Lucké tumor HV 

(LTHV) 
Leopard frog  
Rana pipiens Renal adenocarcinoma 

Ranid HV 2 
(RaHV2) 2 Frog virus 4  

(FV-4) Leopard frog No known disease 

Pilchard HV 2  Australian pilchard  
Sardinops sagax 

Gill inflammation associated with epithelial 
hyperplasia and hypertrophy. High mortality

Tilapia HV Possible 
Herpesviridae 

Tilapia larvae 
encephalitis virus 

(TLEV) 

Blue tilapia  
Oreochromis aureus Encephalitis in larvae. High mortality 

Percid HV 1 
(PeHV1)  HV vitreum,  

walleye HV 
Walleye  

Stizostedion vitreum Diffuse epidermal hyperplasia 

 
Table 1. Herpesviruses of fish and amphibians (adapted from Hallon et al. 2011). 
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described whose 12 are duplicated in inverted repeats. Interestingly, among all these genes, 38 belong 

to 12 families of related genes (Davison et al., 2005). Recently, a neurotropic herpesvirus infecting the 

gastropod abalone (Haliotis spp) was described (Savin et al., 2010). Based on the homology existing 

between Abalone Herpesvirus (AbHV) and OsHV-1, it has been proposed to include the AbHV-1 in 

the Malacoherpesviridae family (Savin et al., 2010). Despite the lack of similarity with the capsid 

proteins encoded by other herpesviruses, electron microscopy analysis demonstrates that OsHV-1and 

AbHV-1 have a capsid morphology comparable to that of HHV-1 and IcHV-1 (Davison et al., 2005; 

Savin et al., 2010). 

 

The Alloherpesviridae family 

 

The Alloherpesviridae encompasses viruses infecting fish and amphibians. So far, this family 

regroups 13 viruses infecting teleostei fish, 2 viruses of chondrostei fish and 2 viruses infecting 

amphibians (Hanson et al., 2011) (Table 1).  Phylogenetic studies based on the DNA polymerase and 

the terminase genes led the subdivision of the Alloherpesviridae family into two clades: the first clade 

comprises large linear dsDNA viruses (245-295 kb) as Anguillid and Cyprinid herpesviruses; the 

second clade comprises viruses with smaller genome (134-235 kb) as Ictalurid, Salmonid, Acipenserid 

and Ranid herpesviruses (Davison & Stow, 2005; Waltzek et al., 2009). The genomes of several 

Alloherpesviridae have been sequenced: Ictalurid herpesvirus 1 (IcHV-1), Cyprinid herpesvirus 3 

(CyHV-3), Anguillid herpesvirus 1 (AngHV-1); the Ranid herpesvirus 1 (RaHV-1) and 2 (RaHV-2). 

Based on these sequences, 12 conserved genes have been identified in the Alloherpesviridae family 

(Aoki et al., 2007; van Beurden et al., 2010).  

Even though Alloherpesviridae are distantly related to Herpesviridae, there are similarities in 

the way they infect, replicate and persist in the host (Table 1). (i) They display a high level of host 

specificity, causing disease in only one species or in closely related members of the same genus. (ii) 

Some alloherpesviruses have been evaluated for long-term latent infections (persistence of viral DNA 

in survivors without production of infectious particles). Latency has been demonstrated in CyHV-1, 

CyHV-3, SalHV-2 and IcHV-1 (Hanson et al., 2011). Much of our knowledge on the biology of 

Alloherpesviridae is derived from research on two models of infection: IcHV-1 for clade 2 and 

CyHV-3 for clade 1. CyHV-3 being the subject of this thesis, the remaining part of this introduction 

has been devoted to this virus.  
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Abstract 
The koi herpesvirus recently designated cyprinid herpesvirus 3 (CyHV-3) is an emerging 

agent that causes fatal disease in common and koi carp. Since its emergence in the late 1990s, this 

highly contagious pathogen has caused severe financial losses in koi and common carp culture 

industries worldwide. In addition to its economical importance, recent studies suggest that CyHV-3 is 

an interesting object for fundamental research: CyHV-3 has the largest genome amongst the order 

Herpesvirales, and serves as an extreme model for mutagenesis of large DNA viruses. The effect of 

temperature on viral replication suggests that the body temperature of its poikilotherm host could 

regulate the outcome of the infection (replicative versus non replicative). In this review, we summarize 

the recent advances in CyHV-3 fundamental and applied research. 
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Figure 1. Mass mortality of common carp caused by CyHV-3 disease in Lake Biwa, Japan, in 2004. (A) The
death of wild common carp was observed throughout the lake. (B) More than 100,000 dead carp were
collected from this lake in 2004 alone. It is estimated that 2–3 times as many carp died but were not collected
from the lake. Reproduced with permission from Matsui et al. (2008).
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Introduction 
Common carp (Cyprinus carpio carpio) is a freshwater fish and one of the most important 

species in aquaculture, with a world production of 3.2 million metric tons per year  

(2009, www.fao.org). In addition to common carp, which is cultivated for human consumption, koi 

(Cyprinus carpio koi), an often-colourful subspecies, is grown for personal pleasure and competitive 

exhibitions. In the late 1990s, a highly contagious and virulent disease began to cause severe economic 

losses in these two carp industries worldwide (Figure 1)(Haenen, 2004; Matsui et al., 2008). The 

observed rapid worldwide spread of the disease has been attributed to the international fish trade and 

koi shows that occur around the world (Hedrick, 2000). The causative agent of the disease was 

initially called koi herpesvirus (KHV) according to its morphological resemblance to viruses 

belonging to the order Herpesvirales (Hedrick, 2000). Later, the virus was also known as carp 

interstitial nephritis and gill necrosis virus (CNGV), because of the associated lesions (Ronen et al., 

2003). Recently, the virus was renamed cyprinid herpesvirus 3 (CyHV-3; species Cyprinid herpesvirus 

3, genus Cyprinivirus, family Alloherpesviridae, order Herpesvirales) based on the homology of its 

genome with that of previously described cyprinid herpesviruses (Waltzek et al., 2005).  

Because of its economical importance, once isolated, CyHV-3 rapidly became an important 

subject for applied research. However, recent studies have demonstrated that CyHV-3 is also an 

interesting fundamental research object. In the present review, we summarize recent advances made in 

CyHV-3 applied and fundamental research. 

 

Characterization of CyHV-3 
Viral classification  

CyHV-3 is a member of the newly designated Alloherpesviridae family of the order 

Herpesvirales (Figure 2A) (Davison, 2002; Waltzek et al., 2009). The family Alloherpesviridae 

comprises viruses that infect fish and amphibians. The common ancestor of this family is thought to 

have diverged from the common ancestor of the Herpesviridae family (herpesviruses infecting 

reptiles, birds and mammals) some 450 million years ago (MYA) (Davison, 2002). The 

Alloherpesviridae family appears to be subdivided into two clades according to phylogenetic analysis 

of specific genes (the DNA polymerase and the terminase genes) (Figure 2B) (Waltzek et al., 2009). 

The first clade comprises anguillid and cyprinid herpesviruses that possess the largest genomes in the 

order Herpesvirales (245–295 kilobase pairs [kb]). The second clade comprises ictalurid, salmonid, 

acipenserid, and ranid herpesviruses with smaller DNA genomes (134–235 kb) (Hanson et al., 2011). 

 

Structural characterization 

The CyHV-3 structure is typical of the order Herpesvirales. An icosahedral capsid contains 

the genome, which consists of a single linear, double-stranded DNA (dsDNA) molecule. The capsid is 

 16



A

B

Figure 2. (A) Cladogram depicting relationships among viruses in the order Herpesvirales, based on the
conserved regions of the terminase gene. The Bayesian maximum likelihood tree was rooted using
bacteriophages T4 and RB69. Numbers at each node represent the posterior probabilities (values > 90
shown) of the Bayesian analysis. (B) Phylogenetic tree depicting the evolution of fish and amphibian
herpesviruses, based on sequences of the DNA polymerase and terminase genes. The maximum likelihood
tree was rooted with two mammalian herpesviruses (HHV-1 and HHV-8). Maximum likelihood values
(>80 are shown) and Bayesian values (>90 are shown) are indicated above and below each node,
respectively. Branch lengths are based on the number of inferred substitutions, as indicated by the scale bar.
AlHV-1: alcelaphine herpesvirus 1; AtHV-3: ateline herpesvirus 3; BoHV-1, -4, -5: bovine herpesvirus 1, 4,
5; CeHV-2, -9: cercopithecine herpesvirus 2, 9; CyHV-1, -2: cyprinid herpesvirus 1, 2; EHV-1, -4: equid
herpesvirus 1, 4; GaHV-1, -2, -3: gallid herpesvirus 1, 2, 3; HHV-1, -2, -3, -4, -5, -6, -7, -8: human
herpesvirus 1, 2, 3, 4, 5, 6, 7, 8; IcHV-1: ictalurid herpesvirus 1; McHV-1, -4, -8: macacine herpesvirus 1, 4,
8; MeHV-1: meleagrid herpesvirus 1; MuHV-2, -4: murid herpesvirus 2, 4; OsHV-1: ostreid herpesvirus 1;
OvHV-2: ovine herpesvirus 2; PaHV-1: panine herpesvirus 1; PsHV-1: psittacid herpesvirus 1; RaHV-1, -2:
ranid herpesvirus 1, 2; SaHV-2: saimiriine herpesvirus 2; SuHV-1: suid herpesvirus 1; TuHV-1: tupaiid
herpesvirus 1. Reproduced with permission from Waltzek et al. (2009).
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covered by a proteinaceous matrix called the tegument, which is surrounded by a lipid envelope 

derived from host cell trans-golgi membrane (Figure 3) (Mettenleiter et al., 2009; Miyazaki et al., 

2008). The envelope contains viral glycoproteins (Hedrick, 2000). The entire CyHV-3 particle has a 

diameter of approximately 170–200 nm (Hedrick, 2000; Miyazaki et al., 2008; Neukirch & Kunz, 

2001).  

 

Molecular characterization 

Viral genome. The genome of CyHV-3 is a 295 kb linear dsDNA molecule consisting of a 

large central portion flanked by two 22 kb repeat regions called the left repeat (LR) and the right 

repeat (RR) (Figure 4)(Aoki et al., 2007). The genome size is similar to that of CyHV-1 (Waltzek et 

al., 2005), but is larger than that of the other members of the order Herpesvirales, which generally 

range from 125 to 240 kb. The GC content of the genome is relatively high approaching 59.2% (Aoki 

et al., 2007). 

The CyHV-3 genome encodes 156 potential protein-coding open reading frames (ORFs) 

including eight ORFs encoded by the repeat regions. These eight ORFs are consequently present as 

two copies in the genome (Aoki et al., 2007). Among them, 3 genes (ORF1, -3 and -6) are potential 

immediate early genes (Dr Aoki, personal communication) and one is coding for a tumor necrosis 

factor receptor (TNFR; ORF4) (Aoki et al., 2007). The terminal repeats are supposed to be involved in 

the capsid packaging of a single copy of the genome coming from the concatemer during the viral 

replication. Five families of related genes have been described in the CyHV-3 genome: the ORF2, 

TNFR, ORF22, ORF25, and RING families. The ORF25 family consists of six ORFs (ORF25, -26, -

27, -65, -148, and -149) encoding related, potential membrane glycoproteins. The expression products 

of four of the sequences were detected in mature virions (ORF25, -65, -148, and -149) (Michel et al., 

2010). CyHV-3 encodes several genes that could be involved in immune evasion processes, such as 

ORF16, which codes for a potential G-protein coupled receptor (GPCR); ORF134, which codes for an  

IL-10 homologue; and ORF12, which codes for a TNFR homologue. 

Within the Alloherpesviridae family, anguillid herpesvirus 1 (AngHV-1) is the closest relative 

of CyHV-3 sequenced to date (Doszpoly et al., 2011; van Beurden et al., 2010). The two viruses 

possess 40 ORFs exhibiting similarity. It is likely that the sequencing of CyHV-1 and -2 should reveal 

even more CyHV-3 gene homologues. The putative products of most ORFs in the CyHV-3 genome 

lack obvious relatives in other organisms. Indeed, 110 ORFs fall into this class. Six ORFs encode 

proteins whose closest relatives are found in virus families such as the Poxviridae and Iridoviridae 

(Aoki et al., 2007; Waltzek et al., 2005). For example, CyHV-3 genes such as B22R (ORF139), 

thymidylate kinase ([TmpK] ORF140), thymidine kinase ([TK] ORF55), and the subunits of 

ribonucleotide reductase (ORF23 and -141) appear to have evolved from poxvirus genes (Aoki et al., 

2007). Interestingly, neither TmpK nor B22R has been identified previously in a member of the order 

Herpesvirales. 
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Figure 3. Electron microscopy examination of CyHV-3 virion. Bar represents 100 nm. Adapted with
permission from Mettenleiter et al. (2009).

Figure 4. Genomic organisation of the CyHV-3. Potential ORF and their orientations are shown by coloured
arrows and numbered from 1 to 156. Introns are depicted as narrow bars. Left (LR) and right (RR) repeats
are represented by grey rectangles. Red arrows represent conserved ORF among the Alloherpesviridae
CyHV-3, IcHV-1, AngHV-1, RaHV-1 and -2. Reproduced from Aoki et al. (2007) and van Beurden et al.
(2010).

Cell lines Cytopathic effect
Cyprinus carpio brain cells (CCB) Yes (Neukirch & Kunz, 2001,15)
Cyprinus carpio gill cells (CCG) Yes (Neukirch & Kunz, 2001)
Epithelioma papulosum cyprinid cells (EPC) No (Hedrick et al., 2000, Ronen et al., 2003), Davidovich et al., 2007, Oh et al., 

2001) / Yes (Neukirch & Kunz, 2001)
Koi fin cells (KFC, KF-1) Yes (Hedrick et al., 2000, Ronen et al., 2003), Davidovich et al., 2007, Pikarsky

et al., 2004)
Carp fin cells (CFC, CaF-2) Yes (Neukirch & Kunz, 2001)
Fathead minnow cells (FHM) No (Hedrick et al., 2000, Davidovich et al., 2007) / Yes (Oh et al., 2001)
Chinook salmon embryo cells (CHSE-214) No (Oh et al., 2001)
Rainbow trout gonad cells (RTG-2) No (Oh et al., 2001)
Glodfish fin cells (Au) Yes (Davidovich et al., 2007)
Channel catfish ovary cells (CCO) No (Davidovich et al., 2007)
Silver carp fin cells (Tol/FL) Yes (Davidovich et al., 2007)
Koi caudal fin cells (KCF-1) Yes (Dong et al., 2011)

Table 1. CyHV-3 susceptible cell lines
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Three strains of CyHV-3, isolated in Israel (CyHV-3 I), Japan (CyHV-3 J), and the USA 

(CyHV-3 U), have been fully sequenced (Aoki et al., 2007). Despite their distant geographical origin, 

these strains exhibit highly homologous sequences. A low diversity of sequences among strains seems 

to be a characteristic of the CyHV-3 species. Despite this low diversity, molecular markers allowing 

for discrimination among nine genotypes (seven European and two Asian) have been identified 

(Kurita et al., 2009). Analyses of variable number of tandem repeat (VNTR) proved to be useful to 

investigate CyHV-3 genetic diversity. These analyses revealed a relatively slow genetic evolution of 

CyHV-3 in vitro (Avarre et al., 2011). However, prolonged CyHV-3 cultivation in vitro leads to the 

spontaneous attenuation of the virus (Ronen et al., 2003). 

 

Viral structural proteome. The structural proteome of CyHV-3 was characterized recently 

using liquid chromatography tandem mass spectrometry (Michel et al., 2010). Forty structural 

proteins, comprising three capsid, 13 envelope, two tegument, and 22 unclassified proteins, were 

described. The genome of CyHV-3 possesses 30 potential transmembrane protein-coding ORFs (Aoki 

et al., 2007). One cannot exclude that some low abundant envelope proteins have been overlooked 

during proteome analysis With the exception of ORF81, which encodes a type 3 membrane protein 

expressed on the CyHV-3 envelope (Michel et al., 2010; Rosenkranz et al., 2008), none of the CyHV-

3 structural proteins have been studied to date. ORF81 is thought to be one of the most immunogenic 

(major) membrane proteins of CyHV-3 (Rosenkranz et al., 2008). A recent study of the structural 

proteome of AngHV-1 revealed that its viral particle contains a number of proteins comparable to 

CyHV-3 (van Beurden et al., 2011). 

 

In vitro replication 

CyHV-3 is widely cultivated in cell lines derived from koi fin (KFC), Cyprinus carpio brain 

(CCB), and Cyprinus carpio gill (Table 1) (Davidovich et al., 2007; Hedrick, 2000; Neukirch & Kunz, 

2001; Oh, 2001; Pikarsky et al., 2004; Ronen et al., 2003). Other cell lines have been tested but few 

showed cytopathic effect following CyHV-3 infection (Table 1). For cell lines that did not support 

viral replication, it is not known whether these cell lines are nevertheless sensitive to the infection. 

The CyHV-3 replication cycle was studied recently by electron microscopy (Mettenleiter et 

al., 2009). The morphological stages observed suggest that it replicates in a manner similar to that of 

the family Herpesviridae that utilizes an envelopment–deenvelopment mechanism to acquire the viral 

envelope (Mettenleiter et al., 2009; Miwa et al., 2007; Miyazaki et al., 2008). Following this theory, 

capsids leave the nucleus by a first budding event at the inner nuclear membrane resulting in the 

formation of primary enveloped virions in the perinuclear space. The primary envelope then fuses with 

the outer leaflet of the nuclear membrane thereby releasing nucleocapsids into the cytoplasm. Final 

envelopment occurs by budding into trans-golgi vesicles. 
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Figure 5. Effect of temperature on CyHV-3 replication. CCB cells were infected with CyHV-3. Following
infection, the cells were either kept at 22 °C (B) or shifted to 30 °C. At 24 hours post-infection (hpi) (C) or
48 hpi (D), the cells were returned to 22 °C. At 9 days post-infection (dpi), the cells were fixed, stained, and
photographed. (A) Noninfected control. (E) Infected cells kept at 30 °C after infection. Magnification: 20x.
Reproduced with permission from Dishon et al. (2007).
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As mentioned above, CyHV-3 glycoproteins have little or no similarity with those of members 

of the family Herpesviridae. Further studies are required to identify the CyHV-3 glycoproteins 

involved in entry and egress.  

Because fish are poikilotherms and because CyHV-3 only affects fish when the water 

temperature is 18–28 °C, the effect of temperature on CyHV-3 replication growth in vitro has been 

investigated. Replication in cell culture is restricted by temperature, with optimal viral growth at  

15–25 °C. Viral propagation and viral gene transcription are turned off by moving cells to a non-

permissive temperature of 30 °C (Dishon et al., 2007). Despite the absence of detectable viral 

replication, infected cells maintained for 30 days at 30 °C preserve infectious virus, as demonstrated 

by viral replication when the cells are returned to permissive temperatures (Figure 5) (Dishon et al., 

2007). These results suggest that CyHV-3 can persist asymptomatically for long periods in the fish 

body when the temperature prevents viral replication, with a burst of new infection upon exposure to 

permissive temperatures. 

 

Resistance to environmental factors 

CyHV-3 virions remain infectious in environmental water for at least 4 hours at 23-25 °C 

(Perelberg et al., 2005; Perelberg, 2003). A study performed by Shimizu et al. (2006) demonstrated an 

anti-CyHV-3 activity for different bacterial strains present in water and in the sediment (Shimizu et 

al., 2006). The CyHV-3 is quickly inactivated by UV irradiation and temperature above 50 °C (Kasai 

et al., 2005a). The following disinfectants are also effective to inactivate the virus: iodophor (200 

mg/l), benzalkonium chloride (60 mg/l), ethyl alcohol (40%) and sodium hypochlorite (400 mg/l) 

(Kasai et al., 2005b) but also Virkon (1%) (Vetoquinol Canada Inc.). 

 

Disease caused by CyHV-3 
Epidemiological history 

In 1998, the first mass mortalities of common and koi carp were reported in Israel and the 

USA (Ariav, 1999; Bretzinger, 1999; Hedrick, 2000). However, analyses of samples from archives 

determined that the virus had been present in wild common carp since 1996 in the UK (Walster, 

1999). Soon after the first report, outbreaks of CyHV-3 were identified in different European (Body et 

al., 2000; Bretzinger, 1999; Hedrick, 2000; Marek et al., 2010; Walster, 1999), Asian (Bondad-

Reantaso et al., 2007; Cheng et al., 2011; Choi et al., 2004; Dong et al., 2011; Gomez et al., 2011; Oh, 

2001; Sano, 2004; Sunarto et al., 2011; Tu et al., 2004), and African countries(Haenen & Engelsma, 

2004). Currently, CyHV-3 has been identified all around the world with the exception of South 

America, Australia, and northern Africa (Haenen & Engelsma, 2004; Pokorova, 2005). This rapid 

spread of CyHV-3 is thought to be linked to the largely unregulated international koi trade and the 

numerous fish meeting occurring around the world. These kinds of exhibition are held without 
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Table 2. Effect of CyHV-3 infection in different fish species
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previous health examinations or health certificates enhancing the transmission from fish to fish and 

quick dissemination. In particular, the fish meeting of New York in 1998 is suspected to be the origin 

point for the first outbreak in Israel and in the USA (Hedrick, 2000).  

CyHV-3 has caused severe financial and economic losses in both koi and common carp 

culture industries worldwide (Haenen & Engelsma, 2004). In 2003, Perelberg et al. (2003) reported 

that Israeli farms have lost around US$3 million per year since 1998 due to the CyHV-3 (Perelberg, 

2003). In 2004, Waltzek and Hedrick highlighted an economic loss totaling US$5.5 million for 

Indonesia and approximately US$2.5 million for Japan (Waltzek & Hedrick, 2004).  

 

Host range 

Common and koi carp are the only species known to suffer from CyHV-3 infection 

(Bretzinger, 1999; Perelberg, 2003). Numerous fish species, including cyprinid and noncyprinid 

species, were tested for their ability to carry CyHV-3 asymptomatically and to spread it to naïve carp 

(Table 2) (Bergmann et al., 2007; Haenen & Hedrick, 2006; Perelberg, 2003).  

CyHV-3 DNA was recovered from only two other fish species: goldfish and crucian carp. 

Cohabitation experiments suggest that goldfish, grass carp, and tench can carry CyHV-3 

asymptomatically and spread it to naïve common carp (Table 2). Interestingly, hybrids of  

koi x goldfish and koi x crucian carp die from CyHV-3 infection (Bergmann et al., 2010b). 

 

Susceptible stages 

CyHV-3 affects carp at all ages, but younger fish (1–3 months, equivalent to 2.5–6 g) appear 

to be more sensitive to the disease than mature fish (1 year, equivalent to 230 g) (Oh, 2001; Perelberg, 

2003). Recently, the susceptibility of young carp to CyHV-3 infection was analyzed by experimental 

infection (Ito et al., 2007). Most of the infected juveniles (>13 days post-hatching) died from the 

disease, while the larvae (three days post-hatching) were not susceptible to CyHV-3.  

 

Pathogenesis 

Several authors have postulated that the gills might be the portal of entry for CyHV-3 in carp 

(Dishon et al., 2005; Gilad et al., 2004; Ilouze et al., 2006; Miyazaki et al., 2008; Pikarsky et al., 

2004). This hypothesis relied on several observations. First, the gills have been demonstrated to act as 

the portal of entry for many fish pathogens (Roberts, 2001). Second, fish expressing CyHV-3 disease 

have gill lesions, which explains why the virus was initially called Carp interstitial nephritis and gill 

necrosis virus (Hedrick, 2000; Miyazaki et al., 2008; Perelberg, 2003; Pikarsky et al., 2004; Ronen et 

al., 2003). Third, the gills (like virtually all tissues) were shown by PCR to contain the viral genome at 

an early stage of infection (Gilad et al., 2004; Pikarsky et al., 2004). However, no data demonstrating 

the role of the gills as the portal of entry of CyHV-3 are available.  
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It has also been postulated that the virus spreads very rapidly in infected fish, based on 

detection of CyHV-3 DNA in fish tissues (Gilad et al., 2004). Indeed, as early as 24 hours 

post-infection, CyHV-3 DNA was recovered from almost all internal tissue (including liver, kidney, 

gut, spleen, and brain) (Gilad et al., 2004) where viral replication occurs at later stages of infection 

and causes lesions. One hypothesis regarding the rapid and systemic dissemination observed by PCR 

is that CyHV-3 targets blood cells as a secondary site of infection. Viral replication in organs such as 

the gills, skin, and gut at the later stages of infection represents sources of viral excretion into the 

environment. Following natural infection under permissive temperatures (18–28 °C), the highest 

mortality rate occurs 8–12 days post-infection (dpi) (Gilad et al., 2004; Perelberg, 2003) suggest that 

death is due to loss of the osmoregulatory functions of the gills, kidneys, and gut. 

All members of the family Herpesviridae exhibit two distinct phases in their life cycle: lytic 

replication and latency. Latency is characterized by maintenance of the viral genome as a 

non-integrated episome and the expression of a limited number of viral genes and microRNAs. Upon 

reactivation, latency is replaced by lytic replication. So far, latency has not been firmly demonstrated 

in CyHV-3. However, there is a growing list of observations that support the existence of a latent 

phase. CyHV-3 DNA was detected by real-time TaqMan PCR 65 dpi in clinically healthy fish (Gilad 

et al., 2004). Furthermore, the virus persisted in a wild population of common carp for at least two 

years after the initial outbreak (Uchii et al., 2009). Moreover, St-Hilaire et al. (2005) demonstrated the 

possibility of a temperature-dependent reactivation of CyHV-3 lytic infection several months after 

initial exposure to the virus (St-Hilaire et al., 2005). This study suggests that the temperature of the 

water could control the outcome of the infection (replicative/nonreplicative). The latter results were 

confirmed recently by an independent study (Eide et al., 2011). The latter study suggested that 

leukocytes could be a site of latency.   

 

Transmission 

Transmission of CyHV-3 is likely to occur through mobility of infected carp (supporting and 

replicative or a latent infection). Importantly, it has been demonstrated that some fish species could act 

as an asymptotic reservoir of the virus and could transmit the infection to naïve carp (El-Matbouli et 

al., 2007b; Haenen & Hedrick, 2006). Horizontal transmission of CyHV-3 has been demonstrated via 

feces (Dishon et al., 2005) and secretion of viral particles into water (Perelberg, 2003). Several studies 

demonstrated the presence of infectious viral particles in filtrating invertebrate organisms such as 

mollusks or crustaceans (Kielpinski et al., 2010); while CyHV-3 DNA have been detected in 

planktons (Minamoto et al., 2011) or sediments (Honjo et al., 2011).  

 

Clinical signs 

The first symptoms appear at 2–3 dpi. The fish exhibit appetite loss and lethargy; they lie at 

the bottom of the tank with the dorsal fin folded. Depending on the stage of the infection, the skin 
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Figure 6. Some of the clinical signs observed during CyHV-3 infection. (A) Severe gill necrosis. (B)
Hyperemia at the base of the caudal fin. (C) Herpetic skin lesions on the body (arrows) and fin erosion
(arrowheads).
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exhibits different clinical signs, such as hyperemia, particularly at the base of the fins and on the 

abdomen; mucus hypersecretion; and herpetic lesions (Figure 6). The gills are frequently subject to 

necrosis; together with mucus hypersecretion, this leads to suffocation of the fish. Bilateral 

enophthalmia is occasionally observed in the later stages of infection. Some of the fish exhibit 

neurological clinical signs in the final stage of the disease; they become disoriented and lose 

equilibrium (Bretzinger, 1999; Hedrick, 2000; Hutoran et al., 2005; Perelberg, 2003; Walster, 1999). 

 

Histopathology 

In CyHV-3–infected fish, prominent pathological changes are observed in the gill, skin, 

kidney, liver, spleen, gastrointestinal system, and brain (Hedrick, 2000; Miyazaki et al., 2008; 

Perelberg, 2003; Pikarsky et al., 2004). Histopathological changes appear in the gills as early as 2 dpi 

and involve the epithelial cells of the gill filaments. These cells exhibit hyperplasia, hypertrophy, 

and/or nuclear degeneration (Hedrick, 2000; Miyazaki et al., 2008; Perelberg, 2003; Pikarsky et al., 

2004). Severe inflammation leads to the fusion of respiratory epithelial cells with cells of the 

neighbouring lamellae, resulting in lamellar fusion (Miyazaki et al., 2008; Pikarsky et al., 2004). In 

the kidney, a weak peritubular inflammatory infiltrate is evident as early as 2 dpi and increases with 

time, along with blood vessel congestion and degeneration of the tubular epithelium in many nephrons 

(Pikarsky et al., 2004). In the spleen and liver, splenocytes and hepatocytes, respectively, are the most 

obviously infected cells (Miyazaki et al., 2008). In brain of fish that exhibited neurological symptoms, 

congestion of capillaries and small veins are apparent in the valvula cerebelli and medulla oblongata 

involving oedematous dissociation of nerve fibers (Miyazaki et al., 2008).  

 

Diagnosis of CyHV-3 
Viral isolation 

The first diagnostic method for the CyHV-3 was based on isolation of viral particles from 

infected fish tissue in cell cultures (Hedrick, 2000). Cell cultures (CCB and KFC) were infected with 

tissue extracts at 23 °C and observed for appearance of cytopathic effects (CPE), then supernatant 

containing virions was used to infect naïve fish and to reproduce the disease (Hedrick, 2000). Viral 

isolation is time-consuming but is still the best effective method to detect infectious particles in the 

mortality phase of the disease. However, this method is useless to detect asymptomatic carrier as 

survivor of an outbreak.  

