
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. 2014; 28:255–289
Published online 11 February 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.2387

Optimized look-ahead tree policies: a bridge between look-ahead
tree policies and direct policy search

Tobias Jung 1,*,†, Louis Wehenkel 1, Damien Ernst 1 and Francis Maes 1,2

1Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
2Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium

SUMMARY

Direct policy search (DPS) and look-ahead tree (LT) policies are two popular techniques for solving diffi-
cult sequential decision-making problems. They both are simple to implement, widely applicable without
making strong assumptions on the structure of the problem, and capable of producing high-performance
control policies. However, computationally, both of them are, each in their own way, very expensive. DPS
can require huge offline resources (effort required to obtain the policy) to first select an appropriate space
of parameterized policies that works well for the targeted problem and then to determine the best values
of the parameters via global optimization. LT policies do not require any offline resources; however, they
typically require huge online resources (effort required to calculate the best decision at each step) in order
to grow trees of sufficient depth. In this paper, we propose optimized LTs (OLTs), a model-based policy
learning scheme that lies at the intersection of DPS and LT. In OLT, the control policy is represented indi-
rectly through an algorithm that at each decision step develops, as in LT by using a model of the dynamics, a
small LT until a prespecified online budget is exhausted. Unlike LT, the development of the tree is not driven
by a generic heuristic; rather, the heuristic is optimized for the target problem and implemented as a parame-
terized node scoring function learned offline via DPS. We experimentally compare OLT with pure DPS and
pure LT variants on optimal control benchmark domains. The results show that the LT-based representation
is a versatile way of compactly representing policies in a DPS scheme (which results in OLT being easier
to tune and having lower offline complexity than pure DPS) and at the same time DPS helps to significantly
reduce the size of the LTs that are required to take high-quality decisions (which results in OLT having
lower online complexity than pure LT). Moreover, OLT produces overall better performing policies than
pure DPS and pure LT, and also results in policies that are robust with respect to perturbations of the initial
conditions. Copyright © 2013 John Wiley & Sons, Ltd.

Received 9 January 2012; Revised 23 December 2012; Accepted 9 January 2013

KEY WORDS: reinforcement learning; optimal control; direct policy search; look-ahead tree search

1. INTRODUCTION

In the last decades, a wide range of techniques have been developed for solving optimal sequential
decision-making problems that arise in the ideologically separated fields of industrial control,
reinforcement learning (RL), and AI. Two simple but powerful techniques that are known to work
well particularly on difficult problems characterized by large state spaces are direct policy search
(DPS) [1] and look-ahead tree (LT) policies [2].

Direct policy search techniques primarily originate from the field of RL and partly also
evolutionary computation. In DPS, optimization is carried out directly in policy space. Control poli-
cies are represented as parameterized functions mapping states to actions. The best policy, that is,
the best setting of parameters, and sometimes also the functional form itself, is found by local or

*Correspondence to: Tobias Jung, Montefiore Institute, Department of Electrical Engineering and Computer Science,
University of Liège, Liège, Belgium.

†E-mail: tjung@ulg.ac.be

Copyright © 2013 John Wiley & Sons, Ltd.

256 T. JUNG ET AL.

global optimization over the parameter space, where the objective function—the performance of the
induced policy—is estimated through simulation or real-world experiments.

Look-ahead tree policies originate from the field of planning and search, but are increasingly
also gaining popularity as a model-based technique in the field of optimal control. Unlike prob-
lems studied under the ‘classic’ RL setting, problems in optimal control are typically deterministic,
and it is assumed that a model is available that enables to simulate transitions and rewards. LT
policies rely on this model during decision making and determine control actions in the following
way. First, they develop an LT by simulating the evolution of the system subject to multiple possi-
ble future action sequences; then they select an action on the basis of the information collected in
this tree.

