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Abstract – Initial adherence to host cells is the first step of the infection of enteropathogenic Escherichia
coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC) and verotoxigenic Escherichia coli (VTEC)
strains. The importance of this step in the infection resides in the fact that (1) adherence is the first contact
between bacteria and intestinal cells without which the other steps cannot occur and (2) adherence is the
basis of host specificity for a lot of pathogens. This review describes the initial adhesins of the EPEC, EHEC
and VTEC strains. During the last few years, several new adhesins and putative colonisation factors have
been described, especially in EHEC strains. Only a few adhesins (BfpA, AF/R1, AF/R2, Ral, F18 adhesins)
appear to be host and pathotype specific. The others are found in more than one species and/or pathotype
(EPEC, EHEC, VTEC). Initial adherence of EPEC, EHEC and VTEC strains to host cells is probably
mediated by multiple mechanisms.
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1. INTRODUCTION

1.1. Enteropathogenic, enterohaemorrhagic
and verotoxigenic Escherichia coli

The Escherichia coli species is a Gram-
negative bacterium that belongs to the
Enterobacteriaceae family. It is the predomi-
nant facultative anaerobe of the human colonic
flora. However, some strains have developed
the ability to cause disease of the gastrointesti-
nal, urinary, or central nervous system. Patho-
genic gastrointestinal strains of E. coli are
classified according to the properties of their
virulence: enteropathogenic E. coli (EPEC),
enterotoxinogenic E. coli (ETEC), enterohaem-
orrhagic E. coli (EHEC), enteroinvasive E. coli
(EIEC), enteroaggregative E. coli (EAEC), ve-
rotoxinogenic E. coli (VTEC), ‘‘diffusely
adherent’’ E. coli (DAEC), necrotoxinogenic
E. coli (NTEC) [77].

The main virulence property of EPEC strains
is the production of a specific lesion called
‘‘attaching and effacing (A/E) lesion’’ charac-
terised by loss of microvilli and intimate attach-
ment of the bacteria to the host [71], whereas
the main virulence property of VTEC is the pro-
duction of verotoxins (or shiga-toxins) that are
lethal for eukaryotic cells [56]. As for EHEC
strains, their main virulence properties are the
production of A/E lesions and verotoxins [23].

EPEC strains colonise the small intestine
and cause profuse watery diarrhoea in humans.
They were responsible for frequent outbreaks of
infant diarrhoea in the USA and the United
Kingdom in the 1940s and 1950s [92]. In con-
trast to the limited importance of EPEC in
developed countries nowadays, EPEC are still
a major cause of child diarrhoea in developing
countries, especially in infants younger than
2 years. The death rate in developed countries
is low today but it can reach up to 30% in
developing countries [77, 96]. Transmission
occurs via oral-faecal contact with contami-

nated hands or foods. According to epidemio-
logical surveys, asymptomatic carriage by
humans could also be at the root of contamina-
tion [77]. In bovines, infection with EPEC
strains is associated with diarrhoea in young
calves (1 week to 8 weeks old) [32]. There is
no mortality in calves, but diarrhoea can
become chronic, causing economic loss as a
consequence. In addition to human and bovine
infections, EPEC strains are also found in dogs,
cats, rabbits, pigs, goats, and sheep [57]. In rab-
bits, EPEC strains infect neonates and recently
weaned animals causing mild to severe diar-
rhoea, with important economic loss [17]. In
dogs, cats and piglets, colonisation by EPEC
strains can occasionally lead to diarrhoea.
Finally, in goats and sheep, EPEC strains can
be found but the association with diarrhoea
has not yet been demonstrated [68].

Infections by EHEC strains in humans are
characterised by the production of diarrhoea
generally accompanied by haemorrhagic colitis
(HC) with, in a few percent of cases, renal
sequelae (haemolytic uremic syndrome, HUS),
which can lead to death. EHEC strains were
recognised as a distinct class of pathogenic
E. coli in 1983 after two outbreaks in the
USA [124]. Today, they represent an important
problem for public health in developed coun-
tries all over the world. The most common
EHEC serotype is O157:H7, but other sero-
groups such as O26, O111, O145 and O103
are also very important in some countries. In
the USA, O157:H7 have been estimated to
cause 73 000 illnesses annually and non-O157
EHEC serotypes, at least 37 000 illnesses
[19]. In Europe and Japan, infection by EHEC
also has a real importance as a foodborne dis-
ease [23]. In the veterinary field, several sero-
groups of the EHEC strain (O26, O111, O118
for example) are directly associated with diar-
rhoea in 2 week to 2 month old calves
[46, 73]. The consequences are economic losses
due to a delay in growth and weakness of
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calves. EHEC strains can also be found in the
faecal flora of a wide variety of animals (cattle,
sheep, goats, pigs, cats, dogs, chickens, and
gulls) [70]. Cattle, other domestic ruminants
and wild ruminants are the most important ani-
mal species in terms of a reservoir for human
infection and are mainly responsible for food
contamination [46]. Indeed, in many cases,
EHEC strains infect man via vegetal and animal
food soiled by ruminant faeces. Other well-
recognised sources of contamination are sec-
ondary transmissions from infected persons
[88, 93].