 

Polymerase chain reaction 

PCR molecular techniques offer a rapid and sensitive diagnostic method that overcomes the 

laborious isolation of viral particles. The first PCR methods directed against the CyHV-3 were 

developed independently by Gray et al. (2002) and Gilad et al. (2002). They amplify DNA located in 
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non coding regions (Gilad et al., 2002; Gray, 2002). Few years later, Bercovier et al. (2005) developed 

a PCR directed against the TK gene (ORF55) (Bercovier et al., 2005). El-Matbouli et al. (2007) 

developed a nested PCR assay specific to the major capsid protein gene (ORF92) (El-Matbouli et al., 

2007a). This highly specific assay, based on 2-round amplification step performed on the same DNA 

fragment, diminishes the possibility of false positive results. The sensitivity of the nested PCR can be 

compared to the sensitivity of the PCR raised against the TK gene, with a detection level between 5 

and 10 DNA copies (Bergmann et al., 2010a). A real-time TaqMan PCR assay was developed by 

Gilad et al. (2004). This technique was shown to detect the CyHV-3 DNA at 1 dpi in almost all tissue 

(Gilad et al., 2004). This method can detect traces of DNA as long as 64 dpi in the gills, kidney and 

brain tissues (Gilad et al., 2004).  

 

Loop-mediated isothermal amplification 

To overcome the requirement of a thermal cycler and the use of expensive consumables in 

PCR method, some laboratories developed the loop-mediated isothermal amplification (LAMP) 

technique (Gunimaladevi et al., 2004; Soliman & El-Matbouli, 2009). This method consists to amplify 

DNA with high specificity and sensitivity under isothermal conditions. LAMP is a rapid (60 min), 

simple and inexpensive method, with the same sensitivity as the PCR assays (Soliman & El-Matbouli, 

2005). This technique is very useful when a rapid diagnostic is required as it can be performed almost 

everywhere with a single water bath at 65 °C. Positive results can be read rapidly by adding SYBR 

green I stain in the final reaction mix. Very recently, a LAMP method was coupled to a direct binding 

assay (Gunimaladevi et al., 2004; Soliman & El-Matbouli, 2009). This method consists to concentrate, 

purify and coat CyHV-3 viral particles in the LAMP reaction tube. This method can be performed 

outside the laboratory but is less sensitive than PCR (Bergmann et al., 2010a). 

 

Enzyme-linked immunosorbent assay 

ELISA is a useful diagnostic method for the detection of CyHV-3 specific antibodies 

(Adkison, 2005; St-Hilaire et al., 2009). The limit of this method is the delay for the production of 

antibodies directed against CyHV-3. Consequently, ELISA is especially useful to the diagnosis of fish 

who survived on infection. ELISA has also been used to detect specific viral proteins using a rabbit 

anti-CyHV-3 polyserum (Pikarsky et al., 2004). Using this method, CyHV-3 proteins have been 

detected in fish dropping at 6-7 dpi (Dishon et al., 2005).  

Recently an enzyme immunoassay has been commercialized by an Israeli company (KoVax). 

This kit allows the quantitative detection of CyHV-3 antigens in stool or in tissue of infected fish. 

 

Sero-neutralization 
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This diagnostic method consists to quantify specific neutralizing antibodies of a carp raised 

against the CyHV-3. Used as a non-invasive method, sero-neutralization, like ELISA, required 

facilities but avoid the cross reaction problems (Bergmann et al., 2010a). 

 

Detection of CyHV-3 in environmental water 

Since 2006, several studies described the detection of CyHV-3 in environmental water. The 

method used is based on the detection of viral DNA by real-time TaqMan PCR (Gilad et al., 2004; 

Haramoto et al., 2007; Minamoto et al., 2009). This method was applied on water of a Japanese river 

and allowed the detection of CyHV-3 DNA during an outbreak but also 3 months later (Minamoto et 

al., 2009). A similar but quantitative approach was developed using an external standard virus (Honjo 

et al., 2010). Detection of CyHV-3 in water samples is laborious and time-consuming. It requires 

preliminary concentration and purification of viral particles from water samples before analysis. Also, 

it implies the persitence of viral particles for long period in environmental water without being 

degraded. It has been postulated that CyHV-3 viral particles could adsorb to solids to be protected 

from UV irradiations and degrading enzymes (Matsui et al., 2008; Shimizu et al., 2006). This 

attachment could also increase the accumulation of viral particles in carrier organisms such as shellfish 

(Matsui et al., 2008). 

 

Immune response against CyHV-3 
Immunity in ectothermic vertebrates depends upon the temperature of the environment. In 

carp, at temperatures below 14 °C, adaptive immunity is switched off, while the innate immune 

response remains functional (Bly & Clem, 1992). As mentioned above, the host temperature also has 

an effect on CyHV-3 replication, which can occur only at 18–28 °C. In carp that are infected and 

maintained at 24 °C, antibody titers begin to rise at around 10 dpi and reach a plateau between 20 and 

40 dpi (Perelberg et al., 2008). In the absence of antigenic re-exposure, the specific antibodies 

gradually decrease over six months to a level slightly above or comparable to that of naïve fish. While 

protection against CyHV-3 is proportional to the titer of specific antibodies during primary infection, 

immunized fish—even those in which antibodies are no longer detectable—are resistant to a lethal 

challenge, probably due to the subsequent rapid response of B and T memory cells upon antigen 

restimulation (Perelberg et al., 2008). 

 

Prophylaxis and control of CyHV-3 
Three main approaches are currently being developed to control CyHV-3: (i) management and 

commercial measures to enhance the international market of certified CyHV-3 free carp and to favor 

the eradication of CyHV-3; (ii) selection of carp that are resistant to CyHV-3; and (iii) development of 
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safe and efficacious vaccines. Scientific publications addressing the latter two approaches are 

reviewed below. 

 

Selection of CyHV-3 resistant carp  

The hypothesis that resistance of carp to CyHV-3 might be affected by host genetic factors 

received support (Shapira et al., 2005). Shapira et al. investigated differential resistance to CyHV-3 

(survival rates ranging from 8% to 60%) by crossbreeding sensitive domesticate strains and a 

relatively resistant wild strain of carp. Recently, high heritability of resistance to CyHV-3 disease was 

demonstrated in Cyprinus carpio (Ødegård et al., 2010). Further supporting the role of host genetic 

factors in CyHV-3 resistance, major histocompatibility class II genes were recently shown to affect 

carp resistance (Rakus et al., 2009). Similarly, single nucleotide polymorphisms (SNP) markers 

correlated to carp resistance were identified amongst 14 genes implicated in the anti-viral immune 

response (Kongchum et al., 2011). 
 

Vaccination of carp against CyHV-3 

Soon after the characterization of CyHV-3, a protocol was developed to induce a protective 

adaptive immune response in carp. This approach is based on the fact that CyHV-3 induces fatal 

infections only when the water temperature is between 18 °C and 28 °C. 

According to this protocol, healthy naïve fish are exposed to CyHV-3 infected fish for  

3–5 days at permissive temperature (22 °C–23 °C) and then transferred to ponds with a water 

temperature of approximately 30 °C (nonpermissive temperature) for 30 days. Following this 

procedure, 60% of the fish become resistant to further challenge with CyHV-3 (Ronen et al., 2003). 

Despite its ingenuity, this method has several disadvantages: (i) increasing the water temperature to  

30 °C makes the fish more susceptible to secondary infection by other pathogens and requires a large 

amount of energy in places where the water is naturally cool; (ii) the protection is observed in only 

60% of the fish; (iii) carp that are “vaccinated” using this protocol have been exposed to wild-type 

virulent CyHV-3 and could therefore represent a potential source of CyHV-3 outbreaks if they later 

come into contact with naïve carp. 

Attenuated live vaccine appears to be the most appropriate vaccine for mass vaccination of 

carp. Attenuated vaccine candidates have been produced by successive passages in cell culture (Ronen 

et al., 2003). The vaccine strain candidate was further attenuated by UV irradiation to increase the 

mutation rate of the viral genome (Perelberg et al., 2008; Ronen et al., 2003). A vaccine strain 

obtained by this process has been commercialized by an Israeli company (KoVax) and has been shown 

to confer protection against a virulent challenge. This vaccine is only available in Israel and exhibits 

two main disadvantages: (i) The molecular basis for the reduced virulence is unknown, and, 

consequently, reversions to a pathogenic phenotype cannot be excluded. (ii) Under certain conditions, 
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it is possible that the attenuated strain retained residual virulence that could be lethal for a portion of 

the vaccinated subjects (Perelberg et al., 2008).  

An inactivated vaccine candidate was described by Yasumoto et al. (2006). It consists of 

formalin-inactivated CyHV-3 trapped within a liposomal compartment. This vaccine can be used for 

oral immunization in fish food. Immunization of carp with this inactivated vaccine results in 70% 

protection efficacy (Yasumoto et al., 2006).  

 

Conclusion 
Because CyHV-3 causes several financial and economical losses in both koi and common carp 

culture industries worldwide, it is an important subject for applied science. Safe and efficacious 

vaccines adapted to mass vaccination of carp and efficient diagnostic methods need to be developed. 

Several aspects of CyHV-3 make it an interesting fundamental science subject, including its large 

genome, the relationship between CyHV-3 infectivity and temperature, and the low similarity between 

CyHV-3 genes and the genes of other members of the order Herpesvirales that have been studied to 

date. Further studies are required to identify the roles of CyHV-3 genes in viral entry, egress, and 

pathogenesis.  

 

 26



Introduction: The Cyprinid herpesvirus 3 

Acknowledgments 
Guillaume Fournier is a Research Fellow of the Belgian “Fonds pour la formation à la 

Recherche dans l’Industrie et dans l’Agriculture”. Bérénice Costes is a post-doctoral researcher of the 

“Fonds National Belge de la Recherche Scientifique” (FNRS). This work was supported by a grant of 

the University of Liège (Crédit d’Impulsion) and an FRFC grant of the FNRS (2.4622.10). 

 27



Introduction: The Cyprinid herpesvirus 3 

References 
Adkison, M. A., Gilad, O., and Hedrick, R. P. (2005). An enzyme linked immunosorbent 

assay (ELISA) for detection of antibodies to the koi herpesvirus (KHV) in the serum 
of koi Cyprinus carpio. Fish Pathol 40, 53-62. 

Aoki, T., Hirono, I., Kurokawa, K., Fukuda, H., Nahary, R., Eldar, A., Davison, A. J., 
Waltzek, T. B., Bercovier, H. & Hedrick, R. P. (2007). Genome sequences of three 
koi herpesvirus isolates representing the expanding distribution of an emerging disease 
threatening koi and common carp worldwide. J Virol 81, 5058-5065. 

Ariav, R., Tinman, S., Paperna, I., Bejerano, I. (1999). First report of newly emerging viral 
disease of Cyprinus carpio species in Israel. In the EAFP 9th International 
Conference. Rhodes, Greece. 

Avarre, J. C., Madeira, J. P., Santika, A., Zainun, Z., Baud, M., Cabon, J., Caruso, D., 
Castric, J., Bigarre, L., Engelsma, M. & Maskur, M. (2011). Investigation of 
Cyprinid herpesvirus-3 genetic diversity by a multi-locus variable number of tandem 
repeats analysis. J Virol Methods 173, 320-327. 

Bercovier, H., Fishman, Y., Nahary, R., Sinai, S., Zlotkin, A., Eyngor, M., Gilad, O., 
Eldar, A. & Hedrick, R. P. (2005). Cloning of the koi herpesvirus (KHV) gene 
encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis. 
BMC Microbiol 5, 13. 

Bergmann, S. M., Riechardt, M., Fichtner, D., Lee, P. & Kempter, J. (2010a). 
Investigation on the diagnostic sensitivity of molecular tools used for detection of koi 
herpesvirus. Journal of Virological Methods 163, 229-233. 

Bergmann, S. M., Sadowski, J., Kiepiski, M., Bartomiejczyk, M., Fichtner, D., Riebe, R., 
Lenk, M. & Kempter, J. (2010b). Susceptibility of koi x crucian carp and koi x 
goldfish hybrids to koi herpesvirus (KHV) and the development of KHV disease 
(KHVD). Journal of Fish Diseases 33, 267-272. 

Bergmann, S. M., Stumpf, P., Schütze, H., Fichtner, D., Sadowski, J. & Kempter, J. 
(2007). Similarities and heterogenicity of koi herpes virus (KHV) genome detected in 
ornamental fish without clinical signs. Aquaculture 272, S245-S245. 

Bly, J. E. & Clem, W. (1992). Temperature and teleost immune functions. Fish & Shellfish 
Immunology 2, 159-171. 

Body, A., Lieffrig, F., Charlier, G. & Collard, A. (2000). Isolation of Virus-like particles 
from Koi (Cyprinus carpio) suffering gill necrosis. Bull Eur Assoc Fish Pathol 20, 87-
88. 

Bondad-Reantaso, M. G., Sunarto, A. & Subasinghe, R. P. (2007). Managing the koi 
herpesvirus disease outbreak in Indonesia and the lessons learned. Dev Biol (Basel) 
129, 21-28. 

Bretzinger, A., Fischer-Scherl, T., Oumouma, R., Hoffmann, R., Truyen, U. (1999). Mass 
mortalities in koi, Cyprinus carpio, associated with gill and skin disease. Bull Eur 
Assoc Fish Pathol 19, 182-185. 

Cheng, L., Chen, C. Y., Tsai, M. A., Wang, P. C., Hsu, J. P., Chern, R. S. & Chen, S. C. 
(2011). Koi herpesvirus epizootic in cultured carp and koi, Cyprinus carpio L., in 
Taiwan. J Fish Dis 34, 547-554. 

Choi, D. L., Sohn, S. G., Bang, J. D., Do, J. W. & Park, M. S. (2004). Ultrastructural 
identification of a herpes-like virus infection in common carp Cyprinus carpio in 
Korea. Dis Aquat Organ 61, 165-168. 

Davidovich, M., Dishon, A., Ilouze, M. & Kotler, M. (2007). Susceptibility of cyprinid 
cultured cells to cyprinid herpesvirus 3. Arch Virol 152, 1541-1546. 

Davison, A. J. (2002). Evolution of the herpesviruses. Vet Microbiol 86, 69-88. 

 28



Introduction: The Cyprinid herpesvirus 3 

Dishon, A., Davidovich, M., Ilouze, M. & Kotler, M. (2007). Persistence of cyprinid 
herpesvirus 3 in infected cultured carp cells. J Virol 81, 4828-4836. 

Dishon, A., Perelberg, A., Bishara-Shieban, J., Ilouze, M., Davidovich, M., Werker, S. & 
Kotler, M. (2005). Detection of carp interstitial nephritis and gill necrosis virus in fish 
droppings. Appl Environ Microbiol 71, 7285-7291. 

Dong, C., Weng, S., Li, W., Li, X., Yi, Y., Liang, Q. & He, J. (2011). Characterization of a 
new cell line from caudal fin of koi, Cyprinus carpio koi, and first isolation of cyprinid 
herpesvirus 3 in China. Virus Research 161, 140-149. 

Doszpoly, A., Somogyi, V., LaPatra, S. E. & Benko, M. (2011). Partial genome 
characterization of acipenserid herpesvirus 2: taxonomical proposal for the 
demarcation of three subfamilies in Alloherpesviridae. Arch Virol 156, 2291-2296. 

Eide, K. E., Miller-Morgan, T., Heidel, J. R., Kent, M. L., Bildfell, R. J., Lapatra, S., 
Watson, G. & Jin, L. (2011). Investigation of koi herpesvirus latency in koi. J Virol 
85, 4954-4962. 

El-Matbouli, M., Rucker, U. & Soliman, H. (2007a). Detection of Cyprinid herpesvirus-3 
(CyHV-3) DNA in infected fish tissues by nested polymerase chain reaction, pp. 23-
28. 

El-Matbouli, M., Saleh, M. & Soliman, H. (2007b). Detection of cyprinid herpesvirus type 
3 in goldfish cohabiting with CyHV-3-infected koi carp (Cyprinus carpio koi). Vet Rec 
161, 792-793. 

Gilad, O., Yun, S., Andree, K. B., Adkison, M. A., Zlotkin, A., Bercovier, H., Eldar, A. & 
Hedrick, R. P. (2002). Initial characteristics of koi herpesvirus and development of a 
polymerase chain reaction assay to detect the virus in koi, Cyprinus carpio koi. Dis 
Aquat Organ 48, 101-108. 

Gilad, O., Yun, S., Zagmutt-Vergara, F. J., Leutenegger, C. M., Bercovier, H. & 
Hedrick, R. P. (2004). Concentrations of a Koi herpesvirus (KHV) in tissues of 
experimentally infected Cyprinus carpio koi as assessed by real-time TaqMan PCR. 
Dis Aquat Organ 60, 179-187. 

Gomez, D. K., Joh, S. J., Jang, H., Shin, S. P., Choresca Jr, C. H., Han, J. E., Kim, J. H., 
Jun, J. W. & Park, S. C. (2011). Detection of koi herpesvirus (KHV) from koi 
(Cyprinus carpio koi) broodstock in South Korea. Aquaculture 311, 42-47. 

Gray, W. L., Mullis, L., LaPatra, S. E., Groff, J. M., and Goodwin, A. (2002). Detection 
of koi herpesvirus DNA in tissues of infected fish. J Fish Dis 25, 171-178. 

Gunimaladevi, I., Kono, T., Venugopal, M. N. & Sakai, M. (2004). Detection of koi 
herpesvirus in common carp, Cyprinus carpio L., by loop-mediated isothermal 
amplification. J Fish Dis 27, 583-589. 

Haenen, O. L. & Engelsma, M. (2004). Global distribution of KHV with particular reference 
to Europe. 

Haenen, O. L. & Hedrick, R. P. (2006). Koi herpesvirus workshop Bull Eur Assoc Fish 
Pathol 26. 

Haenen, O. L. M., Way, K., Bergmann, S.M., and Ariel, E. (2004). The emergence of koi 
herpesvirus and its significance to European aquaculture. Bull Eur Assoc Fish Pathol 
24, 293-307. 

Hanson, L., Dishon, A. & Kotler, M. (2011). Herpesviruses that infect fish. Viruses 3, 2160-
2191. 

Haramoto, E., Kitajima, M., Katayama, H. & Ohgaki, S. (2007). Detection of koi 
herpesvirus DNA in river water in Japan. J Fish Dis 30, 59-61. 

Hedrick, R. P., Gilad, O., Yun, S., Spangenberg, J., Marty, R., Nordhausen, M., Kebus, 
M., Bercovier, H., Eldar, A. (2000). A herpesvirus associated with mass mortality of 
juvenile and adult koi, a strain of common carp. J Aquat Anim Health 12, 44-55. 

 29



Introduction: The Cyprinid herpesvirus 3 

Honjo, M. N., Minamoto, T. & Kawabata, Z. (2011). Reservoirs of Cyprinid herpesvirus 3 
(CyHV-3) DNA in sediments of natural lakes and ponds. Vet Microbiol. 

Honjo, M. N., Minamoto, T., Matsui, K., Uchii, K., Yamanaka, H., Suzuki, A. A., 
Kohmatsu, Y., Iida, T. & Kawabata, Z. (2010). Quantification of cyprinid 
herpesvirus 3 in environmental water by using an external standard virus. Appl 
Environ Microbiol 76, 161-168. 

Hutoran, M., Ronen, A., Perelberg, A., Ilouze, M., Dishon, A., Bejerano, I., Chen, N. & 
Kotler, M. (2005). Description of an as yet unclassified DNA virus from diseased 
Cyprinus carpio species. J Virol 79, 1983-1991. 

Ilouze, M., Dishon, A., Kahan, T. & Kotler, M. (2006). Cyprinid herpes virus-3 (CyHV-3) 
bears genes of genetically distant large DNA viruses.  580, 4473-4478. 

Ito, T., Sano, M., Kurita, J., Yuasa, K. & Iida, T. (2007). Carp larvae are not susceptible to 
Koi Herpesvirus. Fish Pathol 42, 107-109. 

Kasai, H., Muto, Y. & Yoshimizu, M. (2005a). Virucidal effects of ultraviolet, heat 
treatment and disinfectants against Koi Herpesvirus (KHV). Fish Pathol 40, 137-138. 

Kasai, H., Muto, Y. & Yoshimizu, M. (2005b). Virucidal effects of ultraviolet, heat 
treatment and disinfectants against koi herpesvirus (KHV). Fish Pathology 40, 137-
138. 

Kielpinski, M., Kempter, J., Panicz, R., Sadowski, J., Schütze, H., Ohlemeyer, S. & 
Bergmann, S. M. (2010). Detection of KHV in Freshwater Mussels and Crustaceans 
from Ponds with KHV History in Common Carp (Cyprinus carpio). The Israeli 
Journal of Aquaculture 62, 28-37. 

Kongchum, P., Sandel, E., Lutzky, S., Hallerman, E. M., Hulata, G., David, L. & Palti, 
Y. (2011). Association between IL-10a single nucleotide polymorphisms and 
resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio). 
Aquaculture 315, 417-421. 

Kurita, J., Yuasa, K., Ito, T., Sano, M., Hedrick, R. P., Engelsma, M. Y., Haenen, O. L. 
M., Sunarto, A., Kholidin, E. B., Chou, H.-Y., Tung, M.-C., Pe, ntilde, a, L. d. l., 
Lio-Po, G., Tu, C., Way, K. & Iida, T. (2009). Molecular Epidemiology of Koi 
Herpesvirus. Fish Pathology 44, 59-66. 

Marek, A., Schachner, O., Bilic, I. & Hess, M. (2010). Characterization of Austrian koi 
herpesvirus samples based on the ORF40 region. Dis Aquat Organ 88, 267-270. 

Matsui, K., Honjo, M., Yukihiro, K., Uchii, K., Yonekura, R. & Kawabata, Z. (2008). 
Detection and significance of koi herpesvirus (KHV) in freshwater environments. 
Freshwat Biol 53, 1262-1272. 

Mettenleiter, T. C., Klupp, B. G. & Granzow, H. (2009). Herpesvirus assembly: an update. 
Virus Res 143, 222-234. 

Michel, B., Leroy, B., Stalin Raj, V., Lieffrig, F., Mast, J., Wattiez, R., Vanderplasschen, 
A. F. & Costes, B. (2010). The genome of cyprinid herpesvirus 3 encodes 40 proteins 
incorporated in mature virions. J Gen Virol 91, 452-462. 

Minamoto, T., Honjo, M. N., Uchii, K., Yamanaka, H., Suzuki, A. A., Kohmatsu, Y., 
Iida, T. & Kawabata, Z. (2009). Detection of cyprinid herpesvirus 3 DNA in river 
water during and after an outbreak. Vet Microbiol 135, 261-266. 

Minamoto, T., Honjo, M. N., Yamanaka, H., Tanaka, N., Itayama, T. & Kawabata, Z. 
(2011). Detection of cyprinid herpesvirus-3 DNA in lake plankton. Res Vet Sci 90, 
530-532. 

Miwa, S., Ito, T. & Sano, M. (2007). Morphogenesis of koi herpesvirus observed by electron 
microscopy. J Fish Dis 30, 715-722. 

Miyazaki, T., Kuzuya, Y., Yasumoto, S., Yasuda, M. & Kobayashi, T. (2008). 
Histopathological and ultrastructural features of Koi herpesvirus (KHV)-infected carp 

 30



Introduction: The Cyprinid herpesvirus 3 

Cyprinus carpio, and the morphology and morphogenesis of KHV. Dis Aquat Organ 
80, 1-11. 

Neukirch, M. & Kunz, U. (2001). Isolation and preliminary characterization of several 
viruses from koi (Cyprinus carpio) suffering gill necrosis and mortality. Bull Eur 
Assoc Fish Pathol 21, 125-135. 

Ødegård, J., Olesena, I., Dixonb, P., Jeneyc, Z., Nielsena, H.-M., Wayb, K., Joinerb, C., 
Jeneyc, G., Ardóc, L., Rónyaic, A. & Gjerdea, B. (2010). Genetic analysis of 
common carp (Cyprinus carpio) strains. II: Resistance to koi herpesvirus and 
Aeromonas hydrophila and their relationship with pond survival Aquaculture 304, 7-
13. 

Oh, M. J., Jung, S.J., Choi, T.J., Kim, H.R., Rajendran, K.V., Kim, Y.J., Park, M.A., 
Chun, S.K. (2001). A viral disease occurring in cultured carp Cyprinus carpio in 
Korea. Fish pathology 36, 147-151. 

Perelberg, A., Ilouze, M., Kotler, M. & Steinitz, M. (2008). Antibody response and 
resistance of Cyprinus carpio immunized with cyprinid herpes virus 3 (CyHV-3). 
Vaccine 26, 3750-3756. 

Perelberg, A., Ronen, A., Hutoran, M., Smith, Y. & Kotler, M. (2005). Protection of 
cultured Cyprinus carpio against a lethal viral disease by an attenuated virus vaccine. 
Vaccine 23, 3396-3403. 

Perelberg, A., Smirnov, M., Hutoran, M., Diamant, A., Bejerano, Y., Kotler, M. (2003). 
Epidemiological description of a new viral disease afflicting cultured Cyprinus Carpio 
in Israel. The Israeli Journal of Aquaculture 55, 5-12. 

Pikarsky, E., Ronen, A., Abramowitz, J., Levavi-Sivan, B., Hutoran, M., Shapira, Y., 
Steinitz, M., Perelberg, A., Soffer, D. & Kotler, M. (2004). Pathogenesis of acute 
viral disease induced in fish by carp interstitial nephritis and gill necrosis virus. J Virol 
78, 9544-9551. 

Pokorova, D., Vesely, T., Piackova, V., Reschova, S., Hulova, J. (2005). Current 
knowledge on koi herpesvirus (KHV): a review. Vet Med-Czech 5, 139-147. 

Rakus, K. L., Wiegertjes, G. F., Jurecka, P., Walker, P. D., Pilarczyk, A. & Irnazarow, I. 
(2009). Major histocompatibility (MH) class II B gene polymorphism influences 
disease resistance of common carp (Cyprinus carpio L.). Aquaculture 288, 44-50. 

Roberts, R. J. (2001). Fish pathology. London: W. B. Saunders. 
Ronen, A., Perelberg, A., Abramowitz, J., Hutoran, M., Tinman, S., Bejerano, I., 

Steinitz, M. & Kotler, M. (2003). Efficient vaccine against the virus causing a lethal 
disease in cultured Cyprinus carpio. Vaccine 21, 4677-4684. 

Rosenkranz, D., Klupp, B. G., Teifke, J. P., Granzow, H., Fichtner, D., Mettenleiter, T. 
C. & Fuchs, W. (2008). Identification of envelope protein pORF81 of koi 
herpesvirus. J Gen Virol 89, 896-900. 

Sano, M., Ito, T., Kurita,J., Yanai, T., Watanabe, N., Satoshi, M., and Iida, T. (2004). 
First detection of koi herpes virus in cultured common carp Cyprinus carpio in Japan. 
Fish Pathol 39, 165-168. 

Shapira, Y., Magen, Y., Zak, T., Kotler, M., Hulata, G. & Levavi-Sivan, B. (2005). 
Differential resistance to koi herpes virus (KHV)/carp interstitial nephritis and gill 
necrosis virus (CNGV) among common carp (Cyprinus carpio L.) strains and 
crossbreds. Aquaculture 245, 1-11. 

Shimizu, T., Yoshida, N., Kasai, H. & Yoshimizu, M. (2006). Survival of koi herpesvirus 
(KHV) in environmental water. Fish Pathol 41, 153-157. 

Soliman, H. & El-Matbouli, M. (2005). An inexpensive and rapid diagnostic method of Koi 
Herpesvirus (KHV) infection by loop-mediated isothermal amplification. Virol J 2, 
83. 

 31



Introduction: The Cyprinid herpesvirus 3 

 32

Soliman, H. & El-Matbouli, M. (2009). Immunocapture and direct binding loop mediated 
isothermal amplification simplify molecular diagnosis of Cyprinid herpsvirus-3. J 
Virol Methods. 

St-Hilaire, S., Beevers, N., Joiner, C., Hedrick, R. P. & Way, K. (2009). Antibody 
response of two populations of common carp, Cyprinus carpio L., exposed to koi 
herpesvirus. J Fish Dis 32, 311-320. 

St-Hilaire, S., Beevers, N., Way, K., Le Deuff, R. M., Martin, P. & Joiner, C. (2005). 
Reactivation of koi herpesvirus infections in common carp Cyprinus carpio. Dis Aquat 
Organ 67, 15-23. 

Sunarto, A., McColl, K. A., Crane, M. S., Sumiati, T., Hyatt, A. D., Barnes, A. C. & 
Walker, P. J. (2011). Isolation and characterization of koi herpesvirus (KHV) from 
Indonesia: identification of a new genetic lineage. J Fish Dis 34, 87-101. 

Tu, C., Weng, M. C., Shiau, J. R. & Lin, S. Y. (2004). Detection of koi herpesvirus in koi 
Cyprinus carpio in Taiwan. Fish Pathology 39, 109-110. 

Uchii, K., Matsui, K., Iida, T. & Kawabata, Z. (2009). Distribution of the introduced 
cyprinid herpesvirus 3 in a wild population of common carp, Cyprinus carpio L. J Fish 
Dis. 

van Beurden, S. J., Bossers, A., Voorbergen-Laarman, M. H., Haenen, O. L., Peters, S., 
Abma-Henkens, M. H., Peeters, B. P., Rottier, P. J. & Engelsma, M. Y. (2010). 
Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J Gen 
Virol 91, 880-887. 

van Beurden, S. J., Leroy, B., Wattiez, R., Haenen, O. L., Boeren, S., Vervoort, J. J., 
Peeters, B. P., Rottier, P. J., Engelsma, M. Y. & Vanderplasschen, A. F. (2011). 
Identification and localization of the structural proteins of anguillid herpesvirus 1. Vet 
Res 42, 105. 

