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Abstract 
 

Explicit numerical schemes are used to integrate in time finite element discretization methods. Unfortunately, these 
numerical approaches can induce high-frequency numerical oscillations into the solution. To eliminate or to reduce these 
oscillations, numerical dissipation can be introduced.  
The paper deals with the comparison of three different explicit schemes: the central difference scheme which is a non-
dissipative method, the Hulbert Chung dissipative explicit scheme and the Tchamwa-Wielgosz dissipative scheme.  
Particular attention is paid to the study of these algorithms’ behavior in problems involving high-velocity impacts like 
Taylor anvil impact and bullet-target interactions. It has been shown that Tchamwa-Wielgosz scheme is efficient in filtering 
the high-frequency oscillations and is more dissipative than Hulbert Chung explicit scheme. Although its convergence rate 
is only first order, the loss of accuracy remains limited to acceptable values. 
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1. Introduction 
 

Problems like ballistic impacts, vehicle collisions, bird strike, blade loss in a turbo-engine … raise 
major concerns about safety. Therefore, there is an increasing need to understand such phenomena and 
numerical tools are used to predict, optimize or design systems for efficient protection.  

Usually, spatial discretization and temporal discretization are prerequisite to solving the 
governing equations. Spatial discretization is solved by recourse of the finite element method, while 
this FE discretization is integrated in time using finite-difference schemes. Although there are two main 
time integration families [1-3] - the implicit family of iterative, unconditionally stable algorithms and 
the explicit family of non-iterative but conditionally stable algorithms - we will focus on explicit time 
integration schemes. Indeed, their non-iterative characteristic is well suited for highly non-linear impact 
problems as they avoid issues resulting from the lack of convergence in the Newton-Raphson 
iterations. Moreover, their time step size limitation, due to the conditional stability, is not restrictive for 
their efficiency as small time steps are required to capture the high frequency phenomena occurring 
during impact problems.  

A problem encountered when dealing with numerical time integration is the presence in the 
solution of unphysical high-frequency oscillations resulting from a spatial discretization, which leads to 
the loss of accuracy in the solution. Indeed, even for stable integration schemes and in the absence of 
hourglass in the element formulations, the finite discretization introduces one eigen-mode by degree of 
freedom, most of them (the ones at high frequencies) being non-physical, but numerical. To control 
these spurious frequencies, numerical dissipation can be introduced in time integration schemes. 
Although numerical dissipation has been widely used in combination with implicit scheme to enhance 
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the convergence of the iterations, some recent works have shown interest in numerical dissipation when 
dealing with explicit schemes and non-linear dynamics [4-12].  

Since traditional central-difference explicit schemes cannot accommodate numerical dissipation, 
two new numerically-dissipative explicit schemes have recently been developed: the Hulbert-Chung 
explicit scheme [5, 6] and the Tchamwa-Wielgosz explicit scheme [7-11]. Although comparisons 
between these schemes have already been conducted [10], a comparison in the field of high-velocity 
impact is still lacking. It is the purpose of this work to investigate the behavior of these algorithms 
when considering bullet-target interactions. 

The outline of the paper is the following. In section 2, a summary review of finite-element time-
integration by finite difference schemes is presented. In section 3, the stability and accuracy of the 
Tchamwa-Wielgosz (TW), Hulbert-Chung (HC) and central difference (CD) schemes are studied. In 
order to compare the TW scheme with the other, stability conditions are derived in a new way, 
allowing expressing all the relations in terms of the spectral radius at bifurcation. Numerical examples 
involving high-velocity impacts are conducted with the three explicit schemes in section 4, 
demonstrating the excellent behavior of the Tchamwa-Wielgosz scheme in smoothing high frequencies 
without loss of accuracy. 
 