For practitioners, both DPS and LT methods are very appealing. Both methods are general and do
not make any strong assumptions about the nature of the problem (e.g., real-valued vs. unstructured
discrete spaces) or its specific properties (regularity assumptions on transitions and rewards), which
makes them applicable to a wide range of real-world problems. Both methods are, from the stand-
point of technical sophistication required, fairly simple and can be implemented rapidly and easily.
Finally, both methods are surprisingly effective and can produce good policies for difficult con-
trol problems where more sophisticated methods (such as value function or Pontryagin’s maximum
principle based techniques) would otherwise fail.

However, DPS and LT have one major weakness: they both are, each in their own way, computa-
tionally very expensive. With DPS, the computational cost arises from the initial effort required to
learn the policy. A policy in DPS can be parametrized in many ways (e.g., linear parametrizations,
neural networks, or radial basis functions) and will typically also depend on additional hyperpa-
rameters that determine their complexity (e.g., the number of hidden neurons and the number of
basis functions). There is no simple recipe to determine which particular class of parametrization
works best for a given problem, and the final performance of the policy crucially depends on making
the right choice. Finding an appropriate representation, tuning its hyperparameters, and then deter-
mining the values of the best parameters can thus be a challenging and time consuming process
and typically involves a large amount of trial-and-error experimentation. However, once a suit-
able parameterization is found and its parameters are learned via global optimization, executing
the policy, that is, using it to calculate decisions online, is very fast and only requires negligible
computational resources. LT policies on the other hand are the exact opposite. LT policies do not
require any offline efforts; they can be applied to almost any optimal control problem without any
prior knowledge—this without even depending on the dimensionality of the state space. The main
issue with LT policies is that they typically require a huge amount of online resources to grow a
tree of sufficient depth to derive high-quality decisions from. In practice, these online resources are
often limited, because of either real-time constraints (e.g., 100 ms per decision) or human-scale
constraints (e.g., 1 h or 1 day per decision). Given such constraints, the actions suggested by LT
policies may be arbitrarily sub-optimal.

We thus make the distinction in our evaluation of methods between offline computational
complexity (effort required to obtain the policy) and online computational complexity (effort
required to calculate the best decision at each step) and find that DPS and LT lie at opposite ends of
the complexity spectrum: DPS typically requires huge offline resources to first select an appropriate
space of parameterized policies that works well for the targeted problem and then to determine the
best values of the parameters via global optimization. However, the online complexity of DPS can
be very low. LT policies do not require any offline resources; however, they typically require huge
online resources in order to grow trees of sufficient depth.

Starting from this observation, it is natural to wonder how we can combine these two ideas in
order to create a new hybrid solution for optimal control that leverages the advantages of both.

In this paper, we propose to bridge the gap between LT and DPS policies with a new model-based
hybrid technique: optimized LT (OLT) policies.‡ From the point of view of LT policies, our approach

‡This technique was initially proposed in [3] and is here extended through a more mature exposition of the method and
an extensive experimental study, which covers many more aspects than the initial paper. Furthermore, we introduce the
use of Gaussian process optimization (GPO) to improve the sample efficiency of the approach.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 257

starts from the observation that the efficiency of an LT policy, given a finite online computational
budget, can be improved by more intelligently directing the way in which the tree is grown, for
example, by giving priority to sequences of actions that seem more promising [2]. In fact, a large
number of different strategies could be considered to develop LTs, by combining aspects from
breadth-first exploration to depth-first exploration and from random exploration to purely greedy
exploration. In OLT policies, the strategy that is used to develop the tree is not fixed a priori, but
is learned in a problem-dependent way through DPS. We use DPS as a principled way to exploit
offline computational time in order to optimize the way how the agent will allocate its finite amount
of online computational time.

We experimentally compare our hybrid OLT method with pure LT policies by using four different
exploration strategies. We also consider two other state-of-the-art DPS techniques, where the poli-
cies are represented through neural networks and adaptive radial basis functions, respectively. On
the basis of an extensive study on four challenging optimal control problems, we show that our
approach indeed leverages the advantages of the two techniques from which it originates. In par-
ticular, we show that OLT policies generally achieve a better performance than either pure LT or
pure DPS techniques (in one of the benchmark domains, significantly better), while requiring fewer
online resources than LT and fewer offline resources than DPS.