Walster (1999). Clinical observations of severe mortalities in koi carp, Cyprinus carpio, with 
gill disease. Fish Veterinary Journal 3, 54-58. 

Waltzek, T. B. & Hedrick, R. P. (2004). Koi Herpesvirus update California veterinarian 
July-August 2004. 

Waltzek, T. B., Kelley, G. O., Alfaro, M. E., Kurobe, T., Davison, A. J. & Hedrick, R. P. 
(2009). Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ 
84, 179-194. 

Waltzek, T. B., Kelley, G. O., Stone, D. M., Way, K., Hanson, L., Fukuda, H., Hirono, I., 
Aoki, T., Davison, A. J. & Hedrick, R. P. (2005). Koi herpesvirus represents a third 
cyprinid herpesvirus (CyHV-3) in the family Herpesviridae. J Gen Virol 86, 1659-
1667. 

Yasumoto, S., Kuzuya, Y., Yasuda, M., Yoshimura, T. & Miyazaki, T. (2006). Oral 
Immunization of Common Carp with a Liposome Vaccine Fusing Koi Herpesvirus 
Antigen. Fish Pathology 41, 141-145. 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Objectives 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Objectives 

 

Common carp (Cyprinus carpio carpio), which is cultivated for human consumption, is a one 

of the most important freshwater fish species in aquaculture. Its colourful subspecies, koi (Cyprinus 

carpio koi) is grown for personal pleasure and competitive exhibitions. Both subspecies are 

economically important. In the late 1990s, a highly contagious and lethal disease began to cause 

severe economic losses in these two carp industries worldwide. The causative agent of the disease was 

initially called koi herpesvirus (KHV) then recently renamed cyprinid herpesvirus 3 (CyHV-3) based 

on the homology of its genome with previously described cyprinid herpesviruses. CyHV-3 is a 

member of the newly described family Alloherpesviridae which includes herpesviruses that infect fish 

and amphibians. Because of its economic importance and its numerous original biological properties, 

CyHV-3 became rapidly an attractive subject for applied and fundamental research.  

The goal of this thesis was to identify the portal(s) of entry of CyHV-3 in carp. This 

information is crucial both for fundamental and applied research on CyHV-3. Indeed, the 

identification of the portal of entry of a viral infection is essential to understand the pathogenesis and 

the epidemiology of the infection. It is also crucial for the development of efficacious vaccines. 

One of the best methods to provide insights into the viral portal of entry is the use of a 

recombinant expressing luciferase as a reporter gene and noninvasive whole-body imaging of living 

animals (IVIS which stands for In Vivo Imaging System).  The objective of this thesis was to identify 

CyHV-3 portal(s) of entry using this approach. 

As described in the introduction, prolonged CyHV-3 cultivation in vitro leads to the 

spontaneous attenuation of the virus, making the production of CyHV-3 recombinants by classical 

homologous recombination in eukaryotic cells difficult. To circumvent this problem, the initial goal of 

this thesis was to clone the entire genome of a pathogenic CyHV-3 strain as a bacterial artificial 

chromosome (BAC) and to test the usefulness of the BAC clone to generate recombinants. This 

objective was completed successfully. The results obtained are presented in the first chapter of the 

experimental section. 

In the second chapter, we took profit of the cloning of the CyHV-3 genome as a BAC to 

produce a recombinant strain encoding a firefly luciferase (LUC) expression cassette inserted in an 

intergenic region. The CyHV-3 LUC recombinant produced was then used to identify by IVIS the 

portal of entry of CyHV-3 in carp after inoculation by immersion in water containing the virus. All the 

results obtained demonstrate that the skin, and not the gills, is the major portal of entry for CyHV-3 in 

carp. 

Fish skin is a complex limiting structure providing mechanical, chemical and immune 

protection against injury and pathogenic microorganisms. Its mucus layer confers an innate immune 

protection against pathogen entry. It is generally accepted that chemical and physical (for example, 

ectoparasite infestations, rude handling or injuries) stresses that affect skin mucus increase fish 

susceptibility to infection by pathogens. However, despite the abundance of studies on fish skin 
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immunity and skin bacterial infection, there are little in vivo evidence on the role of skin mucus as a 

first line of innate immune protection against bacterial infection, and none against viral infection. In 

the third chapter, we used the luciferase CyHV-3 recombinant strain produced and bioluminescence 

imaging to investigate the roles of epidermal mucus as an innate immune barrier against CyHV-3 

entry. Our results demonstrate that the mucus of the skin inhibits CyHV-3 binding to epidermal cells 

and contains soluble molecules able to neutralize CyHV-3 infectivity. 

The data of the two previous chapters demonstrate that the skin is the major portal of entry 

after inoculation of carp by immersion in water containing CyHV-3. While this model of infection 

mimics some natural conditions in which infection takes place, other epidemiological conditions could 

favour entry of virus through the digestive tract. Consequently, in the fourth and last chapter, we 

investigated the role of the carp digestive tract as a viral portal of entry using bioluminescence 

imaging. We found that feeding carp with infectious materials induces CyHV-3 entry through 

infection of the pharyngeal periodontal mucosa. 

 

In conclusion, this study demonstrated that according to epidemiological conditions, CyHV-3 

can enter carp either through infection of the skin (immersion in infectious water) or through infection 

of the pharyngeal periodontal mucosa (feeding on infectious materials). The existence of these two 

portal of entry adapted to different epidemiological conditions most probably contributes to the high 

contagious nature of the virus.  
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Experimental section: Preamble1 
 

 

Fundamental and applied researches in virology require the production of viral recombinants. 

As described in the introduction, prolonged CyHV-3 cultivation in vitro leads to the spontaneous 

attenuation of the virus, making the production of CyHV-3 recombinants by classical homologous 

recombination in eukaryotic cells difficult.  Recently, the manipulation of large herpesvirus genomes 

has been facilitated by the use of bacterial artificial chromosome (BAC). These vectors allow the 

stable maintenance and efficient mutagenesis of the viral genome in Escherichia coli, followed by the 

reconstitution of progeny virions by the transfection of permissive eukaryotic cells with the BAC 

vectors. The 235-kb genome of human cytomegalovirus was before the publication of the present 

work the largest herpesvirus genome which has been BAC cloned. BAC cloning is an obvious 

approach to avoid the problems in the production of CyHV-3 recombinants described above. 

Consequently, the initial goal of this thesis was to clone the entire genome of a pathogenic CyHV-3 

strain and to test the usefulness of the BAC clone to generate recombinants. 

 

The results of the present study demonstrate that despite its large size and its abundant 

repetitive sequence content, the CyHV-3 genome can be cloned as an infectious BAC that can be used 

to produce CyHV-3 recombinants using prokaryotic recombination technologies.  
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1st chapter: 
 

 

Cloning of the Koi Herpesvirus Genome  
as an Infectious Bacterial Artificial Chromosome 

Demonstrates That Disruption of the Thymidine Kinase 
Locus Induces Partial Attenuation in Cyprinus carpio koi 
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*Author contribution: G. Fournier demonstrated the stability of the KHV FL BAC in bacteria, 
the possibility to reconstitute infectious particle by transfection of the BAC into permissive 
cells, and the potential of the BAC to produce recombinants using prokaryotic recombination 
technologies. 
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Koi herpesvirus (KHV) is the causative agent of a lethal disease in koi and common carp. In the present
study, we describe the cloning of the KHV genome as a stable and infectious bacterial artificial chromosome
(BAC) clone that can be used to produce KHV recombinant strains. This goal was achieved by the insertion
of a loxP-flanked BAC cassette into the thymidine kinase (TK) locus. This insertion led to a BAC plasmid that
was stably maintained in bacteria and was able to regenerate virions when permissive cells were transfected
with the plasmid. Reconstituted virions free of the BAC cassette but carrying a disrupted TK locus (the FL
BAC-excised strain) were produced by the transfection of Cre recombinase-expressing cells with the BAC.
Similarly, virions with a wild-type revertant TK sequence (the FL BAC revertant strain) were produced by the
cotransfection of cells with the BAC and a DNA fragment encoding the wild-type TK sequence. Reconstituted
recombinant viruses were compared to the wild-type parental virus in vitro and in vivo. The FL BAC revertant
strain and the FL BAC-excised strain replicated comparably to the parental FL strain. The FL BAC revertant
strain induced KHV infection in koi carp that was indistinguishable from that induced by the parental strain,
while the FL BAC-excised strain exhibited a partially attenuated phenotype. Finally, the usefulness of the KHV
BAC for recombination studies was demonstrated by the production of an ORF16-deleted strain by using
prokaryotic recombination technology. The availability of the KHV BAC is an important advance that will
allow the study of viral genes involved in KHV pathogenesis, as well as the production of attenuated recom-
binant candidate vaccines.

Common carp (Cyprinus carpio carpio) is the most widely cul-
tivated fish for human consumption mainly in Asia, Europe, and
the Middle East (3). In contrast, the koi (Cyprinus carpio koi)
subspecies is cultivated as an expensive, beautiful, and colorful pet
fish for personal pleasure or competitive showing, especially in
Japan but also worldwide (3). Recently, koi herpesvirus (KHV)
was identified as the cause of mass mortality among koi and
common carp in Israel, the United States, and Germany (7, 21,
22). The intensive culture of common carp, koi shows, and inter-
national trading have unfortunately contributed to the rapid
global spread of highly contagious and extremely virulent KHV
disease (19, 27, 35). Since its emergence, KHV has caused severe
financial and economic losses in both koi and common carp cul-
ture industries worldwide (20, 34).

The genome of KHV comprises a linear double-stranded
DNA sequence of �295 kb (2, 24), similar to that of cyprinid
herpesvirus 1 (41) but larger than those of other Herpesviridae
members, which generally range from 125 to 240 kb. The
sequence of the KHV genome revealed a significant number of

original DNA sequences with no homology to any other known
viral sequences. Moreover, it contains highly divergent DNA
sequences encoding polypeptides which resemble those of sev-
eral other double-stranded DNA viruses, such as other herpes-
viruses, poxviruses, iridoviruses, and other large DNA viruses
(24, 41).

Since the first isolation of KHV, an increasing number of
studies have been devoted to the virus. They have reported
data related to viral gene content (2, 4, 13, 14, 24–26, 41),
pathogenesis (12, 13, 33, 38), epidemiology (24, 32), the diag-
nosis of KHV infection (1, 4, 14, 15, 17, 18, 37), and control
(31, 34). However, no information on the roles of individual
KHV genes in the biology of KHV infection or in pathogenesis
has been published to date. Two reasons can explain this la-
cuna. Firstly, the KHV genome sequence has been published
only very recently (2). Secondly, prolonged KHV cultivation in
vitro leads to the spontaneous attenuation of the virus, making
the production of KHV recombinants by classical homologous
recombination in eukaryotic cells difficult (34).

Recently, the manipulation of large herpesvirus genomes
has been facilitated by the use of bacterial artificial chromo-
some (BAC) vectors (6, 40). These vectors allow the stable
maintenance and efficient mutagenesis of the viral genome in
Escherichia coli, followed by the reconstitution of progeny viri-
ons by the transfection of permissive eukaryotic cells with the

* Corresponding author. Mailing address: Immunology-Vaccinology
(B43b), Department of Infectious and Parasitic Diseases, Faculty of
Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.
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@ulg.ac.be.

� Published ahead of print on 12 March 2008.

4955

 on January 18, 2012 by U
N

IV
 D

E
 LIE

G
E

http://jvi.asm
.org/

D
ow

nloaded from
 

Experimental section: Chapter 1

http://jvi.asm.org/


BAC plasmid. Several herpesviruses have been successfully
propagated as infectious BAC clones. The 235-kb genome of
human cytomegalovirus is to date the largest herpesvirus ge-
nome which has been BAC cloned (6).

BAC cloning is an obvious approach to avoid the problems
in the production of KHV recombinants described above.
However, the large size of the KHV genome and its abundant
repetitive sequence content (2) are two intrinsic features of
KHV that may render its BAC cloning difficult.

In the present study, we describe for the first time the clon-
ing of the KHV genome as a stable and infectious BAC clone.
Several recombinant strains were derived from the BAC clone
by using homologous recombination in eukaryotic cells and
prokaryotic recombination technology. The comparison of
these recombinant strains in vivo revealed that thymidine ki-
nase (TK) gene disruption led to the partial attenuation of
KHV and that the deletion of ORF16, encoding a putative G
protein-coupled receptor (GPCR), did not affect KHV viru-
lence. The availability of the KHV BAC is an important ad-
vance that will allow the study of viral genes involved in KHV
pathogenesis, as well as the production of attenuated recom-
binant candidate vaccines.

MATERIALS AND METHODS

Cells and virus. Cyprinus carpio brain (CCB) cells (30) were cultured in
minimum essential medium (Invitrogen) containing 4.5 g of glucose (D-glucose
monohydrate; Merck)/liter and 10% fetal calf serum (FCS). Cells were cultured
at 25°C in a humid atmosphere containing 5% CO2. The KHV FL strain was
isolated from a kidney of a fish that died from KHV infection (CER, Marloie,
Belgium). FL stands for François Lieffrig, who isolated the strain.

BAC cloning of KHV. Firstly, a 1,137-bp DNA fragment corresponding to the
TK open reading frame (ORF; ORF55) and ORF56 of the KHV genome was
amplified by PCR using KHV FL DNA as a template. The following primers
were used for the amplification: the forward primer TKfw (5�-ATGGCTATGC
TGGAACTGGTG-3�) and the reverse primer TKrev (5�-CTCAACAGGGAA
GAGTGGCG-3�), corresponding to nucleotides 1 to 21 of the KHV TK ORF
and nucleotides 279 to 297 of ORF56 (GenBank accession no. for the KHV
genome, DQ177346), respectively. The amplification product was sequenced and
TA cloned into the pGEM-T Easy vector (Promega), resulting in pGEMT-TK
(Fig. 1A). A BAC cassette was released by PmeI digestion of the pBeloBAC-
Modified-EGFPNeo vector (11) and then ligated into the RsrII site of the
pGEMT-TK vector, resulting in the pGEMT-TKBAC vector (Fig. 1A), in which
the BAC cassette is flanked by KHV sequences. These KHV homologous se-
quences were exploited to produce the KHV FL BAC strain by homologous
recombination in eukaryotic cells (Fig. 1B). Briefly, freshly seeded CCB cells
were infected with KHV at a multiplicity of infection (MOI) of 0.5 PFU/cell.
After an incubation period of 2 h, cells were transfected with circular pGEMT-
TKBAC by using Lipofectamine Plus (Invitrogen). Four days postinfection (pi),
cell supernatant was harvested and inoculated onto confluent CCB cell mono-
layers (106 cells per 9.5 cm2) in the presence of G418 (final concentration of 500
�g/ml). This step was repeated three times, leading to infected cultures contain-
ing predominantly the KHV FL BAC recombinant strain. This viral preparation
was inoculated onto freshly seeded CCB cells at a MOI of 1 PFU/cell. The
circularized form of the viral BAC recombinant genome was extracted 20 h pi as
described previously (29), and 2 �g of DNA was introduced into E. coli DH10B
cells (Invitrogen) by electroporation (at 2,250 V, 132 �, and 40 �F) as described
elsewhere (36). Electroporated cells were plated immediately onto solid-Luria-
Bertani medium plates supplemented with chloramphenicol (17 �g/ml). Note
that it is crucial at this stage to avoid liquid preculture in order to avoid the
preferential growing of bacteria containing incomplete KHV BAC plasmids.

Reconstitution of infectious virus from the KHV FL BAC plasmid. Permissive
CCB cells were transfected with the FL BAC plasmid by using Lipofectamine
Plus (Invitrogen) in order to produce the FL BAC recovered strain. To produce
a wild-type revertant strain derived from the BAC, CCB cells were cotransfected
with the FL BAC plasmid and the pGEMT-TK vector (molar ratio, 1:75). Seven
days posttransfection, viral plaques negative for enhanced green fluorescent
protein (EGFP) expression were picked and enriched by three successive rounds

of plaque purification. Similarly, to reconstitute virions with the BAC cassette
excised from the viral genome, CCB cells were cotransfected with the FL BAC
plasmid and the pEFIN3-NLS-Cre vector, encoding Cre recombinase fused to a
nuclear localization signal (16) (molar ratio, 1:70).

Southern blotting. Southern blot analysis was performed as described previ-
ously (28). Several probes were used. The TK probe was produced by PCR using
the TKfw and TKrev primers described above and the KHV FL genome as a
template. The terminal repeat (TR) probe corresponded to nucleotides 3817 to
4228 of the left TR and nucleotides 276494 to 276905 of the right TR of the KHV
genome. The BAC probe was released from the pBeloBACModified-EGFPNeo
vector by PmeI digestion. The ORF16 probe was produced by PCR using
ORF16fw and ORF16rev primers corresponding to nucleotides 1 to 50 and 1027
to 1077 of KHV ORF16, respectively.

Indirect immunofluorescence staining. CCB cells were fixed and permeabil-
ized with acetone-ethanol (50:50, vol/vol) for 10 min at �20°C. Immunofluores-
cence staining (incubation and washes) was performed in phosphate-buffered
saline containing 10% FCS. Samples were incubated at 25°C for 45 min with
mouse monoclonal antibody 8G12 raised against an unidentified KHV antigen
expressed in the nuclei of infected cells. After three washes, samples were
incubated at 25°C for 30 min with Alexa Fluor 568-conjugated goat anti-mouse
immunoglobulin G (heavy and light chains [GAM 568; 2 �g/�l; Molecular
Probes]) as the secondary conjugate.

Microscopy analysis. Epifluorescence microscopy analysis was performed with
a DMIRBE microscope (Leica) equipped with a DC 300F charge-coupled device
camera (Leica) as described previously (39).

Multistep growth curves. Triplicate cultures of CCB cells were infected at a
MOI of 0.5 PFU/cell. After an incubation period of 2 h, cells were washed with
phosphate-buffered saline and then overlaid with Dulbecco’s modified essential
medium (Invitrogen) containing 4.5 g of glucose/liter and 10% FCS. The super-
natants of infected cultures were harvested at successive intervals after infection,
and the amount of infectious virus was determined by plaque assays with CCB
cells as described previously (9).

Production of the KHV FL BAC recombinant plasmid by galK positive selec-
tion of bacteria. A KHV FL BAC recombinant plasmid with the deletion of ORF16
(encoding a putative GPCR) was produced using galK positive selection of bacteria
as previously described (42). The recombination fragment consisted of a galactoki-
nase gene (galK) flanked by 50-bp sequences corresponding to the beginning and the
end of KHV ORF16. This fragment was produced by PCR using the pgalK vector
(42) as a template, the forward primer 16galfw (5�-ATGAAACCTCTGGGTCTT
TTTGTTTCTGTGCTCGGGCTGCTTGCCCTGTCCCTGTTGACAATTAATC
ATCGGCA-3�), and the reverse primer 16galrev (5�-TCATAGGACGCCATCGG
TTGAGTTCGCTGCGGCTGCGACTCCCAGTCCTCTCAGCACTGTCCTGC
TCCTT-3�). Primer 16galfw consisted of nucleotides 1 to 50 of KHV ORF16 and
nucleotides 1 to 24 of the pgalK vector (42). The reverse primer 16galrev consisted
of nucleotides 1027 to 1077 of KHV ORF16 and nucleotides 1212 to 1231 of the
pgalK vector (42).

Induction of KHV disease in fish. Specific-pathogen-free koi carp, with an
average weight of 7 g, were kept in 60-liter tanks at 24°C. Several groups of fish,
each comprising 10 carp (with the exception of mock-infected groups, which
consisted of 13 carp), were kept in separate tanks. Koi carp were infected by
intraperitoneal (IP) injection with 0.1 ml containing 3 � 102 PFU. The viral
inoculums were titrated before inoculation and back titrated after inoculation to
ensure that the doses were equivalent among groups. The control group (mock
infected) was injected with culture medium under the same conditions. Fishes
were examined daily for clinical signs of KHV disease, and dead fishes were
removed. The animal study was accredited by the local ethics committee of the
University of Liège (Belgium).

Detection of KHV genome by PCR. DNA was extracted from tissues of fish by
using the QIAamp DNA mini kit (Qiagen). PCR amplification was performed
using 25 ng of total DNA as a template and the TKfw-TKrev and ORF16fw-
ORF16rev primer pairs described above.

RESULTS

Cloning of the KHV genome in E. coli. The goal of the
present study was to clone the genome of KHV as a stable and
infectious BAC plasmid. When we started this project, very few
sequences from KHV were available. The TK locus was one of
the few KHV genes to have been sequenced. This locus was
selected for the insertion of the BAC cassette, as TKs encoded
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by herpesviruses and poxviruses have been shown previously to
be dispensable for viral growth in vitro (8a, 30a).

The strategy depicted in Fig. 1 was used for the BAC cloning
of KHV. This approach required as a first step the production
of a recombinant strain called KHV FL BAC. The molecular
structure of this strain was confirmed by a combined SacI
restriction endonuclease and Southern blotting approach (Fig.
2). In the parental FL strain, the TK ORF was contained in a
DNA fragment of approximately 5.2 kb. In the FL BAC strain,
as a consequence of the BAC cassette insertion into the TK
locus, the TK sequence was distributed into two fragments of
approximately 5.3 and 9.1 kb (Fig. 2). Sequencing of the re-
gions used to target homologous recombination confirmed that
the FL BAC strain had the correct molecular structure (data
not shown).

Next, we tried to clone circular intermediates of the FL BAC

genome into bacteria by classical approaches that we have used
successfully in the past for the BAC cloning of other herpes-
viruses (9, 11, 16). Surprisingly, despite the screening of more
than 500 independent clones, we were unable to select a single
clone carrying the FL BAC genome. The BAC plasmids ob-
tained generated heterogeneous restriction profiles with only a
few bands corresponding to the expected restriction profile
(data not shown). Due to the large size of the KHV genome,
one may postulate that bacteria carrying incomplete KHV
BAC plasmids may have a selective advantage over bacteria
carrying a full-length KHV BAC clone and, consequently, that
the liquid culture of transformed bacteria (performed before
the plating of the bacteria onto solid medium) may lead to the
selection of bacteria with BAC plasmids comprising only part
of the KHV genome. To test this hypothesis, E. coli cells were
plated immediately onto solid Luria-Bertani medium after

FIG. 1. Schematic representation of the strategy used to produce the infectious KHV FL BAC plasmid. (A) The genome of the KHV FL strain,
flanked by two TRs (the left TR [LTR] and the right TR [RTR]), is shown at the top. A loxP-flanked BAC cassette was inserted into the RsrII
sites of the TK ORF of the pGEMT-TK vector, resulting in pGEMT-TKBAC. (B) Flow chart of steps performed to produce the KHV FL BAC
plasmid, to control its infectivity, and to demonstrate the possibility of removing the loxP-flanked BAC cassette from the genome of reconstituted
virus or to produce a wild-type revertant strain derived from the FL BAC plasmid.
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electroporation. This approach led to BAC plasmids compris-
ing most of the restriction fragments found in the FL BAC
strain genome. However, only 1 to 2% of the clones exhibited
a restriction profile comparable to that of the FL BAC strain

genome. One of these correct clones was characterized by a
combined SacI restriction endonuclease and Southern blotting
approach (Fig. 2). Due to the circularization of the genome in
bacteria, the two bands encompassing the extremities of the

FIG. 2. Structural analysis of the KHV FL BAC plasmid and derived strains. (A) Schematic representation of some of the fragments generated
by SacI enzymatic restriction. The genomes of the KHV FL and KHV FL BAC revertant strains are shown at the top. TK, BAC, and TR probes
are indicated by bold horizontal lines. Fragment sizes in kilobases are indicated. Note that this cartoon is not drawn to scale. LTR, left TR; RTR,
right TR. (B) The KHV FL BAC plasmid and the genomes of the KHV FL, FL BAC, FL BAC recovered, FL BAC-excised, and FL BAC revertant
strains were analyzed by SacI restriction (agarose gel, first panel) and further tested by Southern blotting using probes corresponding to the TK
ORF (second panel), the BAC cassette (third panel), or the TRs (fourth panel). Black and white arrowheads and open arrowheads indicate
restriction fragments containing the TK ORF and the BAC cassette, respectively. Gray arrowheads indicate restriction fragments hybridizing with
the TR probe. Marker sizes (MS) are indicated on the left.
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left and the right terminal repeats (7.1 and 14.1 kb) present in
the FL and FL BAC strains were missing in the FL BAC
plasmid (Fig. 2). However, the restriction profile of the FL
BAC plasmid did not reveal the expected fused fragment of
21.2 kb (Fig. 2). This observation suggested that the BAC
contains a single copy of the terminal repeat. To test this
hypothesis, SacI profiles were analyzed by Southern blotting
using the TR probe. This analysis revealed the presence of two
bands (7.1 and 11.3 kb) in the FL and FL BAC strain profiles
and only a single band (11.3 kb) in the FL BAC plasmid profile
(Fig. 2). These results demonstrate that the FL BAC plasmid
contains only a single copy of the terminal repeat.

Stability of the KHV genome in E. coli. BAC plasmids are
usually propagated in bacteria carrying a recA mutation that
minimizes recombination. However, the large size and the
complex structure of the KHV genome may lead to relative
instability of the FL BAC plasmid (25). To assess the stability
of the KHV genome as a BAC, bacteria containing the FL
BAC plasmid were serially cultured for 20 consecutive days
(about 130 generations). After various periods of culture, the
BAC plasmids were isolated and characterized by SacI endo-
nuclease digestion (Fig. 3). No difference among plasmids
grown for various periods of time was observed, demonstrating
a high level of stability of the KHV genome in E. coli.

Reconstitution of infectious virus from the FL BAC plasmid.
The usefulness of a herpesvirus BAC clone requires the ability
to reconstitute infectious particles from the BAC plasmid.
Consequently, we tested whether infectious particles could be

produced by the transfection of CCB cells with the FL BAC
plasmid (Fig. 1B). Six days posttransfection, viral syncytia ex-
pressing EGFP were detected. SacI restriction analysis of the
DNA of reconstituted virus (the FL BAC recovered strain)
revealed a restriction profile identical to the pattern observed
for the FL BAC strain (Fig. 2). These data demonstrate that
the BAC is able to regenerate the entire genome and infectious
particles even if it includes only a single terminal repeat. To
excise the BAC cassette from the genomes of reconstituted
virions, CCB cells were cotransfected with the FL BAC plas-
mid and a Cre recombinase-expressing vector (Fig. 1B). The
deletion of the BAC cassette was monitored by the disappear-
ance of EGFP fluorescence and by a combined restriction
endonuclease and Southern blotting approach (Fig. 2). The
cre-loxP-mediated excision of the BAC cassette left a sequence
of 172 bp in the TK ORF, leading to a SacI restriction frag-
ment slightly larger than the corresponding wild-type fragment
(Fig. 2). The 172-bp sequence consists of one loxP site (34 bp)
and the sequences of the BAC cassette upstream (126 bp) and
downstream (12 bp) of the loxP sites. Due to this insertion of
a 172-bp foreign sequence into the TK ORF, the FL BAC-
excised strain expressed a truncated form of TK corresponding
to the first 185 amino acids (aa) of the wild-type protein (217
residues). Finally, to generate a revertant strain, CCB cells
were cotransfected with the FL BAC plasmid and the
pGEMT-TK vector (Fig. 1B). A revertant recombinant was
selected on the basis of the nonexpression of EGFP. Restric-
tion analysis revealed a profile identical to the pattern ob-
served for the parental wild-type FL strain (Fig. 2).

Additional characterization of FL BAC-derived strains in
cell cultures was performed. Firstly, microscopic examination
of immunostained viral syncytia did not reveal differences
among recombinants (Fig. 4A). Secondly, in order to investi-
gate the putative effects of the recombination processes on
viral growth in vitro, all recombinant strains were compared
using a multistep growth assay (Fig. 4B). All viruses tested
exhibited similar growth curves (P � 0.05), leading to the
conclusion that TK disruption does not affect KHV replication
in vitro and that the KHV genome can support a large inser-
tion (of at least 9.2 kb) despite its large size.

Production of an FL BAC recombinant plasmid by mutagen-
esis in bacteria with galK positive selection. The usefulness of
a BAC clone for recombination studies relies on the possibility
to use it for the production of recombinants by prokaryotic
mutagenesis methods. To test the usefulness of the FL BAC
clone, we produced a KHV recombinant strain with the dele-
tion of ORF16 (encoding a putative GPCR) by using galK
positive selection of bacteria. The molecular structure of the
recombinant plasmid was confirmed by a combined SacI re-
striction endonuclease and Southern blotting approach (Fig.
5). In the parental FL strain and in the KHV FL BAC plasmid,
ORF16 was contained in a DNA fragment of approximately
4.8 kb, whereas in the KHV FL BAC �ORF16 plasmid, the
corresponding fragment had a size of approximately 5 kb due
to the deletion of most of ORF16 and the insertion of the galK
cassette. This band encompassing the galK cassette is slightly
visible on the Southern blot due to the short ORF16 nucleotide
sequence left after deletion. Next, to reconstitute virions and to
excise the BAC cassette from the genome of the recombinant
plasmid, CCB cells were cotransfected with the KHV FL BAC

FIG. 3. Stability of the FL BAC plasmid in E. coli. DH10B cells
containing the FL BAC plasmid were passaged every day at a ratio of
1:100 (vol/vol) for 20 consecutive days. On the indicated days, BAC
DNA from the culture was prepared. Finally, BAC DNA samples
collected at various intervals were compared with parental FL strain
and FL BAC strain DNA by SacI digestion and agarose gel electro-
phoresis. Marker sizes (MS) are indicated on the left.
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�ORF16 plasmid and a Cre recombinase-expressing plasmid.
The deletion of the BAC cassette was monitored by the dis-
appearance of EGFP fluorescence (data not shown) and by a
combined restriction endonuclease and Southern blotting ap-

proach (Fig. 5). As described earlier, the cre-loxP-mediated
deletion of the BAC cassette leaves a sequence of 172 bp
disrupting the TK ORF. Consequently, the FL BAC �ORF16-
excised strain has a disrupted TK locus and a deletion of
ORF16.