2. Time integration of a finite-elements discretization 
 

Let us assume that, as a result of finite element and time discretization process, the equations of 
motion for structural dynamics yield the nonlinear discrete equations  
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where M is the mass matrix, intF

r
 and extF

r
are the vectors of nodal internal and external forces, 

respectively. Vectors nxr , nx&r and nx&&r  refer to nodal displacements, velocities and accelerations at time nt . 

They are respectively approximations of )t(x n
r , )t(x n

&r and )t(x n
&&r , the corresponding exact values.  

Given initial conditions 00 x)(x rr
= , 00 x)(x &r&r = , the initial boundary values problem consists of 

finding the unknown displacement vector xr  which satisfies Eq. (1) for all ]t[0,t f∈ , the time 
integration interval. To solve Eq. (1), additional relations, the so-called time integration scheme 
equations, which express relations between displacements, velocities and accelerations at the current 
time and at the next time are also needed. They should also be consistent [4,6-8].  This leads to the set 
of equations which constitute the system or the problem to be solved: 
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There exist different types of time integration schemes and the choice of an integration scheme 

for any given problem mostly depends on two main factors: the accuracy and the computational cost. 
These numerical schemes are generally grouped into two categories: the implicit schemes and the 
explicit schemes. Other types of classification exist: single-step or multi-step methods and single-stage 
or multi-stage methods [13]. 

In order to analyze the properties of the time integration scheme, it is advantageous to transform 
the system (2) into a set of coupled linear equations by a linearization process. These equations can be 
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uncoupled after a modal decomposition, resulting in a set of uncoupled one-degree-of-freedom 
equations. To highlight numerical effects on the solution, it is advantageous to study the free undamped 
system, which is a conservative system, and whose equation for one mode is given by 

 
0)()( 2 =+ txtx ω&&  .                                                                                  (3) 

 
Analytical solution of this free undamped system is given by  
 

)tsin(c)tcos(cx 21 ωω += ,                                                                     (4) 
 
where constants 1c and 2c  are determined by the initial conditions. Numerical integration of system (3) 
by recourse of the set of equations (2) can be stated in the form  
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where ( )ΩA  is the amplification matrix depending on the non-dimensional frequency t∆=Ω ω ,  t∆  
being the time step size.  

Characteristics like stability, accuracy, order of convergence … can be deduced from the 
expression of this amplification matrix, and in particular from the expression of its eigenvaluesλ . The 
non-dimensional frequency bΩ , for which the two first complex conjugated eigenvalues 2,1λ becomes 
real, is called the bifurcation frequency. Obviously, if the non-dimensional frequency is larger than the 
bifurcation frequency, the algorithm is unable to provide a solution of the form (4), which leads to the 
first condition on the time step size: 

ω
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If this bifurcation condition is satisfied, the solution of the numerical scheme (5) has the general form 
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where 1c , 2c and 3c  are constant and are determined by specifying the initial conditions, and where 3λ  is 
the spurious real root.  

The numerical damping factor dξ  appearing in Eq. (7) depends on the eigenvalues:  
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Ω  is the effective frequency. Clearly, from this solution, if 0>dξ and 

13 <λ , the scheme is stable and the system numerically dissipates the energy, the scheme is 

conservative if 0=dξ and if 03 =λ  or 1, and for any other configurations, the scheme is unstable and 
energy is introduced in the system. Therefore, characteristics for stability analysis depend on the 
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spectral radius ρ defined by i,,i
max)( λρ

321=
=Ω , which should remain lower or equal to 1 ( 1≤ρ ). In 

general, explicit algorithms are conditionally stable and one can define sΩ the stability limit for 
which 1)( =Ω sρ , leading to the stability limit 
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In order to maximizing the integration range, and to provide high numerical dissipation for high 
frequencies, the two following conditions are generally required 

bs ΩΩ ≥   and  2,13 λλ < .                          (10) 

If the last condition is not satisfied, maximal numerical dissipation occurs for frequencies way below 
the bifurcation limit, which is not the purpose of a dissipative scheme. If this condition is satisfied, 
spectral radius )(Ωρ  is a decreasing function with respect of Ω , and it decreases until the value at 
bifurcation 1)()( ≤Ω=Ω= sbb ρρρ is reached. This value characterizes the amount of energy that is 
dissipated by the integration algorithm. Accuracy of the algorithm is defined from the errors on the 
damping ratio and on the frequency, which are respectively defined by 
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If 0== ca , time integration is said accurate to the second order, if not, it is first order accurate. 