VTEC strains cause pathology mainly in
humans and piglets. But they can also be found
in a large spectrum of domestic and wild ani-
mals [126]. In humans, VTEC infections are
not frequent but, when they occur, they are fre-
quently associated with HUS syndrome. In pig-
lets, VTEC strains are responsible for oedema
disease up to two weeks after weaning [74].

1.2. Adherence of EPEC, EHEC and VTEC
strains

Pathogenicity of EPEC infection can be ten-
tatively divided into three stages [31]: (1) initial
adherence and colonisation of the intestine;
(2) translocation of bacterial signals into the
eukaryotic cells via a type III secretion system
that cause cytoskeleton rearrangements in en-
terocytes; and (3) intimate adherence of bacte-
ria to eukaryotic cells by specific proteins, the
intimins (coding by the eae gene). Steps 2
and 3 together cause the formation of A/E
lesions. For EHEC infection, a fourth step con-
sists of the production of verotoxins. For VTEC
infection, steps 2 and 3 do not exist and vero-
toxins are produced after intestinal colonisation.

The molecular biology of the production of
A/E lesions and the action of verotoxins is
today quite well described and understood,
even if research remains to be performed to
fully understand the in vivo pathogenesis of
those strains. On the contrary, the step of intes-
tinal colonisation via specific adhesins initiating
the interaction between the bacteria and host tis-
sues and anchoring the bacteria onto the surface
of the enterocytes is actually still poorly under-
stood for many strains [120]. The importance of

initial adherence in the infection resides in the
following: (1) adherence is the first contact
between bacteria and intestinal cells without
which the other steps cannot occur, (2) adher-
ence is the basis of host specificity for a lot of
pathogens, (3) adhesins represent a good target
for the development of a specific vaccinal pro-
phylaxis [25].

The aim of this review is to describe the ini-
tial adhesins of the EPEC, EHEC and VTEC
strains (Tab. I). During the last few years, sev-
eral new adhesins and putative colonisation fac-
tors have been described, especially in EHEC
strains [64, 65, 78, 107, 127]. First, this review
will describe pathotype (EPEC, EHEC or
VTEC) specific adhesins. Then, adhesins pres-
ent in more than one of the three pathotypes
will be described.

2. EPEC SPECIFIC ADHESINS

2.1. Bfp adhesin

2.1.1. Description

In 1991, Gı̀ron et al. [41] showed that EPEC
strains express rope-like bundles of filaments,
termed bundle-forming pili (BFP), which create
a network of fibres that bind the individual bac-
teria together. An antiserum against BFP
reduces the capacity of EPEC to infect cultured
epithelial cells. The bfpA gene codes for the
main subunit. It is part of an operon of 14
genes: bfpA (the pre-pilin), bfpB (a lipoprotein),
bfpC (a bitopic cytoplasmic membrane protein),
bfpD (a hexameric cytoplasmic ATPase), bfpE
(a polytopic cytoplasmic membrane protein),
bfpF (a putative cytoplasmic nucleotide-binding
protein), bfpG (an unknown function protein
that interacts with bfpB), bfpH (an unknown
function protein that is perhaps not expressed),
bfpI (a pre-pilin-like protein), bfpJ (a pre-pilin-
like protein), bfpK (a pre-pilin-like protein),
bfpL (a protein localised with both the inner
and outer membranes), bfpP (a pre-pilin pepti-
dase) and bfpU (an unknown function protein
that interacts with bfpB) [28, 30, 100, 103]. This
operon is situated on a 50–70 MDa plasmid
called EPEC Adherence Factor (EAF).
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The presence of the bfpA gene has been
searched for in human and animal EPEC,
EHEC and VTEC strains but also in Salmonella
sp. serotypes [23, 25, 41, 42, 55, 99, 122]. The
gene was only detected in a subclass of human
EPEC strains and in a few EPEC strains from
dogs, but not in other EPEC, EHEC and VTEC
strains. Human EPEC strains harbouring the
EAF plasmid are called ‘‘typical-EPEC’’ strains
(t-EPEC) and other human EPEC strains that do
not carry EAF plasmid are known as ‘‘atypical-
EPEC’’ strains (a-EPEC) [119].

2.1.2. Involvement in the adherence

The plasmid containing the Bfp operon is
responsible for the localised adherence (LA)
phenotype on cell culture [3]. The complemen-
tation of a non-adherent E. coli strain with the
EAF plasmid leads to an increase in adherence
to epithelial cells. In 1985, Levine et al. [63]
had already observed the importance of the
plasmid during infection in vivo. EPEC strain
E2348/69 (containing the EAF plasmid) and
its mutant cured of EAF plasmid was inoculated
into 10 volunteers. Diarrhoea occurred in nine
out of the 10 volunteers who ingested the
parental strain but in only 2 of the 9 who took

the mutant. The bfp cluster is regulated by envi-
ronmental signals such as temperature, calcium
and ammonium [86]. These findings support
the pathogenic role of BFP by the initiation of
BFP production in the small intestine, but not
in the colon and external habitats.