Pathogenicities of FL BAC-derived strains in koi carp. The
strains derived from the FL BAC plasmid described above
facilitated the testing of the effect of TK disruption (in FL
BAC-excised and FL BAC revertant strains) and the effect of
TK disruption and ORF16 deletion (in the FL BAC �ORF16-
excised strain) on the virulence of KHV. To address the effect
of TK disruption on KHV virulence, the parental FL, FL BAC
excision, and FL BAC revertant strains were compared by IP
inoculation of naı̈ve koi carp (Fig. 6A). The parental FL strain
induced all the clinical signs associated with KHV disease,
including apathy, the folding of the dorsal fin, increased mucus
secretions, suffocation, erratic swimming, and the loss of equi-
librium. The FL strain induced a mortality rate of 80%. At
necropsy, the discoloration of gill filaments, herpetic skin le-
sions, and necrotic nephritis were observed for most fishes. In
comparison to the FL parental strain, the FL BAC-excised
strain exhibited a partially attenuated phenotype characterized
by the production of similar clinical signs and lesions but with
reduced intensities. Consistent with the attenuation observed,
the mortality rate of fishes infected with the FL BAC-excised
strain was reduced to 40%. Importantly, the virulence of the
FL BAC revertant strain was similar to that of the parental FL
strain.

The effect of TK disruption and ORF16 deletion was as-
sessed in the same way, by IP inoculation of naı̈ve koi carp. The
parental FL strain and the FL BAC-excised strain were used as
controls (Fig. 6B). Fishes infected with the parental FL strain
developed KHV disease as described above (80% mortality).

FIG. 4. Characterization of KHV strains derived from the FL BAC plasmid. (A) Epifluorescence analysis of KHV syncytia. CCB cells were
infected (MOI of 0.1 PFU/cell) with FL, FL BAC, FL BAC recovered, FL BAC-excised, and FL BAC revertant strains and were overlaid with
Dulbecco’s modified essential medium containing 10% FCS and 0.6% (wt/vol) carboxymethyl cellulose (Sigma) to obtain isolated syncytia. Seven
days pi, syncytia were revealed by indirect immunofluorescent staining using monoclonal antibody 8G12 and GAM 568 as the primary and
secondary antibodies, respectively. The three horizontal panels in each set represent analyses of the same syncytium. Panels i, iv, vii, x, and xiii and
panels ii, v, viii, xi, and xiv were analyzed for EGFP and GAM 568 fluorescent emissions, respectively. The merged EGFP and Alexa signals are
shown in panels iii, vi, ix, xii, and xv. The side of each panel corresponds to 10 �m of the specimen. (B) Replication kinetics of KHV recombinant
strains were compared with those of the parental KHV FL strain as described in Materials and Methods. The data presented are the means 	
standard errors of triplicate measurements.

FIG. 5. Structural analysis of the KHV FL BAC galK recombinant
plasmid. The KHV FL BAC plasmid, the derived FL BAC �ORF16
plasmid, and the genome of the KHV FL BAC �ORF16-excised strain
were analyzed by SacI restriction (agarose gel) and further tested by
Southern blotting using a probe corresponding to ORF16. The KHV FL
strain was used as a control. White and black arrowheads and open
arrowheads indicate restriction fragments containing ORF16 and the galK
cassette, respectively. The gray arrowhead indicates a restriction fragment
containing the TK ORF. Marker sizes (MS) in kilobases are indicated on
the left.
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FIG. 6. Cumulative survival rates of carp infected with FL BAC plasmid-derived strains. (A) On day 0, four groups, each consisting of 10 koi
carp (with the exception of mock-infected groups, consisting of 13 carp), were inoculated by IP injection with mock-infected culture medium and
culture medium containing 3 � 102 PFU of FL, FL BAC-excised, and FL BAC revertant strains. On day 32 pi, surviving fishes were challenged
by IP injection with the parental FL strain. (B) On day 0, four groups, each consisting of 10 koi carp (with the exception of mock-infected groups,
consisting of 13 carp), were inoculated by IP injection with mock-infected culture medium and culture medium containing 3 � 102 PFU of FL,
FL BAC-excised, and FL BAC �ORF16-excised strains. On day 27 pi, surviving fishes were challenged by IP injection with the parental FL strain.
Percentages of surviving carp are expressed according to days pi. The results presented are representative of three independent experiments.
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In comparison to the parental strain, the FL BAC excision and
FL BAC �ORF16-excised strains exhibited partially attenu-
ated phenotypes, inducing 30 and 40% mortality, respectively.
This result suggests that ORF16, encoding a putative GPCR,
does not contribute to KHV virulence significantly.

To control the infection of all groups of fish with the correct
viral strain and to exclude any possibility of virus spread among
tanks, PCR assays were performed on three randomly selected
dead fishes from each infected group and three mock-infected
fishes randomly selected before the challenge (Fig. 7). PCRs
performed with the TKfw/TKrev (Fig. 7A) or ORF16fw/
ORF16rev (Fig. 7B) primers confirmed that all samples from
infected groups contained the KHV genome, while the sizes
of the amplicons excluded the possibility of viral spread among
the groups of fishes.

Finally, on day 32 (Fig. 6A) or day 27 (Fig. 6B) pi, the fishes
that survived the primary inoculation were challenged by IP
injection with the parental FL strain. Fishes were monitored
until day 47. Independently of the strain used for the primary
infection, none of the fishes died after the challenge or exhib-
ited clinical signs of disease. In contrast, the challenge of the

mock-infected control group led to mortality rates of 60% (Fig.
6A) and 70% (Fig. 6B) by day 15 postchallenge.

DISCUSSION

KHV is the etiological agent of an emerging disease which is
highly contagious and extremely virulent and has a high mor-
tality rate (25). Since the discovery of KHV in 1996, an in-
creasing number of studies have been devoted to KHV. How-
ever, to date no information on the roles of individual KHV
genes in the biology of KHV infection or in pathogenesis has
been published. Similarly, there is a lack of safe and efficacious
attenuated recombinant vaccines for the control of KHV dis-
ease. These lacunas are a consequence of the difficulty of
generating KHV recombinant viruses by classical homologous
recombination in eukaryotic cells. This problem can be circum-
vented by the use of BAC cloning technology (6, 40).

In the present study, we describe for the first time the clon-
ing of the KHV genome as a stable and infectious BAC clone.
The KHV BAC clone had several interesting features: (i) it
was stable when propagated in bacteria, even over long periods

FIG. 7. PCR detection and characterization of KHV genomes recovered from infected dead carp. (A) DNA was extracted from the intestines
of three mock-infected carp (selected randomly before the challenge) and from three dead carp from each of the groups infected with the FL, FL
BAC-excised, and FL BAC revertant strains. PCRs were performed with the TKfw/TKrev pair of primers. FL strain DNA and FL BAC-excised
strain DNA were used as controls. (B) DNA was extracted from the intestines of mock-infected carp and from dead carp infected with the FL,
FL BAC-excised, and FL BAC �ORF16-excised strains. PCRs were performed with the ORF16fw/ORF16rev pair of primers. FL strain DNA and
FL BAC �ORF16-excised strain DNA were used as controls. The images are photographs of agarose gels. Numbers on the left of each gel are
marker sizes.
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of culture corresponding to approximately 130 generations; (ii)
it was infectious, as demonstrated by its ability to generate
infectious virions after the transfection of permissive cells; (iii)
the BAC cassette could be excised from the genome of recon-
stituted virus; (iv) the insertion of a large DNA sequence into
the KHV genome did not affect the ability of KHV to replicate
in vitro; (v) importantly, the replication of the FL BAC rever-
tant strain was comparable to that of the FL strain, and the FL
BAC revertant strain induced KHV disease in koi carp that
was indistinguishable from that induced by the virulent paren-
tal strain; and (vi) finally, the usefulness of the KHV BAC
clone for recombination studies was demonstrated by the pro-
duction of an ORF16-deleted strain by prokaryotic recombi-
nation technology.

Even if the primary goal of the present study was not to
investigate the role of KHV TK in pathogenesis, the recombi-
nants derived from the FL BAC clone allowed us to do so. The
FL BAC-excised strain encoding a truncated form of TK ex-
hibited a partially attenuated phenotype in carp (Fig. 6). Four
hypotheses may explain the partial attenuation observed. A
first hypothesis may be the existence of a KHV enzyme that
may partially compensate for TK gene deletion. Viral and
cellular TKs have been classified into two types which differ in
several respects (5). Type I TKs have higher molecular masses,
typically around 40 kDa, and are active as homodimers. This
subfamily contains herpesvirus TKs (with the exception of
KHV TK) and also human mitochondrial TK. The herpes
simplex virus type 1 TK is the viral prototype of this group. It
is a multifunctional enzyme that possesses kinase activities
normally performed by three separate cellular enzymes. It
phosphorylates deoxythymidine and deoxyuridine, as does hu-
man TK, and deoxycytidine, as does human deoxycytidine ki-
nase, and acts as a thymidylate kinase, as does human TMP
kinase (TMPK) (8). TKs of type II include those from Poxviri-
dae such as vaccinia virus and variola virus, as well as the
human cytosolic TK. Type II TKs have smaller polypeptide
chains than type I TKs, being �25 kDa, but form homotetra-
mers. Moreover, type II TKs have much narrower substrate
specificities than type I TKs and phosphorylate only deoxyuri-
dine and/or deoxythymidine. Based on the relatively small size
and the nucleotide binding motif of KHV TK, it can be pos-
tulated that this TK belongs to type II (10). In poxviruses, the
narrower substrate specificities of type II TKs are compensated
for by a TMPK gene. Interestingly, the recent sequencing of
the KHV genome has revealed the presence of a TMPK ORF
(ORF140) (2). It is attractive to speculate that the encoded
enzyme may at least partially compensate for the deletion of
the KHV TK gene. In support of this hypothesis, it has been
shown previously that the replacement of the herpes simplex
virus type 1 TK ORF by a human TMPK gene renders the
recombinant virus partially competent for replication in mouse
sensory ganglia and reactivation from latency upon explant (8).
Further studies are required to determine KHV TK and
TMPK enzymatic activities and to determine how these en-
zymes contribute to the pathogenesis in the natural host.

Secondly, the partial attenuation observed with the FL
BAC-excised strain may result from residual TK activity ex-
pressed by the truncated protein encoded by the FL BAC-
excised strain. This hypothesis is very unlikely. Indeed, several
studies of herpesviruses and poxviruses have demonstrated

previously that the C-terminal region of TK is essential for its
activity (23). For example, it has been demonstrated previously
that the last 10 residues of the 607-aa-long Epstein-Barr virus
TK are essential for its activity (23). In comparison to Epstein-
Barr virus TK, KHV TK is rather small, consisting of only 217
aa, among which only the first 185 residues are expressed by
the FL BAC-excised strain. A third hypothesis to explain the
partial attenuation observed with the FL BAC-excised strain
may be that the removal of KHV TK function readily results in
a partial-attenuation phenotype in the absence of functional
complementation from another virus gene. Finally, a fourth
hypothesis may be that host TK may partially replace the
eliminated KHV TK.

The usefulness of the KHV BAC clone for recombination
studies was demonstrated by the production of an ORF16-
deleted strain by using prokaryotic recombination technology.
In vivo, the strain induced a mortality rate comparable to that
induced by the FL BAC-excised strain, suggesting that ORF16
does not contribute significantly to KHV virulence under the
conditions used (Fig. 6B).

In conclusion, this study is the first to report the BAC clon-
ing of a herpesvirus genome as large as that of KHV. The
availability of a KHV BAC is an important advance that will
allow the study of viral genes involved in KHV pathogenesis, as
well as the production of safe and efficacious multiattenuated
recombinant candidate vaccines to control KHV infection.
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Experimental section: Preamble 2 

 

The outcome of the infection of a naive host by a virus relies on key virus-host interactions 

that occur early after contamination takes place. In order to be able to infect cells at the portal of entry, 

most viruses must first cross extracellular barriers (e.g. mucus), then interact with cellular receptors 

expressed on live sensitive cells. The entry of viruses in most vertebrates occurs at mucosa; while the 

skin with its keratinized outermost layer cannot act as a portal of entry. 

Several authors postulated that the gills might be the portal of entry for CyHV-3 in carp. This 

hypothesis relied on several observations. First, the gills have been demonstrated to act as the portal of 

entry for many fish pathogens. Second, fish expressing CyHV-3 disease have gill lesions, which 

explain why the virus was initially called Carp interstitial nephritis and gill necrosis virus. Third, the 

gills (like virtually all tissues) were shown by PCR to contain the viral genome at an early stage of 

infection. However, no data demonstrating the role of the gills as the portal of entry of CyHV-3 are 

available. 

In contrast the most vertebrates, the epidermis of the skin of teleost fish is a stratified 

squamous epithelium covering the body surface and investing the fins. Unlike its mammalian 

counterpart, it is living and capable of mitotic division at all levels, even at the outermost squamous 

layer. Consequently, potential portals of entry for CyHV-3 in carp include the skin, the mucosa 

covering the gills and the digestive tract. 

In the present study, we investigated the portal of entry of CyHV-3 in carp using 

bioluminescence imaging. Taking advantage of the recent cloning of the CyHV-3 genome (see chapter 

1) as a bacterial artificial chromosome (BAC), we produced a recombinant strain encoding a firefly 

luciferase (LUC) expression cassette inserted in an intergenic region. All the results obtained with this 

recombinant strain demonstrate that the skin, and not the gills, is the major portal of entry for CyHV-3 

in carp. 
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Koi herpesvirus (KHV), recently designated Cyprinid herpesvirus 3, is the causative agent of a lethal disease
in koi and common carp. In the present study, we investigated the portal of entry of KHV in carp by using
bioluminescence imaging. Taking advantage of the recent cloning of the KHV genome as a bacterial artificial
chromosome (BAC), we produced a recombinant plasmid encoding a firefly luciferase (LUC) expression
cassette inserted in the intergenic region between open reading frame (ORF) 136 and ORF 137. Two viral
strains were then reconstituted from the modified plasmid, the FL BAC 136 LUC excised strain and the FL
BAC 136 LUC TK revertant strain, including a disrupted and a wild-type thymidine kinase (TK) locus,
respectively. In vitro, the two recombinant strains replicated comparably to the parental FL strain. The FL
BAC 136 LUC TK revertant strain was shown in vitro to induce a bioluminescent signal allowing the detection
of single positive cells as early as 24 h postinfection, while in vivo, it induced KHV infection in carp that was
indistinguishable from that induced by the parental FL strain. To identify the KHV portal of entry, carp were
analyzed by bioluminescence imaging at different times postinfection with the FL BAC 136 LUC TK revertant
strain. These analyses demonstrated that the skin of the fish covering the fins and also the body is the major
portal of entry for KHV in carp. Finally, to further demonstrate the role of the skin as the KHV portal of entry,
we constructed an original system, nicknamed “U-tube,” to perform percutaneous infection restricted to the
posterior part of the fish. All the data obtained in the present study demonstrate that the skin, and not the gills,
is the major portal of entry for KHV in carp.

The koi herpesvirus (KHV), recently designated Cyprinid
herpesvirus 3, is the etiological agent of an emerging and mortal
disease in common carp (Cyprinus carpio carpio) and koi (Cyp-
rinus carpio koi) (2, 12, 13). Since its emergence in the late
1990s, this highly contagious and dreadful disease has caused
severe financial and economic losses in both koi and common
carp culture industries worldwide (9, 11).

The genome of KHV comprises a linear double-stranded
DNA sequence of �295 kb (1, 14), similar to that of cyprinid
herpesvirus 1 (30) but larger than those of other members of
the Herpesvirales, which generally range from 125 to 240 kb.
Phylogenetic analysis of the KHV genome sequence led to its
classification in the new family Alloherpesviridae, encompassing
herpesviruses of fish and amphibians (18). The KHV genome
includes a significant number of original DNA sequences with
no homology to any other known viral sequences. Moreover, it
contains highly divergent DNA sequences encoding polypep-
tides that resemble those of several other double-stranded

DNA viruses, i.e., other herpesviruses, poxviruses, iridoviruses,
and other large DNA viruses (14, 30).

Very little information is available on the roles of individual
genes in the biology of KHV infection or in pathogenesis. Two
facts can explain this lacuna. First, the KHV genome sequence
has been published only recently (1). Second, prolonged KHV
cultivation in vitro leads to spontaneous attenuation of the
virus, making the production of KHV recombinants using clas-
sical homologous recombination in eukaryotic cells difficult
(27). To circumvent this problem, we cloned the KHV genome
as a stable and infectious bacterial artificial chromosome
(BAC) that could be used to produce KHV recombinant
strains (4).

Despite the lack of available KHV recombinant strains,
studies have been devoted to KHV pathogenesis. Several au-
thors have postulated that the gills might be the portal of entry
for KHV in carp (6, 7, 15, 19, 22). This hypothesis relied on
several observations. First, the gills have been demonstrated to
act as the portal of entry for many fish pathogens (25). Second,
fish expressing KHV disease have gill lesions, which explains
why the virus was initially called Carp interstitial nephritis and
gill necrosis virus (12, 19, 21, 22, 27). Third, the gills (like
virtually all tissues) were shown by PCR to contain the viral
genome at an early stage of infection (7, 22). However, no data
demonstrating the role of the gills as the portal of entry of
KHV are available.

One of the best methods to provide insights into the viral
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portal of entry is the use of noninvasive whole-body imaging of
living animals. Bioluminescence imaging, using the luciferase
(LUC) reporter protein, is now widely used in small-animal
models, like rodents, and also in fish (10, 16). This technique
offers the advantages of using the same animal for multiple
data collection over the course of the entire experiment. More-
over, D-luciferin (the substrate of luciferase) has been demon-
strated to cross cell membranes and the blood-brain barrier,
allowing this reporter protein to be imaged in any anatomic
site (32).

In the present study, we investigated for the first time the
portal of entry for KHV in carp by using bioluminescence
imaging. We produced a LUC-expressing recombinant strain
by intergenic insertion of a LUC expression cassette. Using this

recombinant, we demonstrate that the skin of the fish, and not
the gills, is the major portal of entry of KHV.

MATERIALS AND METHODS

Cells and viruses. C. carpio brain (CCB) cells (20) were cultured in minimum
essential medium (Invitrogen) containing 4.5 g/liter glucose (D-glucose monohy-
drate; Merck) and 10% fetal calf serum (FCS). The cells were cultured at 25°C
in a humid atmosphere containing 5% CO2. The KHV FL strain was isolated
from the kidney of a fish that died from KHV infection (CER, Marloie, Belgium)
(4). The KHV FL BAC strain was described previously (4). This recombinant
strain carries a BAC cassette inserted in the thymidine kinase (TK) locus.

Production of a KHV FL BAC LUC recombinant plasmid in bacteria. A KHV
FL BAC LUC recombinant plasmid carrying a firefly LUC expression cassette
was produced using a two-step galactokinase (galK) positive/negative selection in
bacteria (Fig. 1) (31). The intergenic region located between open reading frame

FIG. 1. Schematic representation of the strategy used to produce the FL BAC 136 LUC plasmid. (A) The genome of the KHV FL strain,
flanked by two terminal repeats (LTR and RTR), is shown at the top. A LUC expression cassette, flanked by SpeI restriction sites, was inserted
into the NheI site created in the intergenic region between ORF 136 and ORF 137 (pGEMT-136NheI vector), resulting in pGEMT-136LUC.
(B) Flowchart of stages performed to produce the FL BAC 136 LUC plasmids to demonstrate the possibility of removing the loxP-flanked BAC
cassette from the genome of reconstituted virus (the FL BAC 136 LUC excised strain) and to produce a TK revertant strain (the FL BAC 136 LUC
TK revertant strain). WT, wild type.
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(ORF) 136 and ORF 137 was selected for the insertion (1). The functions of
these ORFs are unknown. ORF 136 and ORF 137 are right- and left-oriented
ORFs, respectively. The insertion was performed between predicted polyadenyl-
ation signals of the ORFs to reduce the risk that the insertion might affect the
expression of the ORFs. The KHV FL BAC plasmid described previously was
used as the parental plasmid (4). In this plasmid, the BAC cassette is inserted
into the TK locus.

The first recombination process (galK positive selection) was to insert the galK
gene into the intergenic region of the KHV genome, resulting in the FL BAC 136
galK plasmid (Fig. 1). Recombination was achieved using the 136 galK amplicon
(Fig. 1B). It consisted of the galK gene flanked by 50-bp sequences corresponding
to the ORF 136-ORF 137 intergenic region. This amplicon was produced by
PCR using the pgalK vector (31) as a template, the forward primer 136galfw, and
the reverse primer 137galrev (Table 1). Primer 136galfw consisted of nucleotides
231761 to 231810 of the KHV genome (GenBank accession no. DQ177346;
unless otherwise stated, coordinates from this accession number are used
throughout this paper) and nucleotides 1 to 24 of the pgalK vector. Primer
137galrev consisted of nucleotides 231873 to 231922 of the KHV genome and
nucleotides 1212 to 1231 of the pgalK vector. The 50-bp sequences of this
amplicon, corresponding to the KHV genome, were used to target homologous
recombination in bacteria (Fig. 1B).

The second recombination process (galK negative selection) was to replace the
galK gene with a LUC expression cassette. The pGEMT-136LUC vector was
used to achieve this goal (Fig. 1B). It was produced as follows (Fig. 1A). First, a
1,640-bp DNA fragment encompassing ORF 136 and ORF 137 of the KHV
genome was amplified by PCR using KHV FL DNA as a template. The following
primers were used for the amplification: the forward primer 136fw1 and the
reverse primer 137rev1, corresponding to nucleotides 230995 to 231014 and
nucleotides 232637 to 232655 of the KHV genome, respectively (Table 1). The
amplified product was sequenced and TA cloned into the pGEM-T Easy vector
(Promega), resulting in pGEMT-136. Next, an NheI restriction site was inserted
into the intergenic region of ORF 136 and ORF 137 (between nucleotides
231835 and 231836 of the KHV genome) using a site-directed mutagenesis kit
(Stratagene), resulting in pGEMT-136NheI. Finally, a LUC expression cassette,
corresponding to the firefly luciferase ORF under the control of the human
cytomegalovirus (HCMV) immediate-early (IE) promoter, was released by SpeI
digestion of a modified pcDNA3-LUC vector (M. Bremont, INRA, France). The
expression cassette was then ligated into the NheI site of the pGEMT-136NheI
vector, resulting in pGEMT-136LUC, in which the LUC cassette is flanked by
KHV sequences (826 bp). These KHV homologous sequences were exploited to
produce the KHV FL BAC 136 LUC plasmid by homologous recombination in
bacteria between the FL BAC 136 galK and the pGEMT-136LUC plasmids
(Fig. 1B).

Reconstitution of infectious virus from the KHV FL BAC 136 LUC plasmid.
To reconstitute virions with excised BAC cassettes from the viral genome, the FL
BAC 136 LUC plasmid was cotransfected (molecular ratio, 1:70) (Lipofectamine
Plus; Invitrogen) in CCB cells, together with the pEFIN3-NLS-Cre vector en-
coding Cre recombinase fused to a nuclear localization signal (Fig. 1B) (8). The
reconstituted virus, called the FL BAC 136 LUC excised strain, has a disrupted
TK locus due to the sequence left by the cre-loxP-mediated excision of the BAC
cassette. Similarly, the FL BAC 136 LUC plasmid was cotransfected into per-
missive CCB cells, together with the pGEMT-TK vector described previously
(molecular ratio, 1:75) (4), to generate the FL BAC 136 LUC TK revertant strain

with a wild-type TK sequence (Fig. 1B). Seven days posttransfection, viral
plaques negative for enhanced green fluorescent protein (EGFP) expression
(which had lost the BAC cassette including the EGFP gene) were picked and
enriched by three successive rounds of plaque purification.

Southern blotting. Southern blot analysis was performed as described previ-
ously (4). Several probes were used. The 136-137 probe was released from the
pGEMT-136 plasmid by restriction digestion. The LUC probe was produced by
PCR using the forward primer LUCfw, the reverse primer LUCrev, and the
pcDNA3-LUC plasmid as a template (Table 1). The TK probe was described
previously (4).

Indirect immunofluorescence staining. CCB cells were fixed and permeabil-
ized with acetone-ethanol (50:50 [vol/vol]) for 10 min at �20°C. Immunofluo-
rescent staining (incubation and washes) was performed in PBS containing 10%
FCS. Samples were incubated at 25°C for 45 min with mouse monoclonal anti-
body (MAb) 2F12 raised against an unidentified KHV antigen (4). After three
washes, samples were incubated at 25°C for 30 min with Alexa Fluor 568 goat
anti-mouse immunoglobulin G (H�L) (GAM 568; 2 �g/ml; Molecular Probes)
as the secondary conjugate.

Microscopy analysis. Epifluorescence microscopy analysis was performed with
a Dmirbe microscope (Leica) equipped with a DC 300F charge-coupled device
(CCD) camera (Leica), as described previously (29). Confocal-microscopy anal-
ysis was performed with a TCS SP confocal microscope (Leica), as reported
previously (29).

Multistep growth curves. Triplicate cultures of CCB cells were infected at a
multiplicity of infection (MOI) of 0.1 PFU/cell. After an incubation period of 2 h,
the cells were washed with PBS and then overlaid with Dulbecco’s modified
essential medium (DMEM) (Invitrogen) containing 4.5 g/liter glucose and 10%
FCS. The supernatants of infected cultures were harvested at successive intervals
after infection, and the amount of infectious virus was determined by plaque
assay on CCB cells as described previously (5).

Transcriptional analysis. Freshly seeded CCB cells were mock infected or
infected at an MOI of 1 PFU/cell. Twenty-four hours postinfection (p.i.), cyto-
plasmic RNA was isolated using an RNeasy Mini Kit (Qiagen) and then further
purified by DNA digestion using an RNase-Free DNase Set (Qiagen). Reverse
transcriptase (RT) reactions were performed on 1 �g of RNA using Superscript
III Reverse Transcriptase and oligo(dT) (Invitrogen). Finally, ORF 136 and
ORF 137 were amplified using the primer pairs 136fw2-136rev2 and 137fw2-
137rev2, respectively (Table 1).

Bioluminescence imaging. Imaging of firefly (Photinus pyralis) LUC was per-
formed using either the Biospace photon imager (Biospace Laboratory, France)
or the Xenogen “in vivo imaging system” (IVIS) (Xenogen, Caliper Life Sci-
ences). The Biospace photon imager consists of a photon-counting system based
on a cooled gallium arsenide intensified-CCD (ICCD) camera. This ICCD is
mounted on top of a light-tight chamber to record optical signals at a video rate
of 25 Hz. For video tracking of active and unrestrained fish, a system consisting
of two cameras, one recording the signal of interest and a second for video
tracking the animal, was used (lens diaphragm, 91%). Awake fish were intra-
peritoneally injected with D-luciferin (150 mg/kg body weight) (Xenogen) and
then placed in separate small tanks filled with water (stage height, 440 mm).
Bioluminescence signals emitted by free-moving fish were recorded for 6 h, and
then the fish were placed in bigger tanks. Seventeen hours later, the same fish
were analyzed for five additional hours for bioluminescence emission.

The Xenogen IVIS consists of a CCD camera mounted on a light-tight spec-
imen chamber, a cryogenic refrigeration unit, a camera controller, and a com-
puter system for data analysis. For bioluminescence analysis of cell monolayers,
the cell supernatant was replaced by fresh complete medium containing 150
�g/ml of D-luciferin (Xenogen). For in vivo analysis, fish were anesthetized with
benzocaine (50 mg/liter of water). Ten minutes before bioluminescence analysis,
D-luciferin (150 mg/kg body weight) (Xenogen) was administered by intraperi-
toneal injection. Each fish was analyzed lying on its left and right side. All the
images presented in this study were acquired using a field view of 15 cm, a 1-min
exposure time, a binning factor of 4, and an f/stop of 1. Relative intensities of
transmitted light from in vivo bioluminescence were represented as a pseudo-
color image ranging from violet (least intense) to red (most intense). Corre-
sponding gray-scale photographs and color luciferase images were superimposed
using LivingImage analysis software (Xenogen).