3. Theoretical comparison of explicit schemes 

In this section, the analysis provided in the previous section is carried out for the different explicit 
schemes under consideration. We will briefly introduce the CD and the HC schemes and will give an 
extensive study of the TW scheme. 

3.1 Central difference explicit scheme 

The equation of motion (1) is expressed at time 1+nt , while the time integration equations (2) 
correspond to a mid-point scheme:  
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For the undamped system [1], the CD scheme is a second order non-dissipative scheme. Analysis of the 
corresponding spectral matrix leads to a conditionally stability of the scheme, with 2=Ω=Ω sb , and 
under conditions (9), the maximum allowable time step or the critical time step  is given by  

ω
γ

∆ s
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2
t = ,                                                                      (13) 

where ω  is the maximal frequency of the system and sγ , a security factor used to take  into account 
nonlinearities. The CD scheme exhibits a period shortening [2]. 

3.2 Hulbert-Chung explicit scheme 

The HC explicit scheme is a second order dissipative scheme aiming to maximize high-frequency 
dissipation and minimize low-frequency dissipation [5]. The equation of motion (1) is weighted at 
times nt  and 1+nt by recourse of the parameter αM, while the time integration equations (2) are 
expressed in term of control parameters β  andγ , which yields to the system  
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The eigenvalues of the spectral matrix associated to the system (14) obey at bifurcation limits to the 
equation [5]: 

( ) ( ) 02 =++ sp ρλρλ ,      (15) 

where ρp and ρs are respectively the opposite of the principal and spurious eigenvalues. It has been 
demonstrated in [5] that the condition ρp = ρs leads to a maximization of Ωb, which in turns maximizes 
the time step size. In order to lower the dissipation, the spectral radius at bifurcation is chosen as being 
ρb = ρp = ρs [5]. In this particular case, the HC scheme is conditionally stable and the stability 
conditions are fulfilled for  
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Expression of bΩ and sΩ  are given by 
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The corresponding critical time step is then expressed by  

ω
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It clearly appears that ρb controls the numerical dissipation: for 0b =ρ , the high-frequency response is 
nearly annihilated in one step time, while for 1=bρ , the scheme conserves energy. The HC scheme 
exhibits either period shortening or period elongation [5]. 
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 3.3  Tchamwa-Wielgosz scheme analysis 
 

For the TW scheme [9], the equation of motion (1) is expressed at time 1+nt , while the time 
integration equations (2) are expressed in term of control parameters α , β ,γ , λ , which yields the 
system: 
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For the undamped linear system, one may write  
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From this expression of the amplification matrix, the eigenvalues can be computed, which allows to 
express the errors (11) in term of the control parameters. It has been shown [10] that the algorithm 
requires 1=+ βγλ  to be at least first order accurate. This relation should be completed by 1)( =+ γαλ  
to be second order accurate. Consistency condition also requires [10] 1=λ  and 1=+ γα . These 
conditions allow rewriting the system in term of a single control parameter  
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From these expressions, the bifurcation limit bΩ , for which 2,1λ  are no longer complex, is 

φ
2

=Ωb ,                                       (23) 

while ( ) φφ /12 +=Ω s , providing  
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Under this last assumption, conditions (10) are satisfied and the critical time step (9) becomes 
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The TW scheme is then stable and it conserves the energy when 1=φ  ( 2=Ωb ). In this case, the 
scheme is second order accurate and is spectrally equivalent to the CD method [6-8]. The parameter φ  
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controls the numerical dissipation. Indeed, it can be expressed in terms of spectral radius at 
bifurcation bρ and of the bifurcation limit bΩ  (Fig. 1a).  
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(a) (b)  
 

Figure 1:  Numerical characteristics of the TWS scheme. (a)  Parameter φ  and the bifurcation limit bΩ  function of the 
spectral radius at bifurcation ρb. (b) Evolution of spectral radius ρ  in terms of Ω. 
 