Adherence studies on mouse and human
eukaryotic cells have indicated that BFP play
an important role in the cell-type-dependent
adherence of t-EPEC [111]. Indeed, the adher-
ence of the bacteria is lower on mouse-derived
cells than on human-derived cells. BFP are also
implicated in biofilm formation. Moreira et al.
[72] demonstrated that the genes encoding
BFP are expressed during biofilm formation
and that mutants that do not express BFP form
more diffuse biofilms than does the wild type
strain.

The Bfp adhesin contributes to the attach-
ment of the bacteria to eukaryotic cells but does
not seem to be necessary to cause disease in
humans. Indeed, the a-EPEC strains (that do
not carry the bfpA gene) are more and more
implicated in diarrhoea outbreaks in both devel-
oped and developing countries. Various other
adhesins (f.i. Paa, LpfAO113, Iha, Ehx, ToxB,
LdaG) are present in a-EPEC strains [45] and
play probably the same role as Bfp in adher-
ence. Nevertheless, Bfp adhesin seems to be
host specific considering that the bfpA gene is
mostly found in strains isolated from humans.
This host specificity could be explained by
the fact that the bfp cluster is regulated by envi-
ronmental signals [86] and that human intes-
tines differ from animal intestines [43].

2.2. REPEC adhesins in rabbit EPEC strains

2.2.1. Description

Three different rabbit-specific adhesins exist
in rabbit EPEC strains (REPEC): Adhesive fac-
tor/Rabbit 1 (AF/R1) [12], Adhesive factor/
Rabbit 2 (AF/R2) [38], Ral [1].

The operon of AF/R1 adhesin is composed
of seven genes: afrA (the structural subunit),
afrB (an usher protein), afrC (a chaperone),
afrD (an adhesin), afrE (an unknown function
protein), afrR and afrS (two transcriptional reg-
ulators). afrA, afrB and afrC genes are required

Table I. Distribution of the main adhesins present
in EPEC, EHEC and VTEC strains.

Adhesin Present in
pathotypes

Host

Bfp EPEC Human, dog
AF/R1 EPEC Rabbit
AF/R2 EPEC Rabbit
Ral EPEC Rabbit
F18 VTEC Pig
Saa VTEC Human, cattle,

sheep
EibG VTEC Human
Spf EPEC, EHEC Human, cattle
Efa1 EPEC, EHEC Human, cattle
ToxB EPEC, EHEC, VTEC Human, cattle
Lpf EPEC, EHEC, VTEC Human, cattle
F9 EPEC, EHEC Human, cattle
Paa EPEC, EHEC Human, pig, cattle
Iha EPEC, EHEC, VTEC Human, pig, cattle
AIDA EPEC, VTEC Human, pig
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for the expression of the pilus and for the adher-
ence to the host cells and afrD and afrE genes
are only required for the adherence to the host
cells [22]. Penteado et al. [83] and Dow et al.
[33] studied the prevalence of the AF/R1 adhe-
sin and respectively found the adhesin in 0%
and 4.7% of the REPEC (only found in
O103:H2 serotype strains).

Fiederling et al. [38] cloned the afr2 operon
and showed that the afr2G gene (the major sub-
unit) is homologous to clpG from the CS31A
adhesin and faeG from the K88 (F4) adhesin.
Penteado et al. [83] and Dow et al. [33] studied
the prevalence of the AF/R2 adhesin and
respectively found the adhesin in 83.3% and
23.3% of the REPEC of O103:H2, O132:H2,
O153:H7, O126:H-serotypes.

Ral adhesin is coded by an operon situated
on the 95 kb-pRAP plasmid (REPEC adher-
ence plasmid) and is homologous to K88,
CS31A and AF/R2 adhesins. The operon is
composed of seven genes: ralC, ralF and ralH
(three putative minor subunits); ralG (one puta-
tive major subunit); ralI (an unknown function
protein); ralD and ralE (two chaperones). Dow
et al. [33] studied the prevalence of the Ral
adhesin and found that this adhesin is present
in 35% of the REPEC of O153:H7, O15,
O132:H2, O49:H2, O145 serotypes.

2.2.2. Involvement in the adherence

AF/R1wasfirst describedbyBerendson et al.
[12]. In their experiments, they infected sections
of human, guinea pig, rat and rabbit small intes-
tines with an REPEC positive for AF/R1 and its
deleted mutant and they detected the adherence
by indirect immunofluorescence technique. The
piliated REPEC strain fully adhered only to the
rabbit section and only a few colonies of the
non-piliated REPEC strain adhered to the small
intestine section in comparison with the wild
type. Rafiee et al. [87] identified a rabbit ileal
microvillus membrane sialoglycoprotein com-
plex with subunits of 130 and 140 kDa as a
receptor(s) for AF/R1 fimbriae localised on the
rabbit small intestine [94].