KHV inoculation of fish. Specific-pathogen-free common carp (C. carpio car-
pio) (Zodiac, Wageningen, The Netherlands) with an average weight of 13 g were
kept in 60-liter tanks at 24°C. For viral inoculation mimicking natural infection,
fish were kept for 2 h in 2 liters of water containing the virus (103 PFU/ml). At
the end of the incubation period, the fish were returned to larger tanks. For viral
inoculation restricted to the skin of the fish body posterior to the anterior part of
the dorsal fin, we designed and constructed an original system, which we nick-

TABLE 1. Oligonucleotides used for PCR amplification

Primer Sequence

136galfw .........................5�-TATCATTGTCAAACAATAAAACTCT
TACAAATGTGATTTTTGTGTGCTAT
CCTGTTGACAATTAATCATCGGCA-3�

137galrev ........................5�-GAAAAATGAAAAATAATAAAAAAT
GGTTGACACGACTCCCTGTGAAGCG
TTCAGCACTGTCCTGCTCCTT-3�

136fw1 ............................5�-TCCTGGGCAAGCCCTTCTTC-3�
137rev1 ...........................5�-AGGGCTGCATCTGCACGGG-3�
LUCfw............................5�-GCAAAATTTAAGCTACAACAAGG-3�
LUCrev ..........................5�-ATGCCCCGATTTAGAGCTTG-3�
136fw2 ............................5�-ATGAAGGCCTCTAAACTGCTG-3�
136rev2 ...........................5�-TTAGATTTTTCTAAAGTGCAC-3�
137fw2 ............................5�-TCAGAGGCCGGCTTCGGTC-3�
137rev2 ...........................5�-ATGGACAGCACAAACGTTAC-3�
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named the “U-tube” system (see Fig. 8). It consisted of a tube in the shape of a
“U” made of Plexiglas pipes (5-cm diameter). At the center of the horizontal
section, an O-ring device allowed the insertion of a latex glove finger. The fish
was introduced in the glove finger head first up to the beginning of the dorsal fin.
Openings were created to release the mouth, the opercula, and the eyes. Both
compartments (head and tail) were filled with water. To ensure and control the
watertightness of the system, the water level of the head compartment was set up
5 cm higher than the tail compartment. This point was crucial to maintain the
latex membrane tightly associated with the fish surface. To restrict virus inocu-
lation through the skin, virus was added to the tail compartment (final concen-
tration, 2 � 103 PFU/ml). Note that in case of minor leaking (not detectable by
observation of the water level), the overpressure of the head compartment
should prevent its contamination from the tail compartment containing the virus.
Independently of the inoculation protocol, the viral inocula were titrated before
inoculation and back-titrated after inoculation to ensure that the doses were
equivalent among groups. The animal study was accredited by the local ethics
committee of the University of Liege (Belgium).

Transmission electron microscopy. Samples were dissected and fixed in 0.1%
glutaraldehyde for electron microscopy analysis. Epon blocks and sections were
prepared as described elsewhere (17). Sections were analyzed using a Technai
Spirit transmission electron microscope (FEI, Eindhoven, The Netherlands), and
electron micrographs were taken using a bottom-mounted 4-by-4 K Eagle cam-
era (FEI).

RESULTS

The goal of the present study was to identify the portal of
entry for KHV in carp. We decided to address this question by
using bioluminescence imaging. As a first step, KHV recom-

binant strains expressing the LUC reporter protein were pro-
duced.

Production of KHV FL recombinant strains expressing LUC
reporter protein. The FL BAC plasmid described above was
used as the parental background for the production of KHV
recombinants expressing LUC (4). The intergenic region be-
tween ORF 136 and ORF 137 was selected for insertion of the
LUC expression cassette using the two-step procedure de-
picted in Fig. 1 and described in Materials and Methods. The
first step consisted of inserting a galK gene for positive selec-
tion of the resulting FL BAC 136 galK plasmid. The second
step consisted of replacing the galK gene (using negative se-
lection against the gene) by the LUC expression cassette, re-
sulting in the FL BAC 136 LUC plasmid (Fig. 1B). The mo-
lecular structures of these two recombinant plasmids were
confirmed by a combined SacI restriction endonuclease and
Southern blotting approach (Fig. 2). In the parental FL strain
and in the KHV FL BAC plasmid, ORFs 136 and 137 were
contained in a DNA fragment of approximately 1.5 kb,
whereas in the KHV FL BAC 136 galK plasmid, the corre-
sponding fragment had a size of approximately 2.7 kb due to
the insertion of the galK cassette (which does not contain a
SacI restriction site). In the KHV FL BAC 136 LUC plasmid,
as a consequence of the presence of the LUC cassette (which

FIG. 2. Structural analysis of the FL BAC 136 LUC plasmid and derived KHV recombinant strains. The KHV FL BAC, FL BAC 136 galK,
and FL BAC 136 LUC plasmids and the genomes of the KHV FL, FL BAC 136 LUC excised, and FL BAC 136 LUC TK revertant strains were
analyzed by SacI restriction (left; agarose gel) and further tested by Southern blotting using probes corresponding to ORFs 136 and 137 (right,
136-137 probe), to the LUC cassette (LUC probe), and to the TK ORF (TK probe). The black and the white-outlined black arrowheads indicate
restriction fragments containing the TK ORF and the BAC cassette, respectively. The white and the black-outlined white arrowheads indicate
restriction fragments containing ORFs 136 and 137 and the LUC cassette, respectively. The restriction fragment derived from the BAC cassette
and containing the sequence of the HCMV promoter is marked with an asterisk. Marker sizes (MS) are indicated on the left.
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contains two SacI restriction sites) (Fig. 1A), the DNA frag-
ment was distributed in three fragments of approximately 1.2
kb, 1.4 kb, and 1.9 kb (Fig. 2, LUC probe). Moreover, due to
the presence of the HCMV promoter sequence in the BAC
and LUC cassettes, the fragments of the KHV FL BAC, 136
galK, and 136 LUC plasmids containing the BAC cassette
hybridized with the LUC probe (Fig. 2). Sequencing of the
regions used to target homologous recombination confirmed
that the two recombinant plasmids had the correct molecular
structures (data not shown).

Next, two types of recombinant strains were reconstituted
from the recombinant FL BAC 136 LUC plasmid (Fig. 1B).
First, infectious particles were reconstituted by cotransfection
of the FL BAC 136 LUC plasmid and a Cre recombinase-
expressing plasmid. Deletion of the BAC cassette was moni-
tored by the disappearance of EGFP fluorescence (FL BAC

136 LUC excised strain) (Fig. 3A) and by a combined restric-
tion endonuclease and Southern blotting approach (Fig. 2).
While the TK sequence was contained in a 5.2-kb fragment in
the parental FL strain, due to the insertion of the BAC cassette
in the TK locus, it appeared in two fragments of approximately
5.3 kb and 9.1 kb in the FL BAC, FL BAC 136 galK, and FL
BAC 136 LUC plasmids (Fig. 2) (4). In the FL BAC 136 LUC
excised strain, the cre-loxP-mediated excision of the BAC cas-
sette left a sequence of 172 bp in the TK ORF, leading to a
SacI restriction fragment slightly larger than the corresponding
wild-type fragment (Fig. 2). This 172 bp consisted of one loxP
site (34 bp) and the sequences of the BAC cassette upstream
(126 bp) and downstream (12 bp) of the loxP site. Due to this
172-bp insertion of foreign sequence into the TK ORF, the
excised strain was expected to express a truncated form of TK.
Second, to reconstitute virions expressing a wild-type TK se-

FIG. 3. Characterization of KHV recombinant strains derived from the FL BAC 136 LUC plasmid. (A) Epifluorescence analysis of KHV
syncytia. CCB cells were infected (MOI, 0.001 PFU/cell) with KHV FL (i to iii), FL BAC (iv to vi), FL BAC 136 LUC excised (vii to ix), and FL
BAC 136 LUC TK revertant (x to xii) strains and were overlaid with DMEM containing 10% FCS and 0.6% (wt/vol) carboxymethylcellulose
(Sigma) to obtain isolated syncytia. Seven days p.i., the syncytia were revealed by indirect immunofluorescence staining using MAb 2F12 and GAM
568 as the primary and secondary antibodies, respectively. The horizontal rows represent analyses of the same syncytium. Images i, iv, vii, and x
and images ii, v, viii, and xi were analyzed for EGFP and GAM 568 fluorescent emissions, respectively. The merged EGFP and Alexa signals are
shown in images iii, vi, ix, and xii. The sides of each panel correspond to 250 �m. (B) The replication kinetics of KHV recombinant strains were
compared with those of the parental KHV FL strain as described in Materials and Methods. The data presented are the means � standard errors
of triplicate measurements. (C) Transcriptional analyses of ORF 136 and ORF 137 from KHV recombinant strains were compared with those of
the parental KHV FL strain as described in Materials and Methods. Marker sizes (MS) are indicated on the left.
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quence and the LUC reporter protein, the FL BAC 136 LUC
plasmid was cotransfected, together with the pGEMT-TK vec-
tor (Fig. 1B). The resulting FL BAC 136 LUC TK revertant
strain was selected on the nonexpression of EGFP (FL BAC
136 LUC TK revertant strain) (Fig. 3A). Restriction endonu-
clease and Southern blot analyses revealed that the FL BAC
136 LUC TK revertant strain possessed a wild-type TK profile
and included a LUC expression cassette (Fig. 2). Sequencing of
the regions encompassing the TK ORF and the LUC expres-
sion cassette confirmed that the two recombinant strains (FL
BAC 136 LUC TK excised and FL BAC 136 LUC TK rever-
tant strains) had the correct molecular structures (data not
shown).

Characterization of KHV FL recombinant strains express-
ing LUC in cell culture. Additional characterization of the FL
BAC 136 LUC excised and FL BAC 136 LUC TK revertant
strains was performed in cell culture. The parental FL and FL
BAC strains were used as controls. First, microscopic exami-
nation of immunostained viral syncytia did not reveal differ-
ences among the recombinants (Fig. 3A). Second, in order to
investigate the putative effects of the recombination processes
on viral growth in vitro, the two recombinant strains were
compared to the parental strains using a multistep growth
assay (Fig. 3B). All viruses tested exhibited similar growth
curves (P � 0.05), leading to the conclusion that LUC insertion
did not affect KHV replication in vitro. Third, using an RT-
PCR approach, we controlled the process so that the insertion
of the LUC expression cassette did not markedly affect the
transcription of the flanking ORF 136 and ORF 137 (Fig. 3C).
Transcripts of 462 bp and 1,821 bp were observed for ORF 136
and ORF 137, respectively, in infected cells. No transcript was
detected in mock-infected cells. When RT was omitted from
the reactions, the product seen in infected cells was not de-
tected, indicating that the latter did not result from amplifica-
tion of contaminant viral DNA (data not shown). The four
strains analyzed (FL, FL BAC, FL BAC 136 LUC excised, and
FL BAC 136 LUC TK revertant) led to comparable signals for
both ORFs (Fig. 3C). Together, these results demonstrated
that the KHV FL recombinant strains produced as described
above and the parental strain exhibited similar in vitro char-
acteristics.

In vitro expression of LUC by the FL BAC 136 LUC TK
revertant strain. CCB cells were infected at MOIs ranging
from 10�4 to 10�6 PFU/cell with the FL BAC 136 LUC TK
revertant strain (Fig. 4A). Twenty-four hours p.i., the cells
were analyzed by bioluminescence imaging. The data pre-
sented in Fig. 4A demonstrate that a bioluminescence signal
was detectable as early as 24 h p.i. in infected monolayers. The
time p.i. and the MOI used for the infection strongly suggested
that the spots of light detected corresponded to isolated in-
fected cells. To test this hypothesis, monolayers of cells in-
fected at an MOI of 10�6 PFU/cell with the FL BAC 136 LUC
TK revertant strain were analyzed at 24 h p.i. by indirect
immunofluorescent staining (Fig. 4B, iv to vi). Extensive ex-
amination of the monolayers revealed only isolated cells pos-
itive for MAb 2F12 staining. The LUC expression cassette
carried by the FL BAC 136 LUC TK revertant strain is driven
by the HCMV IE promoter, while the as-yet-unidentified an-
tigen recognized by MAb 2F12 could potentially be a late
protein. Consequently, one could argue that while the staining

with MAb 2F12 revealed isolated positive cells, the detection
of an IE antigen should reveal small clusters of positive cells
with MAb 2F12-positive cells in the center. To test this hy-
pothesis, cell monolayers were infected with the KHV FL BAC
strain (MOI, 10�6) expressing the EGFP reporter protein un-
der the control of the HCMV IE promoter (Fig. 4B, i to iii).
Analysis of the monolayer for EGFP emission revealed only
isolated positive cells (Fig. 4B, i). Together, the results pre-
sented above demonstrated that the FL BAC 136 LUC TK
revertant strain induced LUC expression that allowed the de-
tection of isolated positive cells as early as 24 h p.i. by biolu-
minescence imaging.

Pathogenicity of the FL BAC 136 LUC TK revertant strain
in carp. In order to test whether the insertion of the LUC
expression cassette into the KHV genome had led to a modi-
fication in the pathogenicity of the virus, naïve common carp
were infected by bathing them in water containing the FL BAC
136 LUC TK revertant strain (Fig. 5). The parental FL strain
was used as a control. Both strains induced all the clinical signs
associated with KHV disease, including apathy, folding of the
dorsal fin, increased mucus secretion, suffocation, erratic swim-
ming, and loss of equilibrium. The intensities of the clinical
signs were comparable in the two groups. Thirty days p.i., the
FL BAC 136 LUC TK revertant strain and the parental FL
strain induced mortality rates of 70% and 80%, respectively
(Fig. 5). PCR assays were performed on dead fish from the
group infected with the FL BAC 136 LUC TK revertant strain
to exclude the possibility of contamination with the FL strain.
The data confirmed the absence of contamination (data not
shown).

In vivo expression of LUC by the FL BAC 136 LUC TK
revertant strain at early stages of infection. The results pre-
sented above demonstrated that the FL parental strain and the
FL BAC 136 LUC TK revertant strain exhibited similar in vitro
and in vivo characteristics. Consequently, the latter was used to
investigate the portal of entry for KHV into carp by using in
vivo bioluminescence imaging.

To be accurate, bioluminescence imaging must be per-
formed during the plateau of light emission. To determine how
fast the emission of light reached the plateau after injection of
D-luciferin and how long the plateau lasted before the decline,
a preliminary experiment was conducted using the Biospace
photon imager (Biospace Laboratory, France). The data pre-
sented in Fig. 6A demonstrated that within a few seconds after
injection of D-luciferin, light emission reached a plateau that
lasted for at least 6 hours. Analysis of the fish 23 h after
injection of D-luciferin revealed that the animals were still
emitting light. Based on this preliminary experiment, subse-
quent bioluminescence analyses were performed between 5
min and 30 min after injection of D-luciferin.

To investigate the portal of entry of KHV, common carp
were infected by bathing them in water containing the FL BAC
136 LUC TK revertant strain. The fish were analyzed by bio-
luminescence imaging using the Xenogen IVIS 12, 24, 48, and
72 h p.i. (Fig. 6B). Because photon emission is attenuated
exponentially through animal tissues, making detection of in-
ternal organs more challenging, each fish was analyzed lying on
its right and its left side. The results of this experiment are
illustrated in Fig. 6B and can be summarized as follows. Dis-
crete luciferase activity was detected as early as 12 h p.i. (data
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not shown) in 7 out of 10 fish. At 24 h p.i., all fish expressed
focal sources of light on both sides of the body (Fig. 6B). To
highlight the signals detected and to use the full dynamic range
of the pseudocolor scale, images collected on day 1 were pre-
sented with a relative photon flux scale adapted to each image
(Fig. 6B, left). Most of the bioluminescence signals detected on
day 1 increased on day 2 and day 3 (Fig. 6B, right). While rare
sources of light detected on day 1 were no longer detected on
days 2 and 3, new spots appeared with time. The signals were

detected from various anatomic sites of the fish body, but
principally on the pectoral, pelvic, dorsal, and caudal fins.
Three fish out of 10 had a strong signal associated with the
nostrils on day 3 p.i. Interestingly, none of the fish expressed a
signal that could be associated with the gills on day 3 p.i. No
source of light was detected from mock-infected carp used as
negative controls (data not shown).

Because bioluminescence images are two dimensional, it is
difficult to know whether signals detected arise from the skin

FIG. 4. In vitro expression of luciferase by the FL BAC 136 LUC TK revertant strain. CCB cells, grown on glass coverslips, were infected at
the indicated MOI with FL BAC and FL BAC 136 LUC TK revertant strains and then overlaid with DMEM containing 10% FCS. Twenty-four
hours p.i., the cells were analyzed by bioluminescence imaging (A) and immunofluorescent staining (B). (A) Bioluminescence imaging of cell
monolayers infected with the KHV FL BAC 136 LUC TK revertant strain. The images are presented with standardized minimum and maximum
threshold values for photon flux. (B) Immunofluorescent staining of infected cells. The images show cells infected at an MOI of 10�6 PFU/cell.
Cells infected with FL BAC (i to iii) and FL BAC 136 LUC TK revertant (iv to vi) were analyzed 24 h p.i. by indirect immunofluorescent staining
using MAb 2F12 and GAM 568 as the primary and secondary antibodies, respectively. The horizontal rows represent analyses of the same field
of the monolayer by confocal microscopy. Images i and iv and images ii and v were analyzed for EGFP and GAM 568 fluorescent emissions,
respectively. The merged EGFP and Alexa signals are shown in images iii and vi. The sides of each panel correspond to 24 �m.
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surface or from superimposed internal tissues. However, the
detection of signals associated with the fins suggested that the
skin of the fish could be the major portal of entry for KHV.
These results also argued against the role of the gills as a portal
of entry. To further test these hypotheses, fish (n � 10) were
dissected at the end of the experiment shown in Fig. 6B, as
exemplified in Fig. 7A. To exclude the possibility that the
operculum could hide a signal emitted by the gills, it was
removed. Fins or fragments of fins were isolated from the fish
body. Fragments of skin identified as positive for light emission
were dissociated from the subcutaneous tissue. Finally, the
abdominal wall was removed to expose internal organs. Dis-
sected fish and isolated organs or tissues were analyzed for ex
vivo bioluminescence (Fig. 7A). Analysis of the dissected fish
revealed that bioluminescent signals were exclusively detected
on superficial tissues, mainly on the fins but also on the skin.
While none on the intact fish analyzed exhibited signals asso-
ciated with the gills, 2 out of 10 dissected fish had positive gills.
One of these two fish also had some signal associated with the
gut (data no shown). We assumed that the low frequency of
fish with positive gills and gut detected 3 days p.i. reflected
internal spreading of the infection.

Next, to investigate whether LUC expression detected on
the skin was associated with viral replication, a biopsy speci-
men of positive skin was analyzed by electron microscopy (Fig.
7B). A detailed examination of ultrathin sections revealed cells
supporting viral replication in the skin epithelium. Viral cap-
sids and enveloped particles were observed in the nuclei and
the cytosol of the infected cells, respectively.

The skin is the major portal of entry for KHV into fish. The
results presented above strongly suggest that the skin of the
fish is the major portal of entry for KHV. To further support
this conclusion, the experiment presented in Fig. 8 was per-
formed. In this experiment, we used an original system nick-
named “U-tube” to perform percutaneous infection restricted
to the posterior part of the fish (see Materials and Methods).
Fish were maintained for 24 h in the system and then analyzed
for bioluminescence emission. Analysis of fish maintained in
the system for 24 h in the presence of the virus in the tail
compartment revealed spots of light restricted to the surface of

the fish exposed to the inoculum. None of the six fish analyzed
expressed bioluminescent signal on the area protected from
the inoculum by the latex membrane and the overpressure of
the uninfected compartment (Fig. 8, half-infected fish). In con-
trast, bioluminescent signals were detected on the correspond-
ing anatomic part of the fish maintained in the system in the
absence of the latex diaphragm (Fig. 8, whole infected fish).
Analysis of the fish 48 h p.i. (24 h after release from the U-tube
system) confirmed the conclusions reached at 24 h p.i.

DISCUSSION

Several authors have postulated that the gills might be the
portal of entry for KHV in carp (6, 7, 15, 19, 22). This hypoth-
esis relied on several observations. First, the gills have been
demonstrated to act as the portal of entry for many fish patho-
gens (25). Second, fish expressing KHV disease have gill le-
sions, which explains why the virus was initially called Carp
interstitial nephritis and gill necrosis virus (12, 19, 21, 22, 27).
Third, the gills (like virtually all tissues) were shown by PCR to
contain the viral genome at an early stage of infection (7, 22).

In the present study, we investigated for the first time the
portal of entry of KHV in carp using bioluminescence imaging.
Taking advantage of the recent BAC cloning of the KHV
genome (4), we produced a recombinant strain, called the FL
BAC 136 LUC TK revertant strain, expressing LUC as a re-
porter protein. This LUC-expressing recombinant was shown
to replicate comparably to the parental strain in vitro and to
induce KHV disease in common carp that was indistinguish-
able from that induced by the parental FL strain. Biolumines-
cence imaging of carp infected by the natural route revealed
that the major portal of entry of KHV is the skin and not the
gills.

The epidermis of the skin of teleost fish is a stratified squa-
mous epithelium covering the body surface and investing the
fins. Unlike its mammalian counterpart, it is living and capable
of mitotic division at all levels, even at the outermost squamous
layer. The scales are dermis structures and consequently are
covered by the epidermis. The surface of the outermost cell
layer of the epidermis is overlaid by mucus (24). The skin
functions as a physical barrier that protects the fish against
injury and represents, with mucus, the first line of defense
against pathogens. Damage to the skin caused by rough han-
dling or ectoparasite infestations can increase susceptibility to
infection by secondary pathogens. Many fish ectoparasites are
responsible for superficial abrasion of the skin; while not im-
mediately critical, they create a portal of entry for infectious
agents (26). A well-known example is the lymphocystis disease
affecting many fish species from marine and freshwater envi-
ronments (28). This disease is caused by an iridovirus that
enters the fish body via skin abrasions produced by parasitic
infestation. The fish used in the present study were derived
from a specific-pathogen-free colony, and the absence of par-
asitic infestation was controlled just before the experiments
were run. Moreover, extreme care was taken when handling
the fish to avoid mucus removal and skin abrasion. Conse-
quently, we assume that the results reported in this study
reflect the infection of fish with intact and healthy skin.

Interestingly, a recent study also based on bioluminescence
imaging demonstrated that the skin covering the base of the

FIG. 5. Survival rates of carp infected by the FL BAC 136 LUC TK
revertant strain. On day zero, two groups of fish, each consisting of 10
common carp kept in separate tanks, were infected by bathing them
with FL and FL BAC 136 LUC TK revertant strains as described in
Materials and Methods. The fish were examined daily for clinical signs
of KHV disease, and dead fish were removed. The percentage of
survival is expressed according to days p.i. The results presented are
representative of three independent experiments.
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fins is the portal of entry of the rhabdovirus Infectious hema-
topoietic necrosis virus into salmonids (10). It has also been
suggested that Viral hemorrhagic septicemia virus, another im-
portant rhabdovirus of salmonids, enters fish through the skin,
but this hypothesis has not been tested (3, 23). While the

present study demonstrates that intact and healthy skin is the
portal of entry for KHV in carp, further experiments are in
progress to determine if ectoparasite infestations and/or rough
handling of fish enhances the entry of KHV through the skin.

Viral particles were detected by electron microscopy exam-

FIG. 6. (A) Kinetics of bioluminescence emission by in actio imaging of
carp. Two fish were infected with the FL BAC 136 LUC TK revertant strain
by bathing them to mimic natural infection (see Materials and Methods). The
fish were analyzed by video tracking using the Biospace photon imager start-
ing on day 6 p.i. The counts are expressed according to the time after injection
of D-luciferin. (B) Progression of KHV infection in carp analyzed by biolu-
minescence imaging. Ten fish were infected with the FL BAC 136 LUC TK
revertant strain by bathing them to mimic natural infection (see Materials and
Methods). The fish were analyzed by bioluminescence IVIS (Xenogen) every
day p.i. for three consecutive days. Each fish was analyzed lying on its right
and its left side. Three representative fish are shown. On the left, images
collected on day 1 p.i. are presented with a relative photon flux scale adapted
to each image in order to use the full dynamic range of the pseudocolor scale.
The arrows indicate light emission from specific sites on the fish body. On the
right, images collected over the course of the experiment are presented with
standardized minimum and maximum threshold values for photon flux.
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ination of LUC-expressing skin fragments as early as 3 days p.i.
(Fig. 7B). This early replication of the virus at the portal of
entry should contribute not only to the spread of virus in the
infected fish, but also to the spread of the virus in the fish
population. Indeed, as early as 2 to 3 days p.i., infected fish

rubbed themselves against each other or against objects. This
behavior could contribute to a “skin-to-skin” mode of trans-
mission. Later during infection, this mode of transmission
could also occur when uninfected fish peck macroscopic skin
herpetic lesions developed by infected fish (15).

FIG. 7. In situ localization of luciferase activity and detection of viral replication in the skin. At the end of the experiment presented in Fig.
6, the fish were dissected immediately after bioluminescence imaging performed on day 3 p.i. The dissected fish and isolated organs were analyzed
for ex vivo bioluminescence. (A) The analysis of one representative fish is presented. The left and right images represent bioluminescence imaging
performed before and after dissection, respectively. Op, operculum; Pc, pectoral fin; Pl, pelvic fin; Sk, skin; Do, dorsal fin; Ca, caudal fin; Gi, gills;
Mu, muscle; Bc, body cavity. (B) A skin fragment emitting bioluminescence was analyzed by electron microscopy (EM). The left image shows low
magnification of the skin epithelium. The right image shows one representative infected epithelial cell at higher magnification. The arrows indicate
viral particles present in the nucleus (Nu) and the cytosol (Cy).
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In the present study, we observed that during the first 2 days
p.i., the expression of the LUC reporter protein was restricted
to the skin. On day 3 p.i., only 2 out of 10 dissected fish had
positive gills, and only 1 of them also had some signal associ-
ated with the gut (Fig. 7A). These data contrast with earlier
reports based on PCR analysis, which described an early and
fast systemic spread of the virus in infected fish (7, 19, 21, 22).
Different hypotheses could explain the discrepancy or the ap-
parent paradox between these data. First, the discrepancy
could be explained by a higher sensitivity of PCR assays com-
pared to bioluminescence imaging. Even though we cannot
completely exclude this hypothesis, the results presented in

Fig. 4 demonstrate the high sensitivity of detection of the
bioluminescence reporter gene, at least in vitro. A second and
preferred hypothesis to explain the apparent paradox between
the data reported above could be that the rapid (day 2 p.i.) and
systemic dissemination observed by PCR reflects the secondary
infection of blood cells (22), which could not be detected by
bioluminescence imaging. Further experiments are required to
understand the pathogenesis of KHV and to unravel how the
virus spreads from the portal of entry to a secondary site of
replication and a site of latency and eventually reactivates.
While bioluminescence imaging will certainly contribute to
addressing these questions, the data reported in this study

FIG. 8. Viral inoculation restricted to the fish skin. A schematic representation of the system used for this experiment is shown on the left and
is explained in detail in Materials and Methods. The lower drawing presents the conditions under which fish (n � 6) were inoculated by restricted
contact of the virus with the skin located posterior to the anterior part of the dorsal fin. The upper drawing presents control conditions under which
fish (n � 6) were inoculated in the system but without the latex diaphragm dividing the fish body into two isolated parts, allowing the virus to reach
the entire fish body. The fish were infected by bathing them in water containing 2 � 103 PFU/ml of the FL BAC 136 LUC TK revertant strain for
24 h. All fish were analyzed 24 h p.i. by bioluminescence imaging. After an additional incubation period of 24 h in individual tanks containing fresh
water, they were reanalyzed by bioluminescence imaging (48 h p.i.). Three representative fish are shown. The images are presented with
standardized minimum and maximum threshold values for photon flux.
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demonstrate that internal signals cannot be detected without
dissection of the fish.

In conclusion, the present study has demonstrated for the
first time that the portal of entry for KHV in carp is the skin.
Together with an earlier study addressing the portal of entry of
the rhabdovirus Infectious hematopoietic necrosis virus in sal-
monids (10), the present study suggests that the skin of teleost
fish represents an efficient portal of entry for viruses.

ACKNOWLEDGMENTS

The CCB cell line developed by M. Neukirch was obtained through
the courtesy of D. Steinhagen. We thank C. Delforge and C. Gaspard
for excellent and devoted technical assistance. The U-tube system
described in this paper was constructed by Julien Vanderplasschen and
Raoul Vanderplasschen.

This work was supported by grants from the University of Liège
(Crédit d’Impulsion) and from the FNRS (2.4623.09). V. Stalin Raj is
a postdoctoral fellow of the University of Liège. L. Gillet is a research
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first line of innate immune protection against bacterial infection, and none against viral infection. 

In the present study, we used the luciferase CyHV-3 recombinant strain described above and 

bioluminescence imaging to investigate the roles of epidermal mucus as an innate immune barrier 

against CyHV-3 entry. Our results demonstrate that the mucus of the skin inhibits CyHV-3 binding to 

epidermal cells and contains soluble molecules able to neutralize CyHV-3 infectivity. 

 

 63



Experimental section: Chapter 3 
 

  

 

 

 

 

 

 

 

 

 Experimental section 

 

 

3rd chapter: 
 

 

Skin mucus of Cyprinus carpio inhibits  
Cyprinid herpesvirus 3 binding to epidermal cells 

 

 

 

 

 

Veterinary Research (2011), 42:92  

 
V. Stalin Raj*, G. Fournier*, K. Rakus, M. Ronsmans, P.Ouyang, B. Michel, C. Delforges, B. 
Costes, F.Farnir, B. Leroy, R. Wattiez, C. Melard,  J. Mast, F. Lieffrig, A. Vanderplasscen  
 

 

 

 

 

*These authors contributed equally.

64 
 



RESEARCH Open Access

Skin mucus of Cyprinus carpio inhibits cyprinid
herpesvirus 3 binding to epidermal cells
Victor Stalin Raj1†, Guillaume Fournier1†, Krzysztof Rakus1, Maygane Ronsmans1, Ping Ouyang1, Benjamin Michel1,
Cédric Delforges1, Bérénice Costes1, Frédéric Farnir2, Baptiste Leroy3, Ruddy Wattiez3, Charles Melard4, Jan Mast5,
François Lieffrig6 and Alain Vanderplasschen1*

Abstract

Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a mortal and highly contagious disease in common
and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus.
In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal
and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete
erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in
infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was
removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding
to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron
microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no
particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus
extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent
manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in
carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry.