The content of the paper is structured as follows. In Section 2, we begin by introducing basic
notation and state formally the type of sequential decision-making problems this paper is about.
Section 3 presents a detailed description of OLTs. The node scoring function of OLTs can be learned
using any derivative-free global optimizer. One such optimizer that was shown to be highly relevant
to DPS is GPO [4,5]. We give a brief (but for all practical purposes fully sufficient) summary of this
approach in Section 4. Section 5 presents the results of extensive experimental evaluations, wherein
we compare OLTs with different pure DPS and pure LT techniques on a number of well-known
benchmark domains. We present related work in Section 6, discuss weaknesses in Section 7, and
finally conclude in Section 8.

2. PROBLEM STATEMENT

As a first step towards investigating the combination of DPS with LT policies, we focus in this
paper on an elementary setting for optimal control: we consider fully observable deterministic prob-
lems with discrete actions. Dealing with continuous actions, stochasticity or partial observability is
left for future work, and several directions to extend our ideas to these more complex settings are
presented in Section 7.

Formally, we consider a discrete-time system whose dynamics are given by xtC1 D f .xt , at /,
where x is an element of some state space X and a is an element of some action space A. We do not
make any assumptions about the form of the state space, as the presented approach can deal with
any form of X . We do, however, make strong assumptions about the action space A: we require that
it is finite, that is, jAj D K , and, for computational reasons, that the number of actions is small. In
the examples we will consider later, X will be continuous and vector-valued, that is, X � Rnx and
each discrete action will be mapped to a specific continuous control vector (bang-bang control).

The system evolves at discrete-time steps with decision points occurring at t D 1, 2, : : :. For every
transition we make, we observe a scalar reward§ %.xt , at /, which serves as a performance measure of
the sum of which we want to optimize over time. We denote by B D inff%.xt , at / W .x, a/ 2 X � Ag
and B D supf%.xt , at / W .x, a/ 2 X � Ag, without however assuming that they are finite. As is
common for this class of problems, myopic optimization, that is, choosing the one action at that
maximizes % at each decision point t , does generally not produce optimality with respect to the
accumulated sum of rewards. Let � W X ! A denote a stationary policy, that is, a mapping from
states to actions. For any given policy � and state x0, the infinite horizon discounted sum of rewards

§Note that because the dynamics are deterministic, the reward can implicitly also depend on the successor state
xtC1 D f .xt , at/.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

258 T. JUNG ET AL.

V � .x0/ is defined as

V � .x0/ WD lim
T !1

TX
tD0

� t%.xt , �.xt //, where 8t W xtC1 D f .xt , �.xt //, (1)

and where 0 < � < 1 is a discount factor. The optimal value function is defined as the maximum over
all policies, V �.x0/ WD max� V �.x0/, and satisfies the discrete-time Hamilton–Jacobi–Bellman
equation

V �.x/ D max
a

Œ%.x, a/ C �V �.f .x, a//� 8x 2 X . (2)

If we are able to determine the solution V � of Equation (2), the optimal action for every state x can
be derived as ��.x/ D argmaxa Œ%.x, a/C�V �.f .x, a//�. However, solving Equation (2) exactly is
possible only in some cases (e.g., linear- quadratic regulator (LQR)); in the general nonlinear case
and for higher-dimensional spaces, this presents an open research problem.

Direct policy search approaches do not try to estimate V � or V �. Instead, they solve the concep-
tually simpler problem of finding a policy that ‘works well’ for some initial conditions. In our case,
we define this objective as follows: given a set of initial states X0 � X , our goal is to find a policy
that maximizes the performance over the states¶ in X0, that is, we want to find

argmax
�

X
x02X0

V �.x0/ (3)

�
or argmax�

P
x02X0

p.x0/V �.x0/, where p.x0/ > 0 are some weights
�
.