AF/R2 was first described in an REPEC
O103 strain by Pillien et al. [85]. This adhesin
gives the capacity of diffuse adherence (DA)

to rabbit enterocytes and HeLa cells and there
is a loss of pathogenicity after inoculation of
deleted mutants into the rabbit.

Mutants deleted in the Ral operon show a 10
times lower colonisation of the rabbit intestine
and a decrease in the severity of the disease
in vivo [1]. Krejany et al. [58] showed that
the adherence on the intestinal rabbit loop is lost
with a mutant deleted in Ral adhesin.

As for BFP, REPEC adhesins appear to play
a role in the attachment of bacteria to eukaryotic
cells and seem to be host specific. AF/R1 binds
specifically to a sialoglycoprotein complex.
This receptor could vary among species as it
has already been shown previously [87].

3. VTEC SPECIFIC ADHESINS

3.1. F18 adhesin

3.1.1. Description

In 1995, Rippinger et al. [91] designated
two variants (F18ab and F18ac) that correspond
to the related fimbrial types F107 [13], 2134P
[76] and 8813 [95] of verotoxigenic and enter-
otoxigenic E. coli isolated, respectively, from
porcine postweaning diarrhoea and oedema dis-
ease. The F18ab variant is mostly associated to
the VTEC strains while the F18ac variant is
mostly associated to the ETEC strains [26].
This fimbria is a long flexible filament with a
maximum 4.6 nm diameter. Mainil et al. [69]
showed that the F18 gene is localised on the
same plasmid as the adhesin involved in diffuse
adherence (AIDA) in E. coli isolated from pig-
lets. The operon coding for this fimbria is com-
posed of five genes: fedA, fedB, fedC, fedE and
fedF [47, 48, 98]. The backbone is built from
the major subunit, FedA (15.1 kDa); but this
subunit is not sufficient for recognising the
F18 receptor [47]. FedE (15.9 kDa) and FedF
(30.1 kDa) are two minor subunits and are
essential for fimbrial adherence [48, 98]. Smeds
et al. [98] showed that the FedF protein plays
the role of the adhesin of the F18 fimbriae.
Indeed, anti-FedF antibodies, unlike anti-FedE
serum, are able to inhibit E. coli adherence to
porcine enterocytes. Moreover, subunit FedF
is highly conserved among F18+ E. coli
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isolates (from different countries and from the
two different variants) [109]. FedB (86 kDa)
and FedC (23.4 kDa) act respectively in the
biosynthesis of the pili and as a chaperone.
Several laboratories studied the distribution of
the F18 adhesin in a collection of strains.
Zweifel et al. [133] searched for the fedA gene
in 31 VTEC strains isolated from healthy pigs
at slaughter and only one strain was positive
for this gene. Cheng et al. [26] looked for the
presence of F18ab and F18ac variants in
VTEC, VTEC/ETEC and ETEC strains isolated
from diarrheic piglets. They found F18ab and
F18ac adhesins in respectively 62% and 0%
of VTEC, in 62.5% and 33% of VTEC/ETEC
strains and in 4% and 8% of ETEC strains.
Osek et al. [81] found the fedA gene in 2.7%
of strains isolated from diarrheic piglets and
in 2.2% of strains isolated from healthy piglets.

3.1.2. Involvement in the adherence

Several studies have shown that this adhesin
allows adherence to microvilli of piglet entero-
cytes [76, 95, 129, 131]. The F18 receptor
(F18R) plays an important role in the VTEC/
ETEC infection. Piglets can possess (F18R+)
or not the receptor (F18R!) and only those pig-
lets that do possess the receptor are subject to
infection with F18+ E. coli [40]. The F18R sta-
tus of pigs is genetically determined [14] and,
recently, Coddens et al. [27] have shown that
the expression of the F18 receptor is positively
correlated with the presence of histo-blood
group antigens, that its levels rise with increas-
ing age during the first 3 weeks after birth and
that F18 receptor expression is maintained in
older pigs (3–23 weeks old). Several laborato-
ries have tried to develop vaccines against
F18 fimbria to prevent post-weaning diarrhoea
in piglets [15, 35, 110, 123].