Introduction
The koi herpesvirus (KHV), also known as cyprinid her-
pesvirus 3 (CyHV-3; species Cyprinid herpesvirus 3,
genus Cyprinivirus, family Alloherpesviridae, order Her-
pesvirales), is the aetiological agent of a lethal disease in
common (Cyprinus carpio carpio) and koi (Cyprinus
carpio koi) carp [1-5]. Since its emergence, in the late
1990s, this highly contagious disease has caused severe
economic losses in both common and koi carp culture
industries worldwide [6,7].
Recently, we demonstrated using a CyHV-3 recombi-

nant strain expressing luciferase (LUC) and in vivo bio-
luminescence imaging that the major portal of entry for
CyHV-3 in carp after immersion in infectious water is
the skin covering the fins and the body [8]. This study
together with an earlier report addressing the portal of

entry of the rhabdovirus Infectious hematopoietic necro-
sis virus in salmonids [9] suggest that the skin of teleost
fish represents an efficient portal of entry for some
viruses.
The skin of teleost fish is made up of five structures

(Figure 1b, left panel). The mucus layer or cuticle covers
the epidermis [10]. The latter is a stratified squamous
epithelium composed of three cell layers: (i) the superfi-
cial layer, composed of flattened squamous cells, (ii) the
intermediate layer, “stratum germinativum“, encompass-
ing squamous and cuboidal cells and (iii) the basal layer
“stratum basale“ composed of columnar epithelial cells
covering the basement membrane. Importantly, unlike
its mammalian counterpart, fish epidermis is living and
capable of mitotic division at all levels, even at the out-
ermost squamous layer. The predominant cell type in
the epidermis is the Malphigian cells. However, glandu-
lar cells such as goblet cells secreting mucus and club
cells secreting potent alarm substances are also present.
The epidermis and the dermis are separated by a rela-
tively thick basement membrane containing pigment
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cells. The scales are dermis structures and consequently
are covered by the epidermis.
Fish skin is a complex limiting structure providing

mechanical, chemical and immune protection against
injury and pathogenic microorganisms [11]. Its mucus
layer confers an innate immune protection against
pathogen entry. Two types of mechanisms explain the
protection conferred by mucus. Firstly, the mucus forms
an efficient mechanical barrier that is constantly moving
downstream along the fish and off of trailing edges. Like
the muco-ciliary escalator of the respiratory tract of pul-
monate animals, fish mucus reduces pathogen access to
epithelial cells. Secondly, the mucus contains numerous
proteins such as for example immunoglobulins, enzymes
and lytic agents able to neutralise microorganisms
[11-15]. It is generally accepted that chemical and physi-
cal (for example, ectoparasite infestations, rude handling
or injuries) stresses that affect skin mucus increase fish
susceptibility to infection by pathogens [10]. However,
despite the abundance of studies on fish skin immunity
and skin bacterial infection, there are few in vivo evi-
dence on the role of skin mucus as a first line of innate

immune protection against bacterial infection, and none
against viral infection [16-20].
In the present study, we investigated the roles of epi-

dermal mucus as an innate immune barrier against
CyHV-3 entry. Our results demonstrate that the mucus
of the skin inhibits CyHV-3 binding to epidermal cells
and is able to neutralise CyHV-3 infectivity.

Materials and methods
Cells and virus
Cyprinus carpio brain cells (CCB) [21] were cultured in
minimum essential medium (MEM) (Invitrogen, Merel-
beke, Belgium) containing 4.5 g/L glucose (D-glucose
monohydrate, Merck, Darmstadt, Germany) and 10%
fetal calf serum [21]. Cells were cultured at 25°C in a
humid atmosphere containing 5% CO2 [22]. The KHV
FL BAC 136 LUC TK revertant strain of CyHV-3 was
described previously [8]. This recombinant strain
encodes a firefly luciferase (LUC) expression cassette
inserted in the intergenic region between open reading
frame (ORF) 136 and ORF137. The KHV FL BAC
recovered strain of CyHV-3 was described previously
[22]. This recombinant strain encodes an enhanced
green fluorescent protein (EGFP) expression cassette
inserted at the end of ORF55.

Fish
Koi carp (Cyprinus carpio koi) (Hazorea Aquatics, Kib-
butz Hazorea, Israel) and common carp (Cyprinus car-
pio carpio) (CEFRA, University of Liège, Belgium), with
an average weight of 16 g, were kept in 60-liter tanks at
24°C. Microbiological, parasitical and clinical examina-
tions of the fish just before the experiments demon-
strated that these fish were fully healthy.

Physical treatments of the skin
Four physical treatments were applied on a defined area
of the carp epidermis (disc shape, diameter of 15 mm):
rubbing with a soft tissue paper (TORK premium, Gote-
borg, Sweden), rubbing with a cotton swab (Swube
Applicator, Becton Dickinson Microbiology system,
Maryland, USA), brushing with a rotary electric tooth
brush (Philips Sensiflex HX 1513, Anderlecht, Belgium)
for 2 s or rubbing with sandpaper (average particle dia-
meter of 265 μm, Medium p60, LUX Wermelskirchen,
Germany).

Histochemistery and microscopy analysis
Fish skin explants were fixed by immersion in Carnoy
solution (ethanol 6: acetic acid 1: chloroform 3, v/v/v)
for 2 h at 4°C. After dehydration with ethanol, samples
were embedded in paraffin [23]. Five μm thick sections
were stained by a combined Alcian Blue (AB) and Peri-
odic acid-Schiff (PAS) staining [24]. Mounted samples
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Figure 1 Effect of physical treatments on fish skin. (a) The
physical treatments described in the methods were applied to the
skin area indicated by a grey disc (diameter of 15 mm). Immediately
after the treatment, a biopsy was made in the centre of the treated
area (Black square) and processed for histological examination. (b)
Histological examination of the biopsy 1: Mucus layer, G: Goblet cell,
A: Alarm cell, P: chromatophore, 2: Epidermis, 3: Basement
membrane, 4: Dermis, 5: Hypodermis and 6: Subcutaneous muscles.

Raj et al. Veterinary Research 2011, 42:92
http://www.veterinaryresearch.org/content/42/1/92

Page 2 of 9
Experimental section: Preamble 3



were observed using a Nikon Eclipse TE 2000-S micro-
scope equipped with a DC 300F charge-coupled device
(CCD) camera (Leica, Heerbrugg, Switzerland).

Culture of tail fin explants
Fish were euthanized using benzocaine (100 mg/L of
water) (Sigma-Aldrich, Saint Louis, Missouri). The ven-
tral lobe of the tail fin was clipped with forceps before
section. Fin fragments maintained in forceps were
immerged in a vertical position in minimum essential
medium (GIBCO, Invitrogen, Paisley, UK) containing
4.5 g/liter glucose (D-glucose monohydrate; Merck,
Damstadt, Germany) and 10% fetal calf serum (FCS)
(Greiner Bio One, Frickenhausen, Germany). Tail fin
explants were cultured at 25°C in a humid atmosphere
containing 5% CO2.

CyHV-3 inoculation of carp
For viral inoculation mimicking natural infection, fish
were kept for 2 h in water containing 103 plaque form-
ing unit (PFU)/mL of the KHV FL BAC 136 LUC TK
revertant strain. At the end of the incubation period,
fish were returned to larger tanks. To avoid removal of
skin mucus, fish were caught using a container rather
than a fish net, and they were manipulated with great
care wearing humidified latex gloves. The animal study
was accredited by the local ethics committee of the Uni-
versity of Liège, Belgium (Laboratory accreditation N°
1610008, protocol N°810).

Bioluminescence imaging
Imaging of firefly (Photinus pyralis) LUC was per-
formed using an “in vivo imaging system” (IVIS)
(IVIS®spectrum, Xenogen, Caliper LifeSciences, Hop-
kinton, Massachusetts, USA) as described previously
[8]. For in vivo analysis, fish were anesthetized with
benzocaine (50 mg/L of water). Ten minutes before
bioluminescence analysis, D-luciferin (150 mg/kg body
weight) (Xenogen, Caliper LifeSciences, Hopkinton,
Massachusetts, USA) was administrated by intraperito-
neal injection. Each fish was analyzed lying on its left
and right side. For analysis of tail fin explants cultured
ex vivo, culture medium was replaced by fresh medium
containing D-luciferin (150 μg/mL) ten minutes before
bioluminescence analysis. All the images presented in
this study were acquired using a field view of 15 cm, a
1 min exposure time, a binning factor of 4 and a f/
stop of 1. Relative intensities of transmitted light from
bioluminescence were represented as a pseudocolor
image ranging from violet (least intense) to red (most
intense). Corresponding grey-scale photographs and
color luciferase images were superimposed using the
LivingImage analysis software (Xenogen, Caliper Life-
Sciences, Hopkinton, Massachusetts, USA).

Transmission electron microscopy
Samples were fixed in 0.1% glutaraldehyde (Sigma-
Aldrich, Saint Louis, Missouri, USA). Epon blocks and
sections were prepared as described elsewhere [25]. Sec-
tions were analyzed using a Tecnai Spirit transmission
electron microscope (FEI, Eindhoven, The Netherlands),
and electron micrographs were taken using a bottom-
mounted 4-by-4 K Eagle camera (FEI).

Collection of carp epidermal mucus and production of
clarified mucus extract
Epidermal mucus was collected from common carp (aver-
age weight of 5 kg) kept at 22°C (CEFRA, University of
Liège, Belgium). Immediately after euthanasia, epidermal
mucus was collected by gentle scraping of fish flanks using
a soft rubber spatula. Mucus samples were pooled and
stored on ice. Clarified mucus extract (CME) was then
prepared as follows. Mucus was first clarified by centrifu-
gation (2000 g for 10 min at 4°C). Clarified mucus was
diluted five times in MEM on ice. To enhance mucus
solubilisation, b2-mercaptoethanol (Sigma-Aldrich) was
added at the final concentration of 5 mM. The sample was
then processed five times through a 7 mL Dounce homo-
genizer (tight pestle, VWR, Chicago, USA). After an incu-
bation of 30 min on ice, the sample was ultracentrifuged
at 100 000 g for 30 min at 4°C. The supernatant was col-
lected and sterilized by filtration through a 0.45 μm filter
(0.45 μm filter PES, VWR). Finally, the sample was con-
centrated five times by centrifugation through an Amicon
Ultra 3K column (Millipore). The resulting product, here-
after called CME, was stored at -80°C until use. The CME
used in the present study had an estimated protein con-
centration of 0.95 mg/mL as determined with the non-
interfering protein assay (GBiosciences, St Louis, USA).

CyHV-3 neutralisation assay by CME
The KHV FL BAC recovered strain of CyHV-3 was
diluted in MEM to reach a concentration of 5.104 pla-
que forming unit (pfu)/mL. The effect of CME on
CyHV-3 infectivity was tested under two conditions
hereafter called pre-incubation and post-incubation
addition of CME. For pre-incubation addition of CME,
the virus suspension was mixed with adequate volumes
of CME and MEM supplemented with 5 mM b2-mer-
captoethanol to reach CME final concentrations (vol/
vol) of 1/2, 1/4, 1/8, 1/16 and 1/32. Samples were then
incubated at 25°C for 2 h. For post-incubation addition
of CME, the samples were processed as described above
with the exception that the CME volumes were added
after the 2 h incubation period. A negative control (NC)
sample consisted of incubating the viral suspension with
an equal volume of MEM supplemented with 5 mM b2-
mercaptoethanol before the 2 h incubation period. All
samples were then diluted 200 times in MEM and
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CyHV-3 infectivity was titrated on CCB monolayers
grown in 24 well plates (BD, Erembodegen, Belgium) as
described elsewhere [8]. Viral plaques were counted 3
days post-infection (dpi) using an epifluorescent micro-
scope (Eclipse TE2000-S, Nikon). Statistical analyses of
the results were performed by post hoc tests on least
squares means for pair wise group comparisons. These
analyses were done using SAS version 9.1.

Results
Physical treatments applied to carp epidermis
The goal of the present study was to investigate the
effects of epidermal mucus removal and progressive epi-
dermal abrasion on CyHV-3 entry in carp. To reach that
goal, four different physical treatments were applied on
the defined area of carp skin as depicted in Figure 1a. To
avoid an effect on untreated areas, fish were handled
with care by the head and the superior lobe of the tail fin.
Immediately after treatment, the centre of the treated
area was submitted to histological examination (Figure
1b). Gentle rubbing of the epidermis with a soft tissue
paper induced removal of the mucus without apparent
damage of the epithelial cells. In contrast, the use of a
cotton swab induced removal of the mucus and the
upper most layers of epidermal cells. After rubbing with
sand paper, only a few epidermal columnar cells were left
on the basement membrane; while all cells were removed
after brushing with an electric tooth brush.

Effect of carp epidermis lesion on CyHV-3 entry in carp
The results presented above demonstrated that the differ-
ent physical treatments applied locally on carp skin
resulted in progressive damaging of the epidermis. These
treatments were used to investigate the effect of epider-
mal mucus removal and progressive epidermal abrasion
on CyHV-3 entry in carp. Carp skin was treated on a
defined area (Figure 2) just before inoculation with the

CyHV-3 KHV FL BAC 136 LUC TK revertant strain
expressing LUC as a reporter gene. Sites of CyHV-3
entry in carp were revealed by IVIS examination of carp
at different times post-inoculation (Figure 3).
Mucus removal and superficial abrasion of carp epi-

dermis induced by rubbing with soft tissue paper and
cotton swab enhanced CyHV-3 entry in carp. As early
as 12 h post-inoculation, a strong LUC signal correlated
with the area of the skin treated (Figure 3). Similarly to
fish of the control group, the treated fish exhibited
small foci of LUC emission distributed randomly reveal-
ing entry of the virus through unaffected skin as
described earlier. According to post-inoculation time,
the spread of the infection on the skin was observed as
well as an increase of light emission for a determined
site of infection.
Deep abrasion of skin epidermis induced on the flank

of fish correlated at 12 h post-inoculation with no LUC
signal at the centre of the lesion while the edge of the
lesion expressed LUC activity (Figure 3, Sandpaper,
Brushed). The absence of LUC activity at the centre of
the lesion can be explained by the removal of sensitive
cells induced by the treatment; while the presence of a
signal at the edge most probably resulted from mucus
removal and superficial epidermis abrasion induced at
the periphery of the treated area. Interestingly, starting
at 24 h post-inoculation a LUC signal appeared at the
centre of the treated area while it was negative 12 h ear-
lier. This result can only be explained by an extremely
fast regeneration of the epidermis throughout the centre
of the lesion providing sensitive cells for viral infection.
To address this hypothesis, the kinetics of epidermis
healing was investigated after epidermis excoriation on a
15 mm diameter disc (Figure 4). Histological examina-
tion performed immediately after lesion induction con-
firmed the excoriation of the epidermis leaving the
basement membrane exposed to water (Figure 4, time
0). Surprisingly, as early as 2 h post-lesion, cell migra-
tion was observed from the edge of the lesion toward its
centre. The cell migration front consisted of a cell
monolayer, while the number of cell layer increased pro-
gressively moving away from the centre of the lesion. At
6 h post-lesion, the migration front was nearly closing
the wound. At 12 h post-lesion, the epidermis was
entirely covering the basement membrane and was uni-
formly composed of 5-7 layers of epidermal cells with
no obvious polarization of the epithelium. At 24 h post-
lesion; the polarization of the epidermis was back to
normal with the exception of the number of cell layers
which was still inferior to normal. At 48 h post-lesion,
the epidermis of the treated area could not be differen-
tiated from the control undamaged epidermis.
Independently of the treatment applied locally to the

skin, treated fish had more LUC emission foci located

Ctrl-

Tissue Paper 
Sandpaper 

Brushed
Cotton 
Swab

Figure 2 Localised skin physical treatments applied to the fish
skin just before inoculation. Schematic diagram representing the
area (in grey) of the fish skin to wish the indicated physical
treatments were applied just before viral inoculation of the fish
analysed in figure 3. Each panel represents the same fish lying on
its left and right side.
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Figure 3 Effect of skin physical treatments on CyHV-3 entry in carp analyzed by bioluminescence imaging. Each physical treatment
depicted in Figure 2 was applied to a group of 7 fish. Immediately after skin treatment, fish were inoculated by immersion in water containing
the FL BAC 136 LUC TK revertant strain (103 PFU/mL of water for 2 h) to mimic natural infection. The fish were analyzed by bioluminescence
imaging at the indicated time post-inoculation. Each fish was analyzed lying on its right and its left side. Two representative fish are shown per
group. White arrows indicate the centre of epidermis lesions which was associated with no bioluminescent signal at 12 h post-inoculation but
an intense signal later during infection. The images collected over the course of the experiment are presented with standardized minimum and
maximum threshold values for photon flux.
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on the head than fish from the control group (Figure 3).
This observation is likely to be the consequence of
mucus removal on the head when handling the fish.
Light emission was not detected from mock-infected
carp used as negative controls (data not shown).

Removal of epidermal mucus enhances CyHV-3 binding
to epidermal cells
The results presented above demonstrated that removal of
epidermal mucus enhances the entry of CyHV-3 in carp.

This observation led to the hypothesis that epidermal
mucus could act as an innate immune protection reducing
CyHV-3 binding to epidermal cells. To test this hypoth-
esis, tail fin explants with or without mucus were inocu-
lated ex vivo with CyHV-3 (Figure 5). After an incubation
of 2 h, viral binding to epidermal cells was investigated by
electron microscopy examination. While no viral particles
could be detected on fin explants with an intact mucus
layer, numerous viral particles were observed on the sur-
face of the fin infected after removal of mucus. Virus
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Figure 4 Kinetic of epidermis healing in carp. At time 0, the mucus and the epidermis of the skin were removed by brushing with a rotary
electric tooth brush on a 15 mm circular area located on the side of the fish body. At the indicated time post-lesion, a biopsy was performed at
the centre of the treated area, and processed for histological examination. Right panels represent higher magnification of the area marked in the
left panels. The arrows indicate migration of epidermal cells towards the wound centre.
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Figure 5 Effect of skin mucus removal on CyHV-3 binding to carp epidermal cells. Tail fin ventral lobes of carp were mock-treated or
treated by rubbing with a soft tissue paper to removal epidermal mucus (see methods). Immediately after skin treatments, tail fin explants were
harvested and inoculated ex vivo with the FL BAC 136 LUC TK revertant strain (106 PFU/mL of culture medium for 2 h). At the end of the 2 h
inoculation period, a fragment of the fin was collected and processed for electron microscopy examination (EM analysis). The arrows indicate
CyHV-3 particles bound to cells or cell debris. Twenty-four hours post-inoculation, duplicate tail explant cultures were analyzed by
bioluminescence imaging (lower panels).
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particles were found attached to structurally normal cells
but also to lysed cells and cell debris still attached to the
epidermis by desmosomes. As damaged cells were not
observed in the control untreated sample (without
removal of the mucus), they were thought to be the conse-
quence of the mucus removal procedure. IVIS analysis of
duplicate fin explants 24 h after inoculation confirmed
that CyHV-3 infection of carp skin was drastically
enhanced by mucus removal just before inoculation
(Figure 5, bottom panels).

Epidermal mucus neutralises CyHV-3 infectivity
In the last section of this study, we investigated whether
epidermal mucus can neutralise CyHV-3 infectivity (Fig-
ure 6). CME was prepared from epidermal mucus and
tested for its ability to neutralise CyHV-3 as described
in the materials and methods. Incubation of CyHV-3
with CME at the concentration (vol/vol) of 1/2 down to
1/16 led to a statistically significant reduction of the
number of viral plaques compared to the NC sample
(Figure 6, pre-incubation addition of CME). In contrast,
none of the concentrations tested led to a significant
neutralisation effect when CME was added to the sam-
ple after the incubation period (Figure 6, post-incuba-
tion addition of CME). The latter results demonstrate
that diluted CME present in both types of samples (pre-
and post-addition of CME) during the final titration
step did not influence CyHV-3 infectivity significantly.

Discussion
Mucus covering fish surfaces exposed to water acts as
an innate and adaptive first line of defence against

pathogen entry [13]. Only very few studies addressed in
vivo the role of epidermal mucus as an innate immune
protection against bacterial infections [16-20]; while no
study has demonstrated so far its role in preventing
viral entry in fish. Here, we took advantage of the
“CyHV-3 - carp” model of infection to investigate by
using bioluminescence imaging the effect of mucus
removal and progressive epidermal lesions on CyHV-3
entry in carp. The data of the present study demon-
strated that epidermal mucus inhibits CyHV-3 binding
to epidermal cells at least partially by neutralisation of
viral infectivity, and that epidermal lesions enhance
CyHV-3 entry in carp.
Carp epidermal mucus inhibits CyHV-3 binding on

epidermal cells (Figure 5). As mentioned in the intro-
duction, epidermal mucus confers an innate immune
protection against pathogen entry. This protection relies
on mechanical reduction of pathogen access to epider-
mal cells and eventually on pathogen neutralisation by
active molecules [13]. The results presented in Figure 6
demonstrated that epidermal mucus neutralises CyHV-3
in a dose dependent manner. Fish epidermal mucus
contains a growing list of molecules that could contri-
bute to virus neutralisation, such as for example com-
plement factors, C-reactive protein, immunoglobulines,
lectins and defensins [11-15,26,27]. Future studies are
required to determine the mechanisms by which epider-
mal mucus neutralises CyHV-3.
Despite the ability of skin mucus to inhibit CyHV-3

binding to epidermal cells, immersion of carp in infec-
tious water led to viral entry in carp through the skin
(Figure 3, Ctrl-). Two hypotheses that are not mutually
exclusive can conciliate these observations. Firstly, it is
likely that the inhibition of virus binding to epidermal
cells by mucus is partial rather than total. Secondly, the
sites of primary skin infection could represent areas of
the fish body that are uncovered by mucus [13] or cov-
ered by a thinner layer compared to the rest of the
body. The heterogeneity of the thickness of the mucus
layer over the surface of the fish could represent physio-
logical differences or be the consequence of mucus
removal caused by physical contact. Consistent with the
latter hypothesis, we observed that the sites of primary
infection are mainly located at the periphery of the fins
(Figure 3).
Mucus removal and epidermal lesions enhance CyHV-

3 entry in carp (Figure 3). The results of the present
study suggest that skin lesions caused for example by
ectoparasite infestations, rough handling or inappropri-
ate environment (as for example a tank with abrasive
walls) should enhance the entry of CyHV-3 through the
skin and consequently the spread of the disease. At the
early stage of the disease, CyHV-3 replicates at the por-
tal of entry [8]. This early replication in the skin
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probably explains why infected fish rubbed themselves
against each other or against objects. This behaviour
could represent an efficient “skin-to-skin” mode of
transmission of CyHV-3 in the carp population by indu-
cing physical contact between the skin of infected and
naive carp with simultaneous removal of mucus. This
hypothesis could at least partly explain the higher trans-
mission dynamics of CyHV-3 in wildlife between adult
carps during the host breeding season [28].
In conclusion, the present study demonstrates the role

of fish epidermal mucus as an innate immune protection
against a viral infection. This study further supports the
role of epidermal mucus as an important component of
fish innate immunity. It also provides a model to study
the effect of immunostimulants on this component of
fish innate immunity.
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The data of the two previous chapters demonstrate that the skin is the major portal of 

entry after inoculation of carp by immersion in water containing CyHV-3. While this model 

of infection mimics some natural conditions in which infection takes place, other 

epidemiological conditions could favour entry of virus through the digestive tract. Firstly, 

droppings from infected carp have been shown to contain infectious virus. Ingestion of 

infectious droppings or food contaminated by droppings by naïve subjects could represent a 

source of oral inoculation. Secondly, carp express cannibalistic and necrophagous behaviour. 

By ingestion of infectious tissues of CyHV-3 infected carp, naïve subjects could infect 

themselves through the oral route. Finally, recent studies performed in habitats with CyHV-3 

history suggested that aquatic invertebrates feeding by water filtration could accumulate and 

store CyHV-3. Ingestion of contaminated invertebrates could represent another possible 

source of CyHV-3 oral infection. Together with the observation that CyHV-3 replicates 

intensively in the intestine during the disease it causes, the possible sources of CyHV-3 oral 

contamination listed above stimulated the study of the role of carp digestive tract as a possible 

portal of entry for the virus. 

In the present study, we investigated the role of the carp digestive tract as a viral portal 

of entry using bioluminescence imaging. We found that feeding carp with infectious materials 

induces CyHV-3 entry through infection of the pharyngeal periodontal mucosa. 
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ABSTRACT 

 

Cyprinid herpesvirus 3 (CyHV-3), also known as Koi herpesvirus, is the etiological agent of a 

mortal disease in common and koi carp. Recently, we investigated the entry of CyHV-3 in carp using 

bioluminescence imaging and a CyHV-3 recombinant strain expressing luciferase (LUC). We 

demonstrated that the skin is the major portal of entry after inoculation of carp by immersion in water 

containing CyHV-3. While this model of infection mimics some natural conditions in which infection 

takes place, other epidemiological conditions could favour entry of virus through the digestive tract. 

Here, we investigated whether ingestion of infectious materials mediates CyHV-3 entry through the 

digestive tract. Carp were fed with materials contaminated with the CyHV-3 LUC recombinant (oral 

contamination) or immersed in water containing the virus (contamination by immersion). 

Bioluminescence imaging analyses performed at different times post-infection led to the following 

observations: (i) The pharyngeal periodontal mucosa is the major portal of entry after oral 

contamination, while the skin is the major portal of entry after contamination by immersion. (ii) Both 

modes of inoculation led to the spreading of the infection to the various organs tested. However, the 

timing and the sequence in which the organs turned positive were different between the two modes of 

inoculation. Finally, we compared the disease induced by the two inoculation modes. They led to 

comparable clinical signs and mortality rate. The results of the present study suggest that, based on 

epidemiological conditions, CyHV-3 can enter carp either by skin or periodontal pharyngeal mucosal 

infection. 
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Figure 1: Oropharyngeal cavity of carp.
(A) Schematic representation of the roof and floor of the carp oropharyngeal cavity (adapted from Sibbing
1988). The cavity is subdivided into four sections: oral cavity (oc), buccal cavity (bc), anterior pharynx
(ap), posterior pharynx (pp). esophagus (e); lp, lingual process; ba, branchial arch; gr, gill raker; pt,
pharyngeal teeth; and cp, chewing pad. (B) Endoscopy views of carp oropharyngeal cavity. A 2 kg carp
was anesthetized before exploration of its oropharyngeal cavity by endoscopy. Panels i–iii illustrate bc, ap,
and pp, respectively.
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INTRODUCTION 

 

The Cyprinid herpesvirus 3 (CyHV-3; species Cyprinid herpesvirus 3, genus Cyprinivirus, 

family Alloherpesviridae, order Herpesvirales), also known as koi herpesvirus, is the aetiological 

agent of a contagious and mortal disease in common (Cyprinus carpio carpio) and koi (Cyprinus 

carpio koi) carp [1-5]. Since its emergence, in the late 1990s, CyHV-3 has caused severe economic 

losses in both common and koi carp culture industries worldwide [4, 6, 7]. 

The recent publication of the CyHV-3 sequence [8], together with the cloning of its genome as 

an infectious bacterial artificial chromosome (BAC) [9], allowed the production of CyHV-3 

recombinant strains. Recently, we took advantage of these advances to construct a luciferase (LUC)-

expressing recombinant strain by intergenic insertion of a LUC expression cassette [10]. Using this 

recombinant strain, bioluminescent imaging, and an original system to perform percutaneous infection 

restricted to the posterior part of the fish, we showed that the skin covering the fins and the body, and 

not the gills, is the major portal of entry after inoculation by immersion in water containing the virus 

[10]. This study, together with an earlier report addressing the portal of entry of a rhabdovirus 

(infectious hematopoietic necrosis virus) in salmonids [11], suggests that the skin of teleost fish is an 

efficient portal of entry for certain viruses. 

The skin is the major portal of entry of CyHV-3 in carp after inoculation by immersion in 

water containing the virus [10]. While this model of infection certainly mimics some natural condition 

of infections, other conditions could favor entry of the virus through the digestive tract. Firstly, 

droppings from infected carp have been shown to contain infectious virus [12]. Ingestion of infectious 

droppings or food contaminated by droppings by naïve subjects could represent a source of oral 

inoculation. Secondly, carp express cannibalistic and necrophagous behavior. By ingestion of 

infectious tissues of CyHV-3 infected carp [10, 13], naïve subjects could infect themselves through the 

oral route. Finally, recent studies performed in habitats with CyHV-3 history suggested that aquatic 

invertebrates feeding by water filtration could accumulate and store CyHV-3 [14]. Ingestion of 

contaminated invertebrates could represent another possible source of CyHV-3 oral infection. 

Together with the observation that CyHV-3 replicates intensively in the intestine during the disease it 

causes [12], the possible sources of CyHV-3 oral contamination listed above stimulated the study of 

the role of carp digestive tract as a possible portal of entry for the virus.  

The digestive tract of common carp is composed of the oropharyngeal cavity, the esophagus and 

the intestine [15-17]. The oropharyngeal cavity is subdivided into four sections: the oral cavity, the 

buccal cavity, the anterior pharynx (syn. branchial cavity) and the posterior pharynx (syn. chewing 

cavity) (Fig. 1). The three first sections are involved in respiration and food selection, while the 

posterior pharynx between pharyngeal teeth and chewing pad is involved in mastication. Common 

carp are stomach-less fish. The short esophagus connects the posterior pharynx to the anterior part of 

the intestine also called pseudogaster [18]. 
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In the present study, we investigated the role of the carp digestive tract as a viral portal of entry 

using bioluminescence imaging. We found that feeding carp with infectious materials induces CyHV-

3 entry through infection of the pharyngeal periodontal mucosa. The results of the present study 

suggest that, based on epidemiological conditions, CyHV-3 can enter carp either by skin (immersion 

in infectious water) or periodontal pharyngeal mucosal infection (ingestion of infectious materials). 