The spectral radius at bifurcation bρ  has great importance as it is the one user parameter allowing 
control of the numerical dissipation, so the characteristic curves are generally given as a function of bρ . 
Figure 1b illustrates the variation in spectral radius as a function of bρ . For 0=bρ , the high-frequency 
response will be nearly annihilated in one step time.  
 

       
          (a)                                       (b)  

 
Figure 2: Errors associated to the TW scheme. (a)  Numerical damping ratio. (b) Relative period error. 

 
Because time integration schemes are approximation methods, they introduce errors on the 

amplitude and on the period of the solution. These errors (11) are reported in Fig. 2.  
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The relative period error is shown in the Fig. 2b for different values of bρ , and in function of the 

non-dimensional time step (
T

t∆ ). It is interesting to note that for all values of bρ , the relative period 

error is negative (period shortening). The period shortening increases from a minimum value when 
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1=bρ  to a maximum value when 0=bρ .  The TW scheme is second order accurate only if 1=bρ , see 
Eq. (27). 

3.4 Summary of the different schemes 

Table 1 summarizes the analysis of the three different time integration schemes (CD, TW and 
HC). For 2=Ωb , TW scheme and HC scheme are spectrally equivalent to the CD method. Moreover, 
the TW critical time step is globally lower than the HC critical time step, which in turn, is globally 
lower than the CD critical time step. As a consequence, the TW method is globally the most expensive.  

The CD method being the reference non dissipative method, the difference between the internal 
forces of the TW or of the HC and the CD scheme for the free undamped system corresponds to the 
numerical damping. The TW and the HC schemes are low-pass filters as the relation (27) shows that 
the higher the frequency, the larger the damping (proportional to the square of the frequency). Another 
fact is that TW damping depends on the displacements while HC damping depends on the displacement 
difference.  
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As a consequence, the TW scheme is generally more dissipative than the HC scheme. 
 
Table 1:  
Comparison between CD, TW and HC schemes 
Scheme Scheme 

order 
Control 

parameter 
Period error Critical time 

step 
Modified 

balance equation 
Bifurcation 
pulsation 

CD 2 - shortening 
max

s2
ω

γ
 no 2b =Ω  

TW 
1 

(2 if 1=φ ) )(b φρ  shortening 
max

s2
φω

γ
 no 22

b ≤=
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Ω  

HC 2 ),,( Mb αγβρ
 

shortening 
or 

elongation max

sb

ω
γΩ

 yes 2b ≤Ω  

 
5. Numerical examples 
 

The three explicit schemes have been implemented in Metafor, which is an object-oriented finite 
element code. Interest in numerical dissipation is illustrated by numerical examples. Being a 
conservative non dissipative scheme, the CD scheme is taken as the reference.  
 
5.1 Taylor impact test  
 

The Taylor impact test consists of the impact of a cylindrical projectile against a rigid wall. 
Originally, it has been used as a means for determining the dynamical yield strength of metals. Now, it 
is mostly used as a means for validating plasticity models and time integration schemes. Length and 
diameter of the projectile are respectively L = 0.0324 m and D = 0.0064 m. The material characteristics 
of the projectile are: density = 8930 Kg/m³, Young Modulus = 117 GPa, Poisson coefficient = 0.35, 
yield strength = 0.4 GPa and linear hardening coefficient = 0.1 GPa. Initial velocity of the projectile is 
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227 m/s. Due to symmetry, only one quarter of the projectile is considered. The projectile is discretized 
by 48x12 elements. The simulation time is 80 sµ . 