3.2. Saa and EibG

3.2.1. Description

In 2001, Paton et al. [82] isolated a gene,
named saa (STEC autoagglutinating adhesin),
from the megaplasmid of an eae-negative
O113:H21 VTEC strain (98NK2) responsible
for an outbreak of HUS in Australia. In the

98NK2 strain, the protein is 516 amino-acids
long, including four copies of a 37-aa direct
repeat sequence, and is localised in the outer
membrane of the cell. Saa produced by other
VTEC strains vary in size as a consequence
of variation in the number of copies of a
37-aa repeat unit. In 2006, Lucchesi et al.
[67] found the existence of 5 variants based
on this variation in the number of repeat units
present in the 30 coding region. Saa exhibits
24–27% of identity with two outer membrane
proteins, YadA of Yersinia enterocolitica
(a plasmid-encoded outer membrane protein
implicated in epithelial cell adherence and inva-
sion) and Eib of E. coli (E. coli immunoglobu-
lin-binding protein) [82]. Several laboratories
have studied the distribution of the saa gene
in a collection of strains [18, 24, 50, 80, 112,
132]. The saa gene was found in VTEC strains
isolated from cattle, humans, sheep and food.
There always exists a negative correlation
between the presence of the saa gene and the
gene coding for intimin (eae gene).

In 2006, Lu et al. [66] identified a new gene
designated eibG through the screening of trans-
poson-mutagenised O91 E. coli. The gene
encodes a 508-amino-acid protein that presents
similarity to Eib proteins (E. coli immunoglobu-
lin-binding protein). Lu et al. [66] examined the
distribution of eibG in human O157, O26, O111
and O91 strains. All eae-positive and saa-posi-
tive strains were found to be negative for eibG.

3.2.2. Involvement in the adherence

Paton et al. [82] showed that the introduc-
tion of the saa gene cloned into a plasmid
increases 9.7 fold the adherence of E. coli
JM109 to HEp-2 and a semilocalised adherence
pattern. Mutagenesis of this gene in the
O113:H21 strain reduces the adherence signifi-
cantly. The saa gene encodes an auto-aggluti-
nating adhesin. In 2008, Toma et al. [114]
showed that saa-positive VTEC strains exhibit
differential binding properties to HEp-2 and
Caco-2 cells. On the 32 strains studied for their
adherence to epithelial cells in the absence or
presence of D-mannose, 13 strains were sensi-
tive to the presence of this sugar. Moreover, a
VTEC strain (in which adherence was mannose

Vet. Res. (2010) 41:57 M. Bardiau et al.

Page 6 of 16 (page number not for citation purpose)



resistant) was deleted in the saa gene and its
adherence to epithelial cells was not signifi-
cantly decreased compared to the wild type,
suggesting that multiple adherence mechanisms
are present in saa-positive VTEC strains.

EibG is a new immunoglobulin-binding pro-
tein and acts as an adhesin in certain strains of
VTEC. A mutant deleted in the eibG gene was
constructed and its adherence phenotype was
studied on Hep-2 cells. The mutant did not
adhere to epithelial cells and the chain-like
adherence pattern (CLA pattern) was restored
after the transformation of the mutant with a
plasmid carrying only eibG. Therefore, Lu et al.
[66] suggested that the eibG gene is responsible
for the CLA pattern.

Saa is present in several species and do not
seem to be host specific but is present only in
eae-negative, stx-positive strains and interest-
ingly in eibG-negative strains. VTEC strains
do not carry the eae gene and thus may com-
pensate for this lack by a multiple adherence
mechanism.

4. ADHESINS PRESENT IN MORE THAN
ONE OF THE THREE PATHOTYPES

4.1. Spf adhesin

4.1.1. Description

The first fimbria to have been described in
EHEC strains was part of a cluster called sfp
(sorbitol-fermenting protein) encoded by a large
plasmid in sorbitol-fermenting O157 strains
[20]. This fimbria has similarities with the pap
gene, which codes for the P-fimbriae in uro-
pathogenic E. coli strains. The cluster is divided
into six genes: sfpA (the major pilin), sfpH,
sfpC, sfpD, sfpJ, and sfpG (the adhesin). Sev-
eral studies showed that sfpA is present only
in sorbitol-fermenting O157 strains (EHEC
and EPEC strains isolated from humans with
diarrhoea and HUS) [21, 39, 49]. In 2006,
Lee et al. [61] detected spfA in sorbitol-fer-
menting O157 strains isolated from cattle.
Recently, Bielaszewska et al. [16] detected the
entire cluster in EHEC O165:H25/NM strains
isolated from cattle and humans and they
suggested that this cluster is acquired indepen-

dently by EHEC O165:H25 and sorbitol-
fermenting EHEC O157:NM.

4.1.2. Involvement in the adherence

A mutant deleted in the sfp gene is not more
able to agglutinate erythrocytes. The expression
of Sfp and the adherence to Caco-2 and HCT8
cells are increased in anaerobic conditions that
imitate intestinal conditions [75]. It has, there-
fore, been suggested that Sfp production is
induced under conditions resembling those of
the natural site of infection and that Spf adhesin
plays an important role in the adherence of sor-
bitol-fermenting strains.