 

MATERIALS AND METHODS 

 

Virus 

The KHV FL BAC 136 LUC TK revertant strain of CyHV-3, hereafter called LUC strain, was 

described previously [10]. This recombinant strain encodes a firefly luciferase (LUC) expression 

cassette inserted in the intergenic region between open reading frame (ORF) 136 and ORF137. 

 

Fish 

Common carp (Cyprinus carpio carpio) (CEFRA, University of Liège, Belgium) with an average 

weight of 10g and 100g were kept in 60-liter tanks at 24 °C. Microbiological, parasitical and clinical 

examinations of the fish just before the experiments demonstrated that these fish were fully healthy. 

Two common carp with a weight of 2 and 3 kg were collected from a private pond. 

   

CyHV-3 inoculation of carp 

Common carp were inoculated by one of two different inoculation modes. To mimic contamination 

through infectious water, 10g fish (5 fish/ L) were immersed for 2 h in water containing 300 PFU/ml 

of the CyHV-3 LUC strain. At the end of the contamination period, the fish were returned to the larger 

tank. To mimic contamination by the oral route, (10g and 100g) fish kept individually in 2 L of water 

were fed with three pellets of food (Ichi Food Summer mini 2-3 mm; Aquatic Science) contaminated 

with the CyHV-3 LUC strain. Food pellets were contaminated with CyHV-3 by immersion of ten food 

pellets per ml of CyHV-3 LUC strain (2.8 × 105 PFU/ml) for 10 min. Pellets were distributed to fish 

immediately after incubation. To determine the number of infectious particles contained in a pellet, 5 

contaminated pellets (in triplicate) were disrupted by flushing through a 5 ml pipette in 5 ml of 

minimum essential medium (MEM) (Invitrogen, Merelbeke, Belgium). After centrifugation (6000 g 

for 20 min at 4 °C), the supernatant was collected and sterilized by filtration through a 0.45 µm filter 

(0.45 µm filter PES, VWR). Infectious particles were then titrated as described elsewhere [10]. 

Titration of CyHV-3 in the pellets revealed that they contained 754.5 ± 59.6 PFU/pellet (mean ± SE of 

triplicate measurements). Fish were regrouped in the larger tank after ingestion of the food. The 

animal studies presented in this manuscript have been accredited by the local ethics committee of the 

University of Liège, Belgium (N° LA1610008/810, 1059 and 1063).  
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Bioluminescence imaging  

Imaging of firefly (Photinus pyralis) LUC was performed using an “in vivo imaging system” (IVIS) 

(IVIS®spectrum, Xenogen, Caliper LifeSciences, Hopkinton, Massachusetts, USA) as described 

previously [10]. Fish were anesthetized with benzocaine (50 mg/L of water). Fifteen minutes before 

bioluminescence analysis, D-luciferin (150 mg/kg body weight) (Xenogen, Caliper LifeSciences, 

Hopkinton, Massachusetts, USA) was administered by intraperitoneal injection. Each fish was 

analysed in vivo lying on its right and its left side and ex vivo after euthanasia and dissection. All the 

images presented in this study were acquired using a field view of 15 cm, an auto-exposure time with 

a maximum of 1 minute, a binning factor of 4 and a f/stop of 1. Relative intensities of transmitted light 

from bioluminescence were represented as a pseudocolor image ranging from violet (least intense) to 

red (most intense). Corresponding grey-scale photographs and color luciferase images were 

superimposed using the LivingImage analysis software (Xenogen, Caliper LifeSciences, Hopkinton, 

Massachusetts, USA). For quantitative comparisons, the Living Image software (Caliper Life 

Sciences) was used to obtain the total flux (p.s-1) over each region of interest (ROI). All the ROI 

automatically identified by the IVIS software as positive (Fig. 4A) were standing out against 

background with a difference of at least 3 log. 

 

Transmission electron microscopy 

Samples were fixed in 0.1% glutaraldehyde (Sigma-Aldrich, Saint Louis, Missouri, USA). Epon 

blocks and sections were prepared as described elsewhere for histological and electron microscopic 

examination [19]. Sections were analysed using a Tecnai Spirit transmission electron microscope (FEI, 

Eindhoven, The Netherlands), and electron micrographs were taken using a bottom-mounted 4-by-4 K 

Eagle camera (FEI). 

 

Statistical analyses 

A possible difference in the dynamics of IVIS positive organs (Fig. 4B) or in the dynamics of 

mortality (Fig. 5) was tested using a permutation test as follows. Firstly, occurrences were recorded in 

the real dataset. Then, in successive repetitions (1000 or 10000) of the same procedure, these 

occurrences were randomly allocated to each of the 2 groups (immersion and oral inoculation), so 

mimicking the observed data but without introducing any systematic difference between the 2 groups. 

A measure of the global difference between the 2 curves – taken as the sum over the days of the 

absolute difference at any given day – was then obtained for these shuffled dataset and compared to 

the really observed one. The proportion of shuffled datasets with a measure greater or equal to the real 

difference was then taken as the p-value.  
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Figure 2: The portal of entry of CyHV-3 in carp analysed by bioluminescence imaging.
Two groups of fish (mean weight 10 g) were infected with the CyHV-3 LUC strain either by bathing
them in water containing the virus (Immersion, left column) or by feeding them with food pellets
contaminated with the virus (Oral, right column). At the indicated time pi, six fish per group were
analysed by bioluminescence IVIS. Each fish was analysed lying on its right and its left side. To
analyze internal signals, fish were euthanized and dissected immediately after in vivo
bioluminescence imaging. Dissected fishes and isolated organs were analysed for ex vivo
bioluminescence. The analysis of one fish is presented for each time point and inoculation mode.
Pictures collected over the course of this experiment are presented with a standardized minimum and
maximum threshold value for photon flux. rba, right branchial arches; lba, left branchial arches; ro,
right operculum; lo, left operculum; p, pharynx; aw, abdominal wall; i, intestine.
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RESULTS AND DISCUSSION 
 

CyHV-3 portal of entry after inoculation by immersion in infectious water or by feeding with 

contaminated materials 

In the present study, we investigated the role of carp digestive tract as a putative portal of entry for 

CyHV-3 using bioluminescence imaging. Carp were infected with the CyHV-3 LUC strain using two 

modes of inoculation: immersion in water containing the virus and feeding with contaminated 

materials (Fig. 2). Fish were analysed by IVIS 24 and 48 h post-infection. Because photon emission is 

drastically attenuated in fish tissues [10], each fish was analysed in vivo lying on its right and then left 

side, and ex vivo after euthanasia and dissection. The results can be summarized as follows: In fish 

inoculated by immersion, 5 out of 6 fish analysed 1 day post-infection (dpi) expressed at least one 

focal source of light on the body surface. The signals were detected from various anatomic sites of the 

fish body, but principally on the fins. Analyses performed 2 dpi revealed that all of the fish had LUC 

signals on their surface (n = 6). In comparison to day 1, the number and the intensity of light focal 

sources detected 2 dpi increased in number and intensity. None of the fish inoculated by immersion 

expressed internal LUC signals neither at 1 dpi nor at 2 dpi. These observations confirmed our former 

results [10] demonstrating that the skin is the major portal of entry of CyHV-3 after inoculation by 

immersion in infectious water. Analysis of fish inoculated by ingestion of infectious materials led to 

unexpected results (Fig. 2, oral inoculation mode). While none of the six fish analysed 1 dpi displayed 

LUC signals on the skin, one of them expressed LUC at the posterior part of the carp pharyngeal 

cavity. At 2 dpi, all of the analysed fish (n = 6) had intense light-emitting foci in the posterior part of 

the pharyngeal cavity. For 5 of the fish, no other LUC signal was detected elsewhere on or in the body 

(Fig. 2). In addition to a strong pharyngeal signal, one single fish expressed a focal source of light on 

one branchial arch (data not shown). Because of the small size of the common carp used for this 

experiment, it was difficult to identify precisely the site of light emission within the pharyngeal cavity. 

Consequently this part of the experiment was repeated with larger carp (100 g, n = 5) (Fig. 3).   

The results obtained were consistent with those generated in smaller fish. All fish (n = 5) that 

we analysed 2 dpi expressed LUC at the posterior part of the pharyngeal cavity. Ex vivo 

bioluminescent analysis of dissected pharyngeal cavities revealed that luciferase expression was 

localized to the protruding periodontal pharyngeal mucosa between the pharyngeal teeth and the 

chewing pad (Fig. 3A). This mucosa forms protruding foliaceous papillae within the pharyngeal cavity 

(Fig. 1B, panel iii) [17]. The stratified oropharyngeal epithelium consists of common epithelial cells, 

as well as several specialized cells, such as mucous cells, club cells, chloride cells, and sensory cells 

[17]. Next, to investigate whether LUC expression detected on the pharyngeal mucosa was associated 

with viral replication, and if so to identify the cell type(s) supporting the infection, a biopsy specimen 

of positive mucosa was analysed by electron microscopy (Fig. 3C-D). A detailed examination of 

ultrathin sections revealed cells supporting viral replication in the mucosa epithelium. The infected 
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Figure 3: In situ localization of LUC activity and detection of viral replication in carp
periodontal pharyngeal mucosa.
Carp weighing 100 g were fed with food pellets contaminated with the CyHV-3 LUC strain. At 2 dpi,
carp were anesthetized, injected with luciferine, and euthanized immediately before dissection of the
oropharyngeal cavity. Dissected fish were analysed for ex vivo bioluminescence (A). A fragment of
periodontal pharyngeal mucosa emitting bioluminescence was harvested and processed for histological
(B) and electron microscopy analysis (C and D). Panel C shows low magnification of the epithelium.
Panel D shows one representative infected epithelial cell at higher magnification.
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cells could be identified at low magnification based on their less-electron-dense cytoplasm and 

nucleus. Viral capsids and enveloped particles were observed in the nuclei and the cytosol of the 

infected cells, respectively. All of the infected cells that we detected were common epithelial cells. 

While common epithelial cells are abundant throughout the oropharyngeal cavity, LUC signal 

was restricted to the pharyngeal periodontal mucosa (Fig. 2 and 3). There are two hypotheses that 

could explain this observation. First, the common epithelial cells in this area could express cell-surface 

molecules that make them highly sensitive to CyHV-3 infection. A second, more likely, hypothesis 

relies on a mechanical phenomenon: during mastication, mucus removal and/or microlesions could be 

induced in protruding foliaceous papillae by food and/or the pharyngeal teeth, creating an efficient 

portal of entry for CyHV-3. This hypothesis is consistent with our recent observation that skin mucus 

removal with or without associated epidermal lesions drastically enhance CyHV-3 entry [20]. To 

investigate the likelihood of this hypothesis, we recorded carp mastication movements by video 

endoscopy (Video 1, second section). The video showed that the protruding periodontal mucosa 

covers pharyngeal teeth and is likely to be affected by mastication. 

CyHV-3 replicates intensively in the intestine and is excreted in droppings during the disease 

it causes [12] (see data of Fig. 4 below). However, the data of the present study suggest that the 

intestine does not act as a portal of entry for CyHV-3 after oral contamination. Several hypotheses 

could explain these observations. Firstly, it is possible that CyHV-3 is quickly inactivated in the lumen 

of the anterior part of the digestive tract. Intestinal mucus and/or secreted enzymes could inactivate 

CyHV-3 infectivity. This hypothesis is supported by the recent observation that epidermal soluble 

mucus extract is able to neutralise CyHV-3 infectivity [20].  Secondly, it is possible that enterocytes 

which are polarized cells express CyHV-3 receptor(s) for entry on their basolateral plasma membrane 

but not on their luminal apical membrane. 
 

CyHV-3 pathogenesis after inoculation by immersion in infectious water or by feeding with 

contaminated materials 

The results presented above suggest that according to epidemiological conditions, CyHV-3 enters carp 

through skin (immersion in infectious water) or periodontal pharyngeal infection (feeding on 

contaminated materials). In the second part of this study, we investigated whether the two modes of 

inoculation induce similar CyHV-3 disease. First, we investigated by bioluminescence imaging how 

the virus spreads from the portal of entry to secondary sites of replications. Two groups of fish were 

infected either by immersion in infectious water or by feeding with infectious materials (Fig. 4). At 1, 

2, 4, 6 and 8 dpi, 6 fish per group were analysed by bioluminescence imaging and the emission of 

photons was quantified for selected tissues/organs (Fig. 4A). Figure 4B illustrates the dynamics of the 

infection within tested organs according to the two modes of inoculation. Statistical analyses of these 

data (permutation test, 10000 permutations) demonstrated that the dynamic of positive organs differed 

significantly between the two modes of inoculation for the skin (p = 0.004) and the pharynx (p = 
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Figure 4: Progression of CyHV-3 infection in carp analysed by bioluminescence imaging.
Two groups of fish (mean weight of 10 g) were infected with the CyHV-3 LUC strain either by
bathing them in water containing the virus (Immersion, left column) or by feeding them with food
pellets contaminated with the virus (Oral, right column). At the indicated time post-infection, six fish
per group were analysed by in vivo and ex vivo bioluminescence imaging. A/ For each fish, the IVIS
signal (Photon/second) was determined for several organs (skin, gills, pharynx, pseudogaster,
intestine, and heart) as described in the materials and methods. B/ For each analysed organ, the
number of positive fish is presented according to time post-infection. This experiment is
representative of two independent experiments.



Experimental section: Chapter 4 

0.0025), while gills (p = 0.059) almost reached significance. Pseudogaster (p = 0.237), guts (p = 

0.832) and heart (p = 0.833) were found not to differ.  

The analyses performed at 1 and 2 dpi confirmed that the skin and the periodontal pharyngeal 

mucosa are the major portal of entry after inoculation by immersion in infectious water and by feeding 

with infectious materials, respectively. In the latter case, soon after positivity of the pharynx, the skin 

became positive closely followed by the gills (Fig. 4B). Two hypotheses could explain that the skin is 

the second place the virus is seen after the pharynx following oral exposure. Firstly, it is possible that 

the skin signal detected 2 dpi represents a low level of infection that occurred at the time of feeding. 

Indeed, it is likely that contaminated food pellets released virions in the water before they were 

ingested by carp. Due to the low concentration of the virus in the water, the resulting skin infection 

was perhaps not be detected 1 dpi but rather at 2 dpi. Secondly, it is possible that the skin signal 

observed on day 2 pi represents spreading of the viral infection on the fish surface from the 

periodontal pharyngeal mucosa.  

In the fish inoculated by immersion, the gills were not positive until day 6 when they were 

positive earlier in the oral route (Fig. 4). The most likely explanation of this observation is that the 

earlier infection of the gills observed in the oral route represents the spreading of the viral infection 

from the pharyngeal mucosa by continuity of tissue; while the infection of the gills observed after bath 

exposure could reflect the systemic spreading of the infection.  

Next, we investigated whether the mode of inoculation (immersion versus oral) could affect 

the disease induced in term of clinical signs and mortality rate (Fig. 5). Three groups of fish each 

consisting of 17 carp were inoculated either by immersion in infectious water (1 group) or by feeding 

with contaminated materials (2 groups). Daily examination of carp did not reveal any significant 

difference between the two modes of infection. All groups of fish expressed the clinical signs 

associated with CyHV-3 disease, including apathy, folding of the dorsal fin, increased mucus 

secretion, suffocation, erratic swimming, and loss of equilibrium. The intensities of the clinical signs 

were comparable in the three groups. Comparison of the survival rates between the three groups led to 

the following conclusions. Survival curves for the two orally inoculated samples were compared using 

a binomial comparison of the survival rates 30 days after inoculation. No significant difference was 

found (p=0.08). Accordingly, the two samples were pooled and the survival rate after 30 days was 

compared between the pooled sample and the sample with inoculation by immersion. Again, a 

binomial test confirmed that no significant survival rate difference can be detected (p = 0.15). A 

possible difference in the mortality dynamics according to the mode of inoculation was then tested 

using a permutation test (1000 permutations). The obtained p-value of p = 0.331 showed that no 

significant difference exists between the two inoculation mode dynamics. 

The results presented above suggest that CyHV-3 induces a comparable disease after entry 

through infection of the skin or periodontal pharyngeal mucosa (Fig. 4 and 5).  Based on the IVIS data 

of the present study and earlier studies [12, 21], we propose a model for CyHV-3 pathogenesis. 
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Figure 5: Survival rates of carp infected with the CyHV-3 LUC strain.
On day zero, three groups of fish, each consisting of 17 common carp (mean weight of 10g) kept in
separate tanks, were infected either by bathing them in water containing the virus (left graph, immersion)
or by feeding them with food pellets contaminated with the virus (middle and right graphs, Oral) as
described in Materials and Methods. The fish were examined daily for clinical signs of CyHV-3 disease,
and dead fish were removed. The percentage of survival is expressed according to time post-infection.
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According to epidemiological conditions (immersion in water containing the virus or ingestion of 

infectious materials), CyHV-3 enters fish through skin or pharyngeal periodontal infection (Fig. 2) 

[10, 20]. Earlier reports based on PCR analysis described an early and fast systemic spread of the virus 

in infected fish [13, 22-24], while our IVIS data suggested that active replication within secondary 

sites occurs only 4-6 days after contamination. To explain these data we propose that the rapid (2 dpi) 

and systemic dissemination observed by PCR reflects the secondary infection of blood cells [24], 

which could not be detected by bioluminescence imaging. Infected blood cells supporting a replicative 

infection could act as Trojan horse for the virus leading to a systemic distribution of the virus within 

the infected host. Associated with this phase of systemic distribution, the virus could reach secondary 

sites of replication among which some will contribute to excretion of infectious particles in the 

environment (intestine and gills). A recent study on CyHV-3 pathogenesis support the role of infected 

blood cells described above both during clinical infection as well as during latency [21].    
 

In conclusion, this study demonstrated that according to epidemiological conditions, CyHV-3 

can enter carp either through infection of the skin (immersion in infectious water) or through infection 

of the pharyngeal periodontal mucosa (feeding on infectious materials). The existence of these two 

portal of entry adapted to different epidemiological conditions most probably contributes to the high 

contagious nature of the virus.  
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L’intensification récente de l’aquaculture a contribué à révéler l’existence de nombreux 

herpèsvirus de poisson. Depuis son émergence dans les années 1990, l’herpèsvirus cyprin 3 (CyHV-3), 

s’est montré particulièrement contagieux et mortel, entrainant des pertes économiques majeures dans 

l’industrie des carpes koi et commune. Le nombre croissant d’études menées sur ce pathogène révèle 

l’intérêt qu’il suscite sur le plan de la recherche fondamentale et appliquée. Le but de cette thèse était 

d’identifier les portes d’entrée du CyHV-3 chez son hôte naturel la carpe commue (Cyprinus carpio). 

La démarche scientifique appliquée au cours de cette thèse a mené à quatre études. 

La première étude décrit le clonage du génome complet du CyHV-3 sous la forme d’un BAC 

clone stable et infectieux (Costes et al., 2008). Evitant les écueils liés à la taille, aux répétitions et aux 

mutations génomiques accumulées en culture in vitro, le BAC CyHV-3 permet le maintien stable et la 

mutagenèse du génome viral en système procaryote. Plusieurs souches recombinantes ont ainsi été 

produites à partir du BAC. L’obtention de cet outil est une avancée précieuse permettant notamment 

l’étude des portes d’entrée du virus par la production d’une souche recombinante exprimant un gène 

rapporteur. 

  Plusieurs auteurs ont postulé que les branchies pourraient être la porte d’entrée du CyHV-3 

chez la carpe (Dishon et al., 2005; Gilad et al., 2004; Ilouze et al., 2006; Miyazaki et al., 2008; 

Pikarsky et al., 2004). Dans la deuxième étude, cette hypothèse a été testée par imagerie 

bioluminescente in vivo (IVIS). Grâce au BAC clone du CyHV-3, une souche virale recombinante 

exprimant la LUC en tant que rapporteur a été produite (Costes et al., 2009). Au moyen de cette 

souche LUC et d’un astucieux système limitant l’infection cutanée à la partie postérieure du poisson, il 

a été démontré que l’entrée virale se faisait par la peau de la carpe (Costes et al., 2009). Ces résultats, 

associés à ceux d’une étude antérieure explorant la porte d’entrée d’un rhabdovirus chez les salmonids 

(Harmache et al., 2006), suggèrent que la peau des poissons téléostéens représente une porte d’entrée 

efficace pour certains virus.  

  Chez les poissons téléostéens, l’épiderme est un épithélium stratifié squameux qui, à la 

différence des mammifères, est constitué dans son intégralité de cellules vivantes. La peau des 

poissons est couverte d’un mucus servant de barrière mécanique et contenant un ensemble de 

molécules capables de neutraliser les infections microbiennes et les infestations parasitaires (Ellis, 

2001; Fontenot & Neiffer, 2004; Palaksha et al., 2008; Shephard, 1994; Subramanian et al., 2008). 

Dans la troisième étude, grâce au CyHV-3 LUC, nous avons étudié l’effet du retrait du mucus et de 

lésions progressives de l’épiderme sur l’entrée cutanée du virus chez la carpe. Il a été démontré que le 

mucus épidermique inhibe efficacement l’accès du CyHV-3 aux cellules épidermiques superficielles 

de la peau. Par ailleurs, l’activité neutralisante anti-CyHV-3 d’extraits solubles de mucus a été 

démontrée in vitro. L’ensemble de ces résultats démontre le rôle du mucus cutané des poissons comme 

protection immune innée contre certaines infections virales. 

  Les deux précédentes études ont envisagé l’exposition de la peau et des branchies au virus par 

immersion. D’autres conditions épidémiologiques pourraient faciliter l’entrée du virus par le tractus 
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digestif. Cette hypothèse a été testée dans la quatrième étude. L’ingestion d’un aliment contaminé avec 

du virus a révélé la pénétration du CyHV-3 dans la carpe par infection de la muqueuse pharyngienne 

péri-odontale. 

 

La première partie de cette thèse a été consacrée à l’obtention d’un outil essentiel à la 

mutagenèse, le KHV BAC. Depuis une dizaine d’années, la manipulation des herpèsvirus a été 

facilitée par le clonage de leur génome sous la forme d’un BAC (Borst et al., 1999; Wagner et al., 

2002). Ces vecteurs permettent le maintien stable du génome viral et sa mutagenèse en Escherichia 

coli, ainsi que la reconstitution des particules virales infectieuses par transfection du plasmide BAC en 

cellules permissives. Le CyHV-3 procure un modèle extrême pour l’étude de la mutagenèse des 

herpèsvirus à plus d’un titre. Premièrement, avec 295 kpb (Aoki et al., 2007), le CyHV-3 possède le 

plus grand génome au sein des Herpesvirales. Deuxièmement, sa séquence révèle de nombreuses 

régions répétées (Aoki et al., 2007). Enfin, la multiplication prolongée en culture cellulaire de ce virus 

entraine une dérive génomique (Ronen et al., 2003) qui rend difficile la mutagenèse par recombinaison 

homologue classique en système eucaryote.  

L’obtention du BAC CyHV-3 démontre la possibilité de manipuler un génome d’herpèsvirus 

supérieur aux 235 kpb du Cytomégalovirus humain (HCMV) (Borst et al., 1999). A l’origine 

développé pour le séquençage du génome humain (Shizuya et al., 1992), le BAC conserve 

durablement la séquence clonée en bactéries (Etude 1, Figure 3), ce qui permet d’amplifier et de 

purifier une grande quantité d’ADN viral cloné, facilitant le séquençage du génome du CyHV-3. On 

note que lors du clonage, une seule répétition terminale (TR) a été conservée. Cette caractéristique 

résout les problèmes d’auto-recombinaisons et facilitera la mutagenèse des neuf gènes qu’elle 

comporte. Mais l’intérêt majeur du BAC clone réside dans les possibilités de mutagenèse qu’il offre. 

En effet, grâce à la recombinaison en système procaryote, il est possible de modifier (déléter, 

remplacer, tronquer, supprimer ou insérer) n’importe quelle partie du génome viral (gènes essentiels 

ou non, promoteurs, micro-satellites,…) avec n’importe quelle séquence ADN endogène ou exogène. 

Afin d’illustrer l’une de ces nombreuses possibilités, l’ORF 16 codant potentiellement pour une GPCR 

a été délété et le phénotype de la souche virale recombinante caractérisé in vitro et in vivo (Costes et 

al., 2008). L’insertion inter-génique d’un gène rapporteur (LUC) (Costes et al., 2009) et son utilisation 

ont également été démontrées au cours des études 2, 3 et 4.  

Deux grandes contraintes lors de la mutagenèse existent cependant. Une première contrainte, 

commune aux BAC-clones d’herpèsvirus, réside dans le choix du gène rapporteur, du promoteur 

(endogène ou exogène, précoce immédiat, précoce, tardif, de latence) et leur site d’insertion. En effet, 

ceux-ci peuvent affecter certaines propriétés biologies du virus et/ou de la cellule hôte (Baens et al., 

2006) et par conséquent la réponse de l’hôte face à l’infection. Les études présentent dans cette thèse, 

basées sur l’utilisation d’une souche CyHV-3 LUC, n’échappent pas à cette critique. En effet, il est 

possible que certaines cellules infectées n’aient pas été détectées par défaut d’expression de la LUC. 
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Le virus recombinant LUC produit est un outil précieux pour l’étude future de la latence virale. Cela 

dit, il y aura lieu de vérifier que l’expression constitutive de la LUC par le recombinant ne représente 

pas une cible pour l’immunité adaptative du sujet infecté. 

 La deuxième contrainte est plus spécifique au CyHV-3. Lors du clonage, la cassette BAC a 

été insérée au sein de l’ORF 55, une des rares séquences connues du CyHV-3 au début de ce projet 

(Bercovier et al., 2005) et décrite comme étant non-essentielle in vitro chez les poxvirus et les 

herpèsvirus (Coen et al., 1989; Panicali & Paoletti, 1982). L’ORF55 est donc interrompu par  la 

cassette BAC. Plusieurs solutions à ce problème ont été adoptées. Lors de la reconstitution de 

particules virales infectieuses, il est possible de laisser la cassette BAC en place, générant ainsi un 

virus exprimant le marqueur EGFP mais dont l’ORF 55 est tronqué. Il est également possible d’exciser 

la cassette BAC (virus tronqué pour l’ORF 55) ou de restaurer l’ORF55 (Costes et al., 2008). Enfin, 

une dernière solution, qui n’a pas été développée dans cette thèse, a consisté en la génération d’un 

nouveau BAC clone du CyHV-3 (G. Fournier, résultats non montrés). En effet, après la publication de 

la séquence virale (Aoki et al., 2007), il était en effet possible de cibler une région intergénique pour 

l’insertion de la cassette BAC. 

 Malgré ces contraintes, l’intérêt du BAC clone dans l’étude fondamentale du CyHV-3 est 

évident : par l’altération de n’importe quel gène viral, il est possible d’étudier d’une part le caractère 

essentiel ou non d’un gène in vitro et in vivo, d’autre part les conséquences de l’absence ou de 

l’altération de ce gène ou groupe de gènes dans la biologie de l’infection. Cette approche, couplée à 

l’étude de ces mêmes gènes exprimés en système isolé, à l’étude du protéome, ou encore à la réponse 

immune de l’hôte, devrait profondément enrichir notre compréhension du virus et de la maladie qu’il 

occasionne chez la carpe. Parmi les 156 ORFs du CyHV-3, la plupart sont inconnus, mais certains sont 

des homologues d’autres gènes d’herpèsvirus (Aoki et al., 2007). Ainsi au cours de notre première 

étude nous avons montré : (i) que les ORF16 et 55 n’étaient pas essentiels in vitro ou in vivo, (ii) que 

l’ORF16 ne semblait pas jouer un rôle majeur dans la biologie du virus et (iii) que la troncation de 

l’ORF55 réduisait la virulence du CyHV-3. Des expériences complémentaires menées en collaboration 

avec le Prof. Balzarini du Rega Institute de Louvain ont permis de caractériser d’un point de vue 

fonctionnel le produit d’expression de l’ORF55 comme étant une Thymidine Kinase (TK) de type II, 

et celui de l’ORF140 une Thymidilate Kinase (TmpK), deux gènes impliqués dans la virulence du 

CyHV-3 (G. Fournier, résultats non montrés). Certaines protéines des Herpesviridae sont impliquées 

dans l’évasion de la réponse immune de l’hôte. Par exemple, la glycoprotéine G (gG) des 

alphaherpèsvirus peut séquestrer des chimiokines activant le système immunitaire (Costes et al., 

2006), ou encore le gène K3 des gammaherpèsvirus qui limite la présentation antigénique par le 

complexe majeur d’histocompatibilité (MHC) de classe I des cellules infectées (Stevenson et al., 

2009). Le CyHV-3 possède également une série de gènes potentiellement impliqués dans l’évasion 

immune. Les ORFs 4 et 12, en tant qu’homologues de TNFR et l’ORF 134, homologue d’une IL-10 

sont actuellement étudiés dans notre laboratoire. Le CyHV-3 représente dès lors un passionnant sujet 
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d’étude grâce à ces différentes séquences homologues dont il est possible d’étudier les fonctions 

prédites, mais également grâce à ces nombreux gènes inconnus qui sont autant de nouvelles protéines 

ou fonctions à découvrir. 

Face aux pertes économiques engendrées par le virus en aquaculture, plusieurs laboratoires se 

sont consacrés au CyHV-3 sous l’angle de la recherche appliquée et notamment au développement 

d’un vaccin. Ainsi, une première approche décrite dans la littérature consiste à protéger les carpes 5 

jours après l’infection en les mettant à 30°C, température à la fois non-permissive pour le virus et 

favorable au développement d’une réponse immune (Gilad et al., 2003). Si cette méthode peut limiter 

les mortalités dans une situation d’épidémie, elle ne protège pas complètement les poissons et 

contribue à la dissémination de la maladie dans la population de carpes. Une deuxième approche met à 

profit l’accumulation aléatoire de mutations chez le CyHV-3 en culture cellulaire pour générer une 

souche atténuée (Ronen et al., 2003). Cependant, la souche ainsi obtenue ne procure pas une innocuité 

satisfaisante et ne peut se prémunir d’une possible réversion vers la virulence. La technologie du BAC 

se révèle là encore très intéressante pour la recherche appliquée. En effet, l’accumulation d’une ou 

plusieurs délétions devrait aboutir au développement d’un vaccin atténué. Différents gènes ont été 

testés et les premiers résultats révèlent une atténuation complète associée à une protection immune. 