In order to solve this problem, one assumes that policies are functions �� WD �.� I �/ parameter-
ized by some vector � 2 Rd . The optimization over policies in Equation (3) is thus turned into an
optimization over real-valued vectors

argmax
�2Rd

VX0
.�/ WD

X
x02X0

V �� .x0/. (4)

Given a vector � , the objective function VX0
can be evaluated by simulating the system under the

policy �� from all the states in X0 and summing the rewards as in Equation (1). Note that, to avoid
the infinite sum, we have to truncate the infinite horizon to a (typically large) number of finite
simulation steps H . The objective function in Equation (4) is thus effectively replaced by

argmax
�2Rd

VX0
.�/ WD

X
x02X0

HX
tD0

� t%.xt , �.xt I �//, where 8t W xtC1 D f .xt , �.xt I �//. (5)

The novelty of this paper is that we consider policies �.� I �/, which, instead of being defined
through function approximators, are non-trivial algorithms that at some point depend on � and
on the model .f , %/. To emphasize this requirement, we will write �f ,%.� I �/ whenever we refer
explicitly to an OLT policy.

3. OPTIMIZED LOOK-AHEAD TREES

Given a state xt , we now describe a way of selecting action �f ,%.xt I �/ on the basis of the construc-
tion of an LT. The construction of the tree will, in general, be non-uniform and is controlled by a
function that is parameterized by � (non-uniform meaning that leaf nodes are not necessarily at the
same depth).

¶Note that in the experiments we report on later, we will only use a single initial state. In the general case, having multiple
initial states tend to increase the robustness of the policy.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 259

3.1. Notation

Let K be the number of possible actions and T denote the LT. T is composed of nodes ni ,h 2 T ,

where h denotes the depth and i denotes the index within the depth h (i.e., i 2 f1, : : : , Khg. The
state xt for which we want to find action �f ,%.xt I �/ is placed in the root node n1,0. Each node ni ,h

corresponds to a particular sequence of actions and states. The children of ni ,h are generated by
applying one of the K actions: assume a.h/ 2 f1, : : : , Kg is the index of the action taken at depth h,
then the child of ni ,h is nK.i�1/Ca.h/ ,hC1.

For each node ni ,h, there exists one unique path from the root n1,0 to ni ,h:

path from n1,0 to ni ,h W n1,0 �! ni1,1 �! ni2,2 �! : : : �! nih ,h D ni ,h,

which corresponds to a particular sequence of actions a.1/, a.2/, : : : , a.h/ taken at each intermediate
step and which induces a partial trajectory of length h:

xt

a.1/

GGGGGGGGGGGA

%.xt , a.1//

xa.1/

tC1

a.2/

GGGGGGGGGGGGGGGA

%
�
xa.1/

tC1 , a.2/
� xa.1/a.2/

tC2 : : : xa.1/ :::a.h�1/

tCh�1

a.h/

GGGGGGGGGGGGGGGGGGGGGGA

%
�
xa.1/ :::a.h�1/

tCh�1
, a.h/

� xa.1/:::a.h/

tCh .

The successor states are generated according to the transition function f , for example,

xa.1/ :::a.i/

tCi D f
�
xa.1/ :::a.i�1/

tCi�1 , a.i/
�

and rewards according to the reward function %. For each node

ni ,h, we define %.ni ,h/ to be the reward obtained in the last step: %.ni ,h/ WD %
�
xa.1/ :::a.h�1/

tCh�1
, a.h/

�
.

Every time we expand a node, we generate all of its children. A node whose children have
been generated is called an inner node. Otherwise, it is called a terminal node.|| We denote
T D Tinner [Tleaf.