4.2. ToxB and Efa1 adhesins

4.2.1. Description

In 2000, Nicholls et al. [78] identified
a locus required for the adherence in vitro of
an EHEC strain of serogroup O111:H- by trans-
poson mutagenesis. This factor was called Efa1
for ‘‘EHEC Factor for Adherence’’. The efa1
locus has a size of 9 669 bp and is situated
on the pathogenicity island O122 [53]. The
efa1 locus is strongly associated with non-
O157 EHEC and EPEC strains and a truncated
variant of 1 299 pb is present in O157 EHEC
strains [4, 44, 84]. Efa1 has 97.4% homology
in amino acid and 99.9% identity in nucleic
sequence with Lymphocyte Inhibitory FactorA
(LifA), described in EPEC strain E2348/69,
which codes for the lymphostatin. This toxin
inhibits the proliferation of lymphocytes and
the production of interleukin 2 and 4 [54].

In 2001, Tatsuno et al. [107] identified toxB
on the pO157 plasmid in Sakai O157 EHEC
strain. The toxB locus is 9.5 kb long and shares
homology with the efa1 locus (28% of nucleic
acid sequence and 47% of amino acid
sequence) and the gene coding for the toxin B
from Clostridium difficile (20% of similarities
in amino-acid sequence). Tozzoli et al. [118]
looked for the presence of the entire toxB
sequence in EHEC and EPEC strains of several
serogroups by PCR and hybridisation. The
complete toxB sequence is present in all O157
EHEC strains, in about 50% of EHEC O26
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strains, in a few EHEC O118 and O123 strains
and in a few EPEC O26 and O86 strains but not
in O111 and O103 strains. They also suggested
the existence of a polymorphism of toxB genes
among the different E. coli serogroups. Finally,
Tatarczak et al. [106] detected the toxB gene in
VTEC strains from humans and cattle.

4.2.2. Involvement in the adherence

The mutant deleted in Efa1 is deficient in
adherence on CHO (Chinese Hamster Ovary)
cells. Shedding studies on calves aged 4 to 11
days with wild type and mutant strains show
that the colonisation of the intestine is influ-
enced by Efa1 for O5 and O111 EHEC strains
[101]. In spite of the high homology between
lifA and efa1, mutants deleted in lifA produce
the A/E lesion and LA.

ToxB contributes to the adherence by the
stimulation of the production of EspA, EspB
(two translocator proteins) and translocated inti-
min receptor (Tir). Indeed, a pO157-cured strain
of O157 Sakai has its adherence decreased and
the expression level of the effectors EspA,
EspB and Tir in this strain also decreased.
The adherence is restored with the complemen-
tation of the pO157-cured strain of O157Sakai
with a mini-pO157 plasmid composed of the
toxB and ori regions. Stevens et al. [102] have
shown that ToxB influences the expression of
the LEE but not intestinal colonisation in sheep
and calves in contrast with Tir.

Regarding the prevalence results [4], both
genes are present in the majority of the EHEC
and EPEC strains and are mostly absent in
non pathogenic E. coli strains. Therefore, they
might play an important role in the adherence
of EPEC and EHEC strains.

4.3. Long polar fimbriae

4.3.1. Description

Long polar fimbria (LPF) was first described
in Salmonella enterica serovar Typhimurium
[6]. Then five homologues were described in
E. coli strains. Two variants were found in
O157 EHEC strains: lpfA1 (localised in patho-
genicity island OI141) and lpfA2 (localised in
pathogenicity island OI154). Doughty et al.

[32] identified an lpf homologue in O113:H21
VTEC strain (called lpfAO113) localised in
pathogenicity island OI154. Toma et al. [112]
identified another variant in O26:H11 EHEC
strain (called lpfAO26) localised in pathogenicity
island OI141. Finally, Tatsuno et al. [108] iden-
tified an lpf homologue in EPEC strain E2348/
69; however, this Lpf adhesin does not appear
to be implicated in the adherence in this strain.
Toma et al. [113] studied the distribution of
lpfA1, lpfA2, lpfAO113 and lpfAO26 among a col-
lection of E. coli strains. lpfA1 and lpfA2 are
found in most O157 EHEC strains and O145
EHEC strains and in a few EPEC and ETEC
strains [112, 113]. lpfAO113 and lpfAO26 are found
in strains of different serogroups and pathotypes
(VTEC, EPEC, EHEC, EAEC, ETEC) [4].

4.3.2. Involvement in the adherence

Baumler et al. [6] have shown that Lpf facili-
tates the attachment of the bacteria to murine
Peyer patch cells. Torres et al. demonstrated that
the adherence toHeLa cells decreaseswhen lpfA1
and lpfA2 are mutated [115, 117]. LpfAO113

enhances the adherence of O113:H21 VTEC
strains on CHO-K1 cells [32]. The LPF is present
in a wide range of strains isolated from different
sources and belonging to different seropatho-
types. Toma et al. [113] suggested that the acqui-
sition of these genes in specific lineage of E. coli
has probably contributed to the emergence of a
pathogen from a typically commensal organism.

4.4. F9 fimbrial adhesin

4.4.1. Description

A novel potential fimbrial operon called F9
has been identified by transposon mutagenesis
with O26 and O157 strains [34, 121]. This
operon is present in most EHEC strains in all
serogroups.