The results (Table 2) show that there is no significant difference in the final radius of the impact 
side after impact (maximal error=0.6% ), in the final length of the bar (maximum error = 0.2%) as well 
as in the corresponding final equivalent plastic deformation (maximal error = 2.4%). 

The plastically dissipated energy (Fig. 3a) as well as the final elastic energy shows (Fig. 3b) that 
when the numerical dissipation increases, there is a low decrease in the system energy (plastically and 
elastic) only for the TW scheme (≤ 1 %) while there is no difference for the HC scheme.  

Figure 4 illustrates that, in general, the computational time or the number of time steps increases 
as the dissipation increases. The CD and the TW schemes for 1=bρ  bear the same results either for the 
number of time steps or the CPU time. In general case, the TW scheme is more expensive than the HC 
scheme since the bifurcation limit is lower, which induces more time steps.  
  
                  Table 2: 
                                         Final results of the Taylor bar for different schemes and different bρ  
 

Scheme bρ  Final radius (m) Final length (m) p
maxε  

CD - 0.0068448 0.0216144 2.53 
TW 1 0.0068594 0.0216144 2.53 

0.8 0.0068618 0.0216195 2.54 
0.6 0.0068646 0.0216252 2.55 
0.4 0.0068680 0.0216320 2.55 
0.2 0.0068729 0.0216411 2.56 

 

0 0.0068869 0.0216658 2.59 
HC 1 0.0068594 0.0216144 2.53 

0.8 0.0068594 0.0216144 2.53 
0.6 0.0068594 0.0216144 2.53 
0.4 0.0068594 0.0216145 2.53 
0.2 0.0068594 0.0216145 2.53 

 

0 0.0068595 0.0216147 2.53 
 
Let us now analyze the pressure histories (Fig. 5a) of the node A which is located at the center of 

the rear side of the bar and let us see the influence of the numerical dissipation. It appears that the TW 
scheme smoothes the high frequencies more than the HC scheme. Figure 5b illustrates the pressure 
history for the TW scheme and a spectral radius at bifurcation equals to 0.8. It appears that to obtain the 
same degree of high-frequency smoothing with a HC scheme, a lower spectral radius at bifurcation 
(0.2) has to be used. This demonstrates the high filtering capabilities of the TW scheme with regard to 
the HC scheme as it was already shown theoretically in section 3.4. 
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          (a)                                       (b)  
 
Figure 3: Analysis of the energy balance for the Taylor’s impact problem (a) Relative error (%) on plastically dissipated  
energy. (b) Relative error on final reversible energy. 

 

           
          (a)                                       (b)  
 
Figure 4: Computational costs of the schemes for the Taylor’s impact problem (a) Comparison of the number of time steps.  
(b) Comparison of CPU time (Intel ®, Pentium 4CPU 2.20 GHz, 2.22 GHz, 1 GB of Ram).  

              

       
          (a)                                                                                 (b) 

 
Figure 5: Comparison of high frequencies smoothing capabilities. (a) Smoothing at maximum capability for each scheme.  

 (b)  Same degree of smoothing with different bρ . 
 
5.2 Impact of aluminum spherical projectile onto a steel target  
 

Let us consider an aluminum spherical projectile impacting a steel target at a speed of 600 m/s. 
The projectile diameter is 9 mm. The target diameter and thickness are respectively 60 mm and 1 mm. 
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The target is made of steel (density = 7870 Kg/m³, Young Modulus = 210 GPa, Poisson coefficient = 
0.3, Yield strength = 0.75 GPa, Linear hardening coefficient = 1.15 GPa) and the projectile is made of 
aluminum (density = 2710 Kg/m³, Young Modulus = 69 GPa, Poisson coefficient = 0.3, Yield strength 
= 0.29 GPa, Linear hardening coefficient = 0.055 GPa). Frictional contact is treated with a penalty 
scheme (normal and tangential penalty values are set to 1E+06). Spectral radii used in simulations are 
respectively 0.0, 0.6 and 1.0. DC is the reference scheme. 