3.2. Using look-ahead trees to make decisions

We first describe how to use the information in an LT to select an action. For each terminal node
ni ,h 2 Tleaf, we define the `-score as the discounted sum of rewards obtained along the path from
the root node n1,0 to ni ,h plus a lower bound on the cumulated rewards not yet observed:

8ni ,h 2 Tleaf W `.ni ,h/ WD
hX

tD1

% .nit ,t / � t�1 C
1X

tDhC1

B� t�1 D
hX

tD1

% .nit ,t / � t�1 C B�h

1 � �
. (6)

For each non-terminal node ni ,h 2 Tinner, we define the `-score recursively as the maximum of the
`-scores of its children (Figure 1):

8ni ,h 2 Tinner W `.ni ,h/ WD max
n2children.ni ,h/

`.n/. (7)

The `-score of the root node n1,0 (which corresponds to state xt) is a lower bound on the opti-
mal value V �.xt / [2]. Given an LT, we adopt the conservative strategy that consists in selecting
the action that leads to the successor state with maximal lower bound. With the naming scheme for
nodes introduced earlier, we can write `.n1,0/ D maxa `.na,1/, and thus

�f ,%.xt / D argmax
a

`.na,1/. (8)

In the rest of this paper, we generally assume that B D 0 and that B is finite, although neither of
these conditions is a requirement for our OLT method.

||Note that the following terminology is equivalent:

non-terminal node D inner node D explored node D closed node
terminal node D leaf node D unexplored node D open node.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

260 T. JUNG ET AL.

Figure 1. Left side: A uniform look-ahead tree developed from state xt for h D 2 stages and K D 2 actions.
In it, nodes are labeled by ni ,h and correspond to states; edges correspond to choosing an action. Each node
encodes the result of taking a particular sequence of actions; for example, the node n2,2 corresponds to state
x

a1a2

tC2
, which is the result of starting from state xt and choosing action a1 in the first stage and action a2

in the second stage. Right side: Illustrates how `-scores and u-scores are calculated (which form an upper
and lower bound for the true value V �.xt / of the root node). The plot shows a non-uniform tree where the
terminal node with the highest u-score is expanded first. Edges are labeled with the rewards % associated
with the transition they represent. Note that the `-scores and u-scores are calculated only for terminal nodes

and propagated back to their parent via the max operator (denoted by the arc).

3.3. Developing look-ahead trees

We now discuss the construction of LTs. If the rewards are upper bounded
�

B is finite
�
, we can also

upper bound the optimal values V �.x/. For each terminal node ni ,h 2 Tleaf, we define the u-score as
the discounted sum of rewards obtained along the path from the root node n1,0 to ni ,h, plus an upper
bound on the cumulated rewards not yet observed:

8ni ,h 2 Tleaf W u.ni ,h/ WD
hX

tD1

% .nit ,t / � t�1 C
1X

tDhC1

B� t�1 D `.ni ,h/ C
�

B � B
�

�h

1 � �
. (9)

For each non-terminal node ni ,h 2 Tinner, we define the u-score recursively as the maximum of the
u-scores of its children (Figure 1):

8ni ,h 2 Tinner W u.ni ,h/ WD max
n2children.ni ,h/

u.n/. (10)

See Figure 1 for a graphical illustration of an LT with associated `-scores and u-scores. The
u-score of the root node n1,0 is an upper bound on the optimal value V �.xt /. Furthermore, the
`-score of the root increases with the number of expanded nodes in the tree, and at the same time
its u-score decreases [2]. In other words, the more nodes the tree has and the farther we develop it
into the future, the tighter our bounds on the optimal value will become** and thus the better a deci-
sion we can hope to make with Equation (8). (Bear in mind that, unlike search trees for constraint
satisfaction problems, which are grown up to a goal state, our LTs are only grown until a predefined
computational budget is exhausted.)

**The tightness of the bounds will also depend on � . The closer � is to 1, the more nodes we will have to expand.
However, there is little we can do about it, as � is given in advance.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 261

Knowing that, the big question is How should we develop the tree such that we arrive at a
near-optimal decision within the allowed computational budget?

A typical way of developing an LT is to build a uniform tree, by expanding nodes with a breadth-
first strategy. However, to fully develop a tree of depth h, we need K0 C K1 C K2 C : : : C Kh node
expansions, which for growing h will rapidly become computationally infeasible.

Best-first search is the common solution to this dilemma; it develops trees non-