4.4.2. Involvement in the adherence

It has been shown that F9 promotes coloni-
sation in vivo in calves. When complemented
in K12, the binding of the bacteria is increased
in bovine epithelial cells. However, the comple-
mentation of an O157 strain reduces the
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adherence. This phenomenon is probably due to
a physical competitionwith the type III secretion
system present in O157 strains. A deletion of the
operon in O157 strains reduces the shedding of
the bacteria but the colonisation of the rectum
is still present. Low et al. [64] concluded that
F9 is not responsible for the rectal tropism of
O157 strains but that it may be involved in the
colonisation of other intestinal sites.

4.5. Paa adhesin

4.5.1. Description

Paa (Porcine attaching- and effacing associ-
ated) adhesin was first identified in a porcine
EPEC strain (PEPEC) by transposon mutagen-
esis [2, 5]. The paa gene of 753 pb encodes a
27.6 kDa protein and is localised on the chro-
mosome. Studies of the distribution in enteric
E. coli strains have revealed that paa is present,
on the one hand, in EHEC O157:H7 and O26,
and in dog, rabbit, and pig EPEC isolates, and
to a lesser extent in human EPEC strains and,
on the other hand, in ETEC strains. In 2007,
Leclerc et al. [60] studied paa in O149 ETEC
strains. paa in ETEC is carried by high molec-
ular weight plasmids and all paa-positive
strains possess estB, elt, astA and faeG genes
(coding respectively for the heat-stable entero-
toxin B, the heat-labile enterotoxin, the entero-
aggregative heat-stable enterotoxin and a part of
F4 operon) and more than half also carry the
estA gene (coding for heat-stable enterotoxin
A). Moreover, they suggested that paa from
ETEC and EPEC/EHEC strains could be
derived from a common ancestor because paa
from ETEC strains and paa from EPEC/EHEC
strains contain IS signatures.

4.5.2. Involvement in the adherence

The transposon mutagenesis performed by
An et al. [2] suggested that Paa plays a role
in the A/E mechanism. Indeed, no A/E lesions
were induced using a mutant deficient in the
paa gene and the adherence phenotype was
restored after the complementation of the paa
mutant [5]. In addition, anti-Paa antibodies
reduce the proportion of intact villi showing

intimate adherence. In vivo, eae-positive and
paa-negative mutants induce less severe or no
A/E lesions in piglets that in the end developed
no diarrhoea or delayed-onset diarrhoea.

4.6. Iha adhesin

4.6.1. Description

Tarr et al. [105] described an outer mem-
brane protein similar to Iron-Regulated Gene
A (IrgA) from Vibrio cholerae in cosmid
obtained from the O157:H7 strain. This protein
was called Iha for ‘‘IrgA Homologue Adhesin’’.
This protein is 67 kDa in the O157:H7 strain
and 78 kDa in laboratory E. coli. The iha gene
is found in EPEC, EHEC and VTEC strains
from humans, cattle and pigs [4, 104, 106,
112]. The iha gene is also present in 39% of
E. coli isolated from patients with urosepsis
[51] and it has been shown to be a virulence
factor in urinary tract infection-associated
strains (UTI) [52].

4.6.2. Involvement in the adherence

The adherence of mutants deleted in iha on
eukaryotic cells is decreased and the iha gene
provides an adherence of K12 strains to HeLa
and MDBK cells [105]. Rashid et al. [89] and
Leveillé et al. [62] showed that the transcription
of iha is repressed by iron with a direct interac-
tion between Ferric Uptake Regulation protein
(Fur) and Iha. Moreover, Iha represents a Fur-
regulated catecholate siderophore receptor in
UTI strains. Therefore, Iha may be a dual-func-
tion virulence factor: the adherence to the host
cell and the siderophore receptor activity.

4.7. AIDA adhesin

4.7.1. Description

Benz et al. [7–10] studied an O126:H27
EPEC strain implicated in infantile diarrhoea
and presenting a DA phenotype. They showed
that this DA phenotype is mediated by a 6 kb
DNA fragment present in a 100 kb plasmid.
This 6 kb fragment codes for an adhesin, called
AIDA-I. The aida-I locus is composed of two
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genes (1) aah an autotransporter adhesin hepto-
syltransferase encoding AAH protein, which
modifies AIDA-I adhesin, and (2) aidA, the
AIDA, consisting of AIDA-I (orfB) and AIDAc
(orfBc). In 2001, Niewerth et al. [79] detected
the aida-I locus in a porcine VTEC strain
involved in oedema disease. The aida-I locus
is localised on the same plasmid as the gene
coding for the F18 adhesin in porcine strains
[69]. In 2007, Zhao et al. [130] showed that
the aida-I locus is occasionally present in por-
cine strains involved in post weaning diarrhoea
and that a transfer between human and porcine
strains is possible.