The material response at high velocity impact is analyzed for the different schemes. Figure 6 
shows the simulation setup and the penetration process at two different times, corresponding to 50 and 
100% of the kinetic energy plastically dissipated. The corresponding equivalent plastic strains are 
illustrated. Deformations are localized at the impact zone and the target underwent a great bulging 
phenomenon (Fig. 6c). Let us note that no failure model is used, which explain the large plastic strain 
observed to stop the projectile.   

Considering the kinetic energy of the projectile (Fig 7a), except for the HC scheme with spectral 
radius equal to one, which exhibits a slight energy difference at the end, the energy, function of time is 
identical for all schemes: the initial kinetic energy is completely dissipated by plastic behavior. 

     
 (a)                  (b)  
    

            
 (c)         

  
Figure 6: Penetration mechanism (DC scheme)  (a) s0t µ=      (b) s5.6t µ= (50% of the initial kinetic energy dissipated   
(c)  s48t µ= (end of penetration mechanism, 100% of the initial kinetic energy dissipated  

 
Let us examine the acceleration at the center of the bullet. For spectral radius equal to one (Fig. 

7b), results are the same for the DC and for the TW, but the HC bears oscillations with higher 
amplitudes and higher frequency than the two other schemes. As dissipation increases, high frequency 
oscillations are attenuated. The TW presents the highest filtering capabilities (Fig. 7c,d) for the same 
spectral radius. In particular, it is worth noticing that numerical dissipation constrain the acceleration to 
negative values, while the DC scheme exhibits oscillations leading to positive values of the 
acceleration. 

Table 3 gives the final displacement of the center node of the sphere in the impact direction and 
the final equivalent plastic strain. As dissipation increases, the equivalent plastic strain decreases but 
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there is no difference in the final displacement of the bullet center. Except for HC ( 1=bρ ), the 
equivalent plastic strains are of the same order. From this observation it can be stated that the numerical 
oscillations result in an over-estimation of the plastic strains. Numerical dissipation can be used to 
reduce these oscillations and improve the accuracy of the solutions. 
 

 
(a)                  (b)  
 

       
(c)                  (d)  
 
Figure 7: Comparison of different schemes   - (a) Energy function of time;    -  Acceleration of the center node of the sphere 
respectively for   (a) 1b =ρ  ,   (b)  6.0b =ρ   and  (c)  0.0b =ρ   

 
 
                      Table 3: 
                                         Final results for different schemes and different bρ  
 

Scheme bρ  

Final 
displacement of 
the center of the 

sphere (mm) 

p
maxε  

CD - 10.267 4.24 
TW 1 10.270 3.85 

0.6 10.245 3.58  0.0 10.241 3.26 
HC 1 10.284 30.00 

0.6 10.260 4.11  0.0 10.260 3.33 
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6. Conclusions 
 

In this paper, it has been shown that the TW scheme is a more powerful scheme for smoothing 
high frequencies than the HC scheme. For spectral radius different from one, although the TW is a 
first-order scheme contrarily to the HC which is a second-order scheme, it gives satisfactory results 
without losing accuracy. Nevertheless, numerical dissipation is a tool to be used with precaution as it 
can lead to a loss of accuracy when dissipation increases.  

The TW scheme becomes more expensive than the HC scheme when the spectral radius at 
bifurcation departs from one, but this drawback is balanced by the fact that the same degree of 
dissipation is reached for a higher spectral radius with the TW scheme.  

The TW scheme with spectral radius at bifurcation equal to one is a second order non-dissipative, 
conservative scheme and is as efficient as the CD scheme. 

Numerical schemes have been studied to demonstrate the robustness and accuracy of the HC and 
TW schemes. For simulations of ballistic impact, numerical dissipation has been used extensively to 
reduce the oscillations due to finite-element spatial discretizations.  
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