Ces travaux ont mené au dépôt d’un brevet et n’ont donc pu être présentés dans ce manuscrit. La 

première qualité attendue d’un vaccin réside dans l’innocuité, la sécurité pour l’hôte, le consommateur 

et l’environnement. L’utilisation de la technologie BAC permet la délétion complète et spécifique de 

gènes impliqués dans la virulence, dans l’évasion immune ou codants pour des glycoprotéines non-

essentielles. Cette approche permet de générer un virus apathogène et sans risque de retour à la 

virulence. La deuxième qualité primordiale d’un vaccin doit être de fournir une protection efficace.  

En cela, le vaccin atténué est plus efficient que les formes sous-unitaires, vectorielles ou ADN, car il 

stimule l’ensemble des acteurs du système immunitaire inné et surtout adaptatif. Il est donc crucial de 

déterminer les gènes essentiels et les antigènes majeurs à ne pas toucher. Enfin, grâce à la mutagenèse, 

la création d’un vaccin DIVA (Differentiation of Infected and Vaccinated Animals) peut-être 

envisagée. Classiquement, ce type de vaccin présente une délétion pour une protéine non essentielle 

mineure (d’un point de vue antigénique). Ainsi, les poissons vaccinés développent une réponse 

sérologique différente de celle des poissons infectés par la souche sauvage qui auront des anticorps 

dirigés contre la protéine délétée. La différenciation entre individus vaccinés et infectés est très 

importante pour l’exportation de poissons vers une exploitation indemne. Les glycoprotéines de la 

famille de l’ORF25, étudiées au laboratoire (Michel, 2010), pourraient être de bons candidats pour le 

développement d’un vaccin DIVA à condition d’être présentes chez toutes les souches sauvages et 

d’être suffisamment immunogènes. Une dernière qualité essentielle au vaccin réside dans sa facilité 

d’administration. La vaccination de groupe par une souche atténuée présente, là encore, un énorme 

avantage par rapport aux vaccins inactivés ou sous-unitaires pour lesquelles chaque individu doit subir 

une injection du vaccin. Toutefois, ces derniers pourraient être préférés par certains éleveurs de carpes 
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koi réticents à introduire une souche de CyHV-3 même vaccinale au sein de leur élevage. La 

vaccination ADN devient alors une alternative de choix pour autant que la protéine produite par ce 

vaccin soit suffisamment immunogénique. Il a été démontré que chez les poissons, ce type de 

vaccination peut se révéler particulièrement efficace (Lorenzen & LaPatra, 2005). Il est fascinant de 

voir à travers ces quelques exemples que la frontière entre recherche fondamentale et appliquée n’est 

pas toujours évidente et que les avancées de la seconde prennent inexorablement racine dans les 

résultats de la première. 

 

Les études 2 et 4 ont été consacrées à l’identification des portes d’entrée du CyHV-3 chez 

Cyprinus carpio au moyen d’une souche virale recombinante exprimant la LUC. L’étude 2 s’est 

intéressée à l’entrée du virus lors d’une infection par immersion dans de l’eau contaminée. Suite à 

l’observation de comportements cannibales et à la détection de CyHV-3 dans des proies potentielles de 

la carpe (Kielpinski et al., 2010), l’étude 4 a envisagé l’infection de la carpe par ingestion de matériel 

contenant des particules infectieuses. Ces deux études sont complémentaires et couvrent les différentes 

conditions épidémiologiques possibles. En effet, si l’on envisage une carpe et par extension un poisson 

téléostéen dans son entièreté, on peut identifier les tissus en contact avec l’environnement extérieur 

tels que la peau, les yeux, mais aussi les branchies et le tube digestif. La peau des poissons téléostéens 

est constituée d’écailles élasmoïdes, structure dermique recouverte d’un épiderme contenant des 

cellules en division dans toute l’épaisseur (Sire & Akimenko, 2004). L’ensemble de ces tissus est 

couvert d’une couche de mucus. L’apparition d’un signal lumineux chez un poisson infecté avec un 

virus LUC nécessite le contact physique, l’attachement et la pénétration du virus dans une cellule 

sensible. Au cours des différentes expériences d’infection immersive menées, nous avons remarqué 

que le signal apparaissait surtout sur les bords des nageoires et de l’opercule, où le revêtement de 

mucus est le plus fin. Cette tendance a été confirmée dans la troisième étude, où le retrait de mucus a 

facilité l’entrée virale par la peau. La quatrième étude a révélé que l’ingestion d’aliments contaminés 

induit la pénétration du virus par infection des cellules épithéliales communes de la muqueuse 

pharyngienne périodontale. L’absence de signal LUC dans le reste du tube digestif aux premiers jours 

de l’infection contraste avec l’apparition plus tardive d’un signal et l’excrétion virale dans les fèces. 

Cette apparente contradiction peut s’expliquer par une barrière de mucus efficace dans la lumière 

digestive, des cellules polarisées et/ou un phénomène de transcytose virale (Faulkner et al., 2000). Il 

est probable que l’effet remarqué dans la troisième étude soit généralisable à l’ensemble du corps des 

poissons téléostéens. Ainsi, le retrait de mucus par frottement, parasitisme, blessure ou mastication, 

doit certainement faciliter l’infection des cellules sensibles en les rendant physiquement plus 

accessibles par le virus. Afin de tester cette hypothèse, il serait intéressant d’appliquer un traitement de 

retrait systématique du mucus sur tous les tissus de surface exposés : les yeux, les branchies, le 

pseudogaster ou encore l’intestin.   
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D’un point de vue évolutif, on peut se demander l’intérêt d’une peau, exposant des cellules 

sensibles au virus, protégée par un simple revêtement de mucus inconstant. Chez les mammifères les 

infections virales se font par les muqueuses, la peau étant kératinisée. Sur le plan évolutif, différentes 

voies ont été explorées pour protéger l’organisme des agressions physiques et biologiques. On 

distingue notamment les plaques, différents types d’écailles (placoïdes, cosmoïdes, élasmoïdes), les 

plumes ou encore la kératinisation et les poils. Même si quelques espèces de poisson, pour certains 

organes, ont révélé la présence de kératine (Mittal & Whitear, 1979), le phénomène de kératinisation 

systématique de la peau n’est apparu qu’au Permien chez les cotylosauriens (Alibardi, 2001), amniotes 

cherchant à s’affranchir du milieu aquatique.  

La peau des poissons offre tout de même une protection mécanique, chimique et immune 

contre les blessures et les pathogènes (Fontenot & Neiffer, 2004). Cependant, c’est le mucus qui joue 

le rôle de barrière défensive et non la kératine. Sa viscosité laisse deviner ce rôle mécanique. Grâce 

aux mucines, glycoprotéines qui s’organisent en réseau piégeant l’eau (Shephard, 1994), le mucus 

cutané des poissons englue les microorganismes pathogènes. Un phénomène de flux, généré par la 

production continue de mucus et la nage, permet l’élimination de ces agents par dispersion du mucus 

dans l’eau au niveau de la nageoire caudale. Ce mécanisme rappelle le tapis muco-ciliaire des voies 

respiratoires des pulmonés supérieures. Dans la troisième étude, nous avons démontré que le mucus 

inhibait l’attachement viral aux cellules épithéliales de la nageoire caudale ex vivo. Il serait intéressant 

de comparer l’efficacité neutralisante du mucus de poisson à celle d’un mucus de remplacement. 

Parallèlement à cette protection mécanique, le mucus des poissons contient un ensemble de 

molécules et de cellules capable de neutraliser les infections microbiennes et les infestations 

parasitaires. (Ellis, 2001; Fontenot & Neiffer, 2004; Palaksha et al., 2008; Shephard, 1994; 

Subramanian et al., 2008).  On relève notamment la présence d’interféron (INF) de type-I, de cellules 

tueuses naturelles (NK), de facteurs du complément, mais également d’Immunoglobulines (Ig), de 

protéases, de peptides, de lysozyme, de phagocytes, d’agglutinines ou encore de lectines. Au cours de 

la troisième étude, il a été démontré que le retrait de mucus épidermique in vivo facilitait l’entrée 

virale au niveau de la peau de la carpe et que ce rôle antiviral a pu en partie être attribué in vitro à  des 

éléments solubles contenus dans l’extrait de mucus clarifié (Raj et al., 2011). Cette étude, ainsi qu’une 

étude précédente chez la truite (Oncorhynchus mykiss), démontre le rôle protecteur du mucus chez le 

poisson téléostéen, tant comme barrière physique qu’immunologique (Cain et al., 1996). Cependant, la 

description des composants et des mécanismes qui sous-tendent cette activité antivirale reste encore à 

élucider. C’est pourquoi, le laboratoire d’accueil envisage une approche protéomique pour déterminer 

les molécules présentes spécifiquement dans le mucus épidermique de la carpe et leurs activités 

antivirales. Dans un premier temps, un traitement protéase devrait confirmer ou infirmer la nature 

protéique des molécules impliquées. Dans un deuxième temps, Le fractionnement de l’extrait de 

mucus par chromatographie, l’analyse du pouvoir neutralisant des différentes fractions et 

l’identification des protéines présentes par une analyse spectrométrique de masse devraient permettre 
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d’identifier la ou les protéines responsables de la neutralisation observée dans l’extrait de mucus 

clarifié. 

Au travers des trois études exploitant la souche CyHV-3 LUC, nous avons déterminé les voies 

d’entrée possibles du virus. Un autre aspect de la pathogénie mis en lumière par l’étude 4 est la 

séquence chronologique des organes infectés par le virus une fois entré dans le poisson. Il est 

intéressant de noter que la propagation du virus dans le poisson dépend de la voie d’entrée. Ainsi la 

carpe infectée par la peau présente une réplication virale cutanée les premiers jours qui se généralise 

après 6 à 8 jours, tandis que lors d’une infection orale, après une réplication dans la muqueuse 

pharyngienne, le virus va rapidement se répliquer dans les branchies et la peau, probablement par 

continuité de tissu, avant de se généraliser au reste du corps également entre 6 et 8 jours (Fournier et 

al., 2012). Les organes identifiés à l’IVIS avaient déjà été décrits précédemment comme site de 

multiplication virale (Gilad et al., 2004; Pikarsky et al., 2004), mais la chronologie est différente 

puisque certains organes ont souvent été décrits comme positifs tels que le rein ou le foie bien avant le 

sixième jour. Ceci peut s’expliquer par un signal bioluminescent labile dans certains organes (Costes 

et al., 2009), une plus grande sensibilité de détection des PCR ou encore la présence du virus dans le 

sang qui reste sous la limite de détection de l’IVIS en début de virémie, mais se manifeste dans les 

organes très vascularisés lors de la généralisation de l’infection : cœur, foie, reins. Enfin, les intestins 

deviennent positifs dans une phase tardive. Cette donnée, avec la présence de virus dans les fèces 

(Dishon et al., 2005), supporte l’idée que les intestins sont une voie d’excrétion du virus. Une étude 

réalisée dans le laboratoire d’accueil montre également la présence de bioluminescence dans les 

bandelettes olfactives et le cerveau de la carpe, plaidant pour une latence dans des ganglions nerveux 

sensoriels olfactifs, mais là encore, le signal est transitoire et rend difficile l’étude de la latence via la 

bioluminescence in vivo. Afin de pallier à cette difficulté, la création d’une souche recombinante virale 

exprimant la β-galactosidase est actuellement en cours et devrait permettre d’accroitre la sensibilité de 

détection du virus ex vivo. Toutefois, une étude récente (Eide et al., 2011) montre que des poissons 

cliniquement sains ayant survécu à un lointain épisode de KHV présentent de l’ADN viral uniquement 

dans les leucocytes circulants avant stress, mais que l’ADN viral est à nouveau détectable dans de 

nombreux organes, un mois après l’induction d’un stress thermique. Cette étude supporte l’existence 

du phénomène de latence au niveau des leucocytes. L’effet de l’âge sur la sensibilité des carpes au 

CyHV-3 est un autre facteur important pour la dissémination du virus.  Il semble que les jeunes 

poissons de quelques grammes sont plus sensibles que les sujets plus grands (Perelberg, 2003), et que 

les larves ne soient pas sensibles au virus (Ito et al., 2007). Cependant, les premiers résultats d’une 

étude menée au laboratoire d’accueil montrent, à l’aide de la souche LUC, que les larves sont sensibles 

dès l’éclosion. L’analyse des mécanismes de latence et de sensibilité est importante pour comprendre 

et contrôler la propagation du virus et ouvre la réflexion sur une considération plus générale, celle des 

conditions de transmission du CyHV-3.  
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En effet, la transmission du virus chez Cyprinus carpio peut s’envisager de différentes 

manières, soit par contact direct des carpes, soit par le biais d’un vecteur. Dans la transmission directe, 

la voie la plus évidente semble le contact peau à peau entre poissons lorsque le virus s’y multiplie. Un 

deuxième scénario fait référence au cannibalisme décrit chez la carpe (van Damme et al., 1989) dans 

des populations de taille hétérogène et de forte densité, mais aussi au cannibalisme « opportuniste » 

observé au cours des expériences menées au laboratoire. En effet, les premiers poissons malades, 

présentant des lésions herpétiques de la peau, se font attaquer par les poissons encore sains.  

Une étude récente a démontré la présence d’ADN viral dans des organismes invertébrés 

(Kielpinski et al., 2010). Par ailleurs, les matières fécales de poissons malades contiennent des 

particules virales infectieuses. Il est donc envisageable  que des poissons s’infectent par voie orale tel 

que décrit dans l’étude 4. L’eau elle-même est un bon vecteur, puisque l’on peut infecter des poissons 

par immersion dans de l’eau contenant du virus (Costes 2009). De plus, la présence d’ADN viral a été 

notée dans le plancton (Minamoto et al., 2011) et les sédiments d’un lac infecté (Honjo et al., 2011). 

Le caractère infectieux de l’environnement est donc corrélé à la concentration en particules virales 

encore infectieuses. Certains auteurs ce sont intéressé au temps durant lequel, une fois libéré dans 

l’eau, le virus reste infectieux. Leurs conclusions sont assez variables, allant de quelques heures à 

quelques jours selon l’environnement (Perelberg, 2003; Shimizu et al., 2006), peut-être plus dans les 

sédiments ou les invertébrés filtrants. Afin de tester la transmission indirecte du virus par l’eau, nous 

avons entrepris une expérience avec des aquariums supérieurs, où cohabitent des poissons naïfs et 

infectés, déversant leur eau par gravitation dans des aquariums inférieurs contenant des poissons naïfs. 

L’eau remonte des aquariums inférieurs vers les aquariums supérieurs grâce à des pompes filtrantes 

contenant une flore bactérienne.  Par contre, trois conditions différentes sont appliquées au circuit 

descendant: (i) l’eau circulant de l’aquarium en amont vers celui en aval passe par une cuve de 

décantation simple laissant passer les macro-particules, (ii) un filtre est ajouté au système, ne laissant 

passer que les micro-particules, (iii) un système à Ultra-Violet est ajouté. Les premiers résultats 

suggèrent une gradation dans la vitesse de propagation du virus selon les conditions expérimentales. 

Ainsi, la transmission du virus dans la cohabitation directe est plus rapide que celle observée dans le 

partage de l’eau et des macro-particules. Celle-ci est elle-même plus rapide que dans le partage de 

l’eau et des microparticules, tandis que le virus ne résiste pas à l’ajout d’un traitement UV. Enfin, les 

autres espèces de poissons qui cohabitent avec la carpe en milieu naturel ou artificiel sont également 

des vecteurs potentiels. Par exemple, le poisson rouge (Carassius auratus) qui partage fréquemment 

les bassins des carpes koi a été décrit comme porteur sain (El-Matbouli et al., 2007; Haenen & 

Hedrick, 2006), voire comme partiellement sensible (Bergmann et al., 2010; Sadler et al., 2008) et le 

carassin (Carassius carassius) semble également être porteur. Afin de déterminer le spectre d’hôte 

potentiel du CyHV-3, une étude préliminaire, menée dans le cadre de ma thèse, a été réalisée in vitro 

sur diverses cultures cellulaires de poissons, d’insectes et de mammifères à l’aide des virus EGFP 

(Costes et al., 2008) et LUC (Costes et al., 2009). Cependant, seules les cellules de carpes se sont 
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révélées permissives, même si certaines cellules de mammifères ont présenté une sensibilité réduite. 

Ces résultats n’ont pas permis d’identifier les autres espèces de poissons sensibles, mais permettent 

d’envisager, dans une toute autre perspective, l’utilisation du CyHV-3 comme vecteur vaccinal chez 

les espèces de mammifères concernées. Enfin, une étude sera prochainement réalisée, au moyen de la 

souche LUC, sur différentes espèces de poissons cohabitant avec la carpe dans son environnement 

naturel, afin de déterminer les réservoirs potentiels, peut-être même l’espèce hôte originelle du virus. 

Cette étude pourrait avoir deux répercussions importantes. D’une part, la détermination des espèces 

sensibles avec la possibilité de développer des vaccins vectoriels pour celles-ci. D’autre part, 

l’identification de l’espèce hôte « naturelle », « originale » du virus, puisqu’un certain nombre 

d’éléments laissent à penser qu’il y a eu un récent saut d’espèce.  

En effet, durant des millions d’années, certains virus ont co-évolué avec leur hôte. Lors de ce 

processus, le système immunitaire de l’hôte infecté a sélectionné parmi la population virale les 

particules les mieux adaptées. Charles Darwin a redoutablement bien résumé ce mécanisme en une 

phrase : « les espèces qui survivent ne sont pas les espèces les plus fortes, ni les plus intelligentes, 

mais celles qui s'adaptent le mieux aux changements ». Ce processus a engendré des situations 

surprenantes ou des virus confèrent un avantage sélectif à l’hôte infecté. Ainsi, l’herpèsvirus 

alcélaphin 1 (AlHV-1) infecte asymptomatiquement son hôte naturel, le gnou (Connochaetes taurinus) 

(Plowright, 1990) et lui facilite l’accès aux plaines herbeuses en induisant une maladie mortelle chez 

les autres bovins sensibles. Cependant chez la carpe, le CyHV-3 produit une maladie mortelle qui ne 

reflète aucunement l’adaptation d’un virus à son hôte. Cette observation laisse penser que le génome 

du CyHV-3 a récemment subit des mutations donnant la capacité au virus de sauter de son espèce hôte 

naturelle à la carpe. De plus, aucun épisode de mortalité de masse associé à des signes cliniques 

typiques du CyHV-3 n’a été décrit avant la fin des années 1990, alors que l’élevage de la carpe 

remonte à l’époque de l’Empire Romain (Balon, 1995). On est donc confronté à une apparition 

brusque de la maladie. Enfin, des études récentes montrent une forte similarité des séquences 

génomiques de différentes souches du virus, notamment dans des régions où la dérive génétique 

devrait être forte comme les pseudogènes (Michel, 2010) ou encore les VNTR (Variable number of 

tandem repeat) (Avarre et al., 2011). Tous ces arguments suggèrent que les souches actuelles de 

CyHV-3 dérivent toutes d’une même souche. Deux hypothèses sont possibles quant à l’origine de 

cette souche originelle. Tout d’abord, il se pourrait que le CyHV-3 soit une espèce virale 

asymptomatique présente depuis longtemps chez la carpe. Les souches de CyHV-3 actuelles seraient 

issues d’une souche mutante apparue au sein de la population. Cette première hypothèse est peu 

probable, puisque les carpes auraient dû présenter une immunité protectrice vis-à-vis de ce pathogène 

endémique. La seconde hypothèse beaucoup plus probable postule que le CyHV-3 serait le produit 

d’un « saut d’espèce » d’un virus d’une espèce hôte non identifiée chez la carpe. Cette hypothèse est 

corroborée par la description d’infections subliniques au CyHV-3 chez plusieurs espèces proches de 

Cyprinus carpio, comme par exemple le poisson rouge (Carassius auratus) (Bergmann et al., 2010; 
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Sadler et al., 2008). Des recherches complémentaires virologiques et épidémiologiques sont 

nécessaires pour déterminer l’origine du CyHV-3. 

 

A cours de cette thèse, nous avons mis la technologie BAC à profit pour étudier le CyHV-3. 

Nous avons ainsi identifié les portes d’entrée du virus chez la carpe ainsi que les moyens de défense de 

cette dernière. Mais cette thèse a surtout permis l’acquisition d’outils essentiels à l’exploration du 

virus et au développement d’un vaccin. Le CyHV-3 s’est révélé être un sujet d’étude passionnant, 

abordant de nombreux domaines différents : de la recherche fondamentale à la recherche appliquée, de 

la biologie moléculaire à l’expérimentation animale, de l’étude de gènes à l’épidémiologie. Cette 

expérience m’a permis d’acquérir un bagage scientifique précieux grâce aux scientifiques qui m’ont 

guidé, m’ont appris à avoir un regard critique sur mes recherches, à formuler des hypothèses de travail 

originales et à mettre en valeur les résultats obtenus. Cette thèse fut également la source d’un essor 

intellectuel et philosophique. En effet, au cours de ces quatre années, j’ai rencontré des personnes de 

confiance qui ont su m’insuffler leur passion pour la science et la découverte. Un jour Anton 

Tchekhov a écrit « Quand nous avons soif, il nous semble que nous pourrions boire tout un océan : 

c’est la foi. Et quand nous nous mettons à boire, nous buvons un verre ou deux : c’est la science. » . 

Evidemment, la métaphore de l’eau se prête à mon sujet de thèse. Il est vrai que dans la recherche, il 

faut avoir la foi et qu’en débutant une thèse, on espère s’attaquer à l’océan et révolutionner le monde. 

Cependant, il arrive aussi au cours de cette aventure que l’on boive la tasse. C’est dans ces moments 

que l’on apprécie le soutien de toute une équipe de collègues et amis. Au bilan, on réalise que la thèse 

se termine trop vite, qu’il y a encore beaucoup de questions en suspens. Cette thèse n’est évidemment 

qu’un verre d’eau ou deux dans l’océan de la connaissance, mais je suis fier de cette contribution. 

J’espère encore longtemps goûter à la science car ma soif n’est nullement étanchée ! Comme l’a si 

joliment dit Edgar Allan Poe « Ce n'est pas dans la science qu'est le bonheur, mais dans l'acquisition 

de la science. » 

 

 

 96

http://www.evene.fr/citations/mot.php?mot=soif
http://www.evene.fr/citations/mot.php?mot=semble
http://www.evene.fr/citations/mot.php?mot=pourrions
http://www.evene.fr/citations/mot.php?mot=boire
http://www.evene.fr/citations/mot.php?mot=tout
http://www.evene.fr/citations/mot.php?mot=ocean
http://www.evene.fr/citations/mot.php?mot=foi
http://www.evene.fr/citations/mot.php?mot=mettons
http://www.evene.fr/citations/mot.php?mot=boire
http://www.evene.fr/citations/mot.php?mot=buvons
http://www.evene.fr/citations/mot.php?mot=verre
http://www.evene.fr/citations/mot.php?mot=deux
http://www.evene.fr/citations/mot.php?mot=science
http://www.evene.fr/citations/mot.php?mot=science
http://www.evene.fr/citations/mot.php?mot=bonheur
http://www.evene.fr/citations/mot.php?mot=acquisition
http://www.evene.fr/citations/mot.php?mot=science


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary - Résumé 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary - Résumé 

Summary 
 

The common carp is one of the most important freshwater species in aquaculture and its 

colourful subspecies koi is grown for personal pleasure and exhibitions. Both subspecies are 

economically important. In the 1990s, a highly contagious and lethal pathogen called koi herpesvirus 

(KHV) or cyprinid herpesvirus 3 (CyHV-3) began to cause severe financial losses in these two carp 

industries worldwide. Because of its economic importance and its numerous original biological 

properties, CyHV-3 became rapidly an attractive subject for applied and fundamental research. The 

goal of this thesis was to identify the portals of entry of CyHV-3 in carp. This information is essential 

to understand the pathogenesis and the epidemiology of the infection, but also to develop efficacious 

vaccines. Prolonged CyHV-3 cultivation in vitro leads to the spontaneous attenuation of the virus. To 

circumvent this problem, the entire viral genome was cloned as a bacterial artificial chromosome 

(BAC). Then to test the usefulness of the BAC clone, several recombinants strains were generated as 

described in the first chapter. In the second chapter, we took profit of the CyHV-3 BAC clone to 

produce a recombinant strain encoding a firefly luciferase (LUC) expression cassette. Infection of carp 

by immersion in water containing the CyHV-3 LUC strain demonstrated, using bioluminescent in vivo 

imaging system (IVIS), that the skin, and not the gills, is the major portal of entry for CyHV-3. Fish 

skin provides mechanical, chemical and immune protection against injury and pathogenic 

microorganisms. Its mucus layer confers an innate immune protection against pathogen entry. 

However, there is little in vivo evidence on the role of skin mucus as a first line of innate immune 

protection against bacterial and viral infections. In the third chapter, we used the CyHV-3 LUC strain 

and IVIS to investigate the roles of epidermal mucus as an innate immune barrier against CyHV-3 

entry. Our results demonstrate that the mucus of the skin inhibits CyHV-3 binding to epidermal cells 

and contains soluble molecules able to neutralize CyHV-3 infectivity.  

The skin is the major portal of entry after inoculation by immersion in water containing 

CyHV-3. While this model of infection mimics some natural conditions in which infection takes place, 

other epidemiological conditions could favor entry of virus through the digestive tract. Consequently, 

in the fourth and last chapter, we investigated the role of the carp digestive tract as a viral portal of 

entry using bioluminescence imaging. We found that feeding carp with infectious materials induces 

CyHV-3 entry through infection of the pharyngeal periodontal mucosa. In conclusion, this study 

demonstrated that according to epidemiological conditions, CyHV-3 can enter carp either through 

infection of the skin (immersion in infectious water) or through infection of the pharyngeal periodontal 

mucosa (feeding on infectious materials). The existence of these two portal of entry adapted to 

different epidemiological conditions most probably contributes to the high contagious nature of the 

virus.  
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Résumé 
 

Les carpes commune et koi sont importantes sur le plan économique. La première est une des 

espèces d’eau douce les plus importantes en aquaculture tandis que la seconde est très prisée des 

collectionneurs.  Dans les années 1990, un pathogène mortel et très contagieux, appelé herpèsvirus de 

la carpe koi (KHV) ou herpèsvirus cyprin 3 (CyHV-3), a commencé à causer de lourdes pertes 

financières dans ces deux industries. En raison de ces pertes économiques et des propriétés 

biologiques originales du CyHV-3, il est rapidement devenu un sujet intéressant pour la recherche 

appliquée et fondamentale. Le but de cette thèse était d’identifier les portes d’entrée du CyHV-3 chez 

la carpe. Cette étape est essentielle pour comprendre la pathogénie et l’épidémiologie de l’infection, 

mais également pour le développement de vaccins efficaces. La culture prolongée du CyHV-3 in vitro 

mène à une atténuation spontanée. Pour contourner cette difficulté, l’entièreté de son génome a été 

clonée en tant que chromosome artificiel bactérien (BAC) comme décrit dans le premier chapitre de 

cette thèse. Ensuite, plusieurs souches virales recombinantes ont été produites, illustrant l’intérêt de cet 

outil moléculaire. Dans le deuxième chapitre, nous avons tiré profit du CyHV-3 BAC pour produire 

une souche recombinante exprimant le gène de la luciférase (LUC) de la luciole. L’infection de carpes, 

par immersion dans de l’eau contenant du CyHV-3 LUC, a permis de démontrer, grâce à la 

bioluminescence in vivo (IVIS), que la peau est la porte d’entrée principale du CyHV-3 et non les 

branchies. La peau des poissons fournit une protection mécanique, chimique et immunologique contre 

les blessures et les micro-organismes pathogènes. Le mucus cutané confère également une protection 

immune innée contre les pathogènes. Peu d’études existent sur le rôle in vivo du mucus comme 

protection immune innée contre les bactéries ou les virus. Le troisième chapitre de cette thèse décrit  

l’utilisation du CyHV-3 LUC et de l’IVIS pour investiguer le rôle du mucus cutané en tant que 

barrière immune innée contre l’entrée du virus. Les résultats démontrent que le mucus inhibe 

l’attachement du CyHV-3 aux cellules épidermiques et qu’il contient des molécules solubles capables 

de neutraliser l’infection virale. Les études  précédentes démontrent que la peau est une porte d’entrée 

majeure lors d’une infection par immersion dans de l’eau contenant du virus. Tandis que ce modèle 

mime certaines conditions naturelles d’infection, d’autres conditions épidémiologiques privilégient 

une entrée du virus par le tractus digestif. Aussi, dans le quatrième et dernier chapitre, nous avons 

étudié par IVIS le tractus digestif de la carpe en tant que porte d’entrée virale. Cette étude démontre 

que nourrir des carpes avec du matériel infecté induit une entrée du CyHV-3 au niveau de la muqueuse 

périodontale pharyngienne. 

En conclusion, cette thèse démontre qu’en fonction des conditions épidémiologiques, le 

CyHV-3 peut infecter la carpe soit par la peau, soit par le pharynx. L’existence de ces deux portes 

d’entrée adaptées aux différentes conditions épidémiologiques contribue très probablement à la nature 

hautement contagieuse du virus.   
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