4.7.2. Involvement in the adherence

AIDA-I is involved in the DA phenotype but
is also involved in bacteria aggregation and in
biofilm formation [90, 97]. There is an intercel-
lular interaction between AIDA-I-AIDA-I but
also AIDA-I-Antigen43 (an autotransporter
protein), which lead to the aggregation of cells.
Several studies have focussed on the receptor of
the AIDA-I adhesin. Laarmann et al. [59] found
that AIDA-I recognises an integral membrane
glycoprotein in HeLa cells as receptor of
119 kDa called gp119. Fang et al. [36] hypoth-
esised the existence of a receptor in porcine
intestinal mucus and found two proteins of 65
and 120 kDa (p65 and p120), that bind with
high affinity to purified AIDA-I adhesion. In
addition, aida-I positive E. coli binds to these
proteins with higher affinity than do aida-I neg-
ative mutants. Recently, Benz et al. [11]
showed that the environmental factors (different
growth conditions) and the genetic backgrounds
of the strain significantly influence the tran-
scription activity of the genes.

4.8. Other non-specific miscellaneous adhesins

With the sequencing of the O157 strain [44,
84], several fimbriae were identified in silico.
Low et al. [65] studied the distribution of 16 fi-
mbrial gene clusters in E. coli and the expres-
sion of these fimbriae in different conditions.
In those 16 identified fimbriae, 4 are specific
to O157 strains in comparison with the K12
strain and 4 fimbriae correspond to previously

studied adhesins (LpfA1, LpfA2, Curli and
Type 1 fimbriae).

Calcium binding Antigen 43 Homologue
(Cah) is a protein described in the O157 strain
and is homologous to antigen 43 and AIDA-I
[116]. This gene is 2 850 pb long and is present
in duplicate in O157 strain EDL933. A K12
strain complemented with cah produces two
proteins (one outer membrane protein and one
heat extract protein) and shows the capacity to
autoaggregate. In O157, Cah protein partici-
pates in biofilm formation and also binds to cal-
cium. This protein is implicated more in
autoaggregation properties than in binding to
eukaryotic cells.

Recently, several other adherence factors
have been described. First, Xicohtencatl-Cortes
et al. described the Haemorrhagic Coli Pilus
(HCP). HCP is found in EHEC and EPEC
strains [4]. The inactivation of the main subunit
(hcpA gene) in O157:H7 EHEC reduces adher-
ence to cultured human intestinal and bovine
renal epithelial cells and to porcine and bovine
gut explants [127]. They also found that in
addition to promoting bacterial attachment to
host cells, HCP also plays a role in the invasion
of epithelial cells, in the haemagglutination of
rabbit erythrocytes, in biofilm formation, in
the specific binding to laminin and fibronectin
of the host cells, and in twitching motility
[128]. Then, in 2008, Wells et al. [125]
described a novel autotransporter protein, called
EhaA (EHEC autotransporter) implicated in
adherence and biofilm formation in the
O157:H7 strain. Finally, Ferreira et al. [37]
described the implication of the pst operon
(the phosphate-specific transport system) on
the adherence to host cells in an EPEC strain.
Indeed, in the absence of pst there is a decrease
in the expression of the main EPEC adhesins
and a reduction in bacterial adherence to epithe-
lial cells in vitro.

5. CONCLUDING REMARKS

Considering that adherence is the basis of
host specificity for a lot of pathogens and that
ruminants (especially cattle) are considered to
represent the main reservoir of EHEC and
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VTEC strains for humans, we could wonder
about the distribution of the EPEC, EHEC
and VTEC adhesins among humans and ani-
mals. Based on different prevalence studies,
we can affirm that, except for a few adhesins
(Bfp, REPEC and F18 adhesins), EPEC, EHEC
and VTEC adhesins do not seem to be host spe-
cific. There are several possible explanations.
First, the host specificity is based on other fac-
tors. This host specificity may be based upon
another adhesin not yet discovered or another
property such as the following: (i) differences
in the sequences of genes coding for some
adhesins present in human and bovine strains,
resulting in host and tissue tropism, as already
described in other families of fimbrial (P fam-
ily) or afimbrial (AFA family) adhesins
[12, 35]; (ii) variation in the expression of some
adhesin-encoding genes according to the
growth environment (bovine or human intes-
tines; intestinal segments; age of the host;
etc.), as observed for other genes [29]; and/or
(iii) properties other than adherence such as
an intermediate metabolism, which allows the
bacteria to be better adapted to a bovine intesti-
nal environment, such as the young calf intes-
tine [34, 121]. Second, there is no actual host
specificity and the strains carrying specific
adhesins (Bfp, REPEC and F18 adhesins) could
represent a subgroup of strains specifically
adapted to one host and/or one environment.
Therefore, the other EPEC, EHEC and VTEC
strains could be considered as only one group
that carry several adhesins without any
specificity and acting together with the aim to
attach the bacteria to the host cells. Thus, it is
not surprising that the bacteria could have
different adhesin profiles that are not linked
to one specific host or to one specific
pathotype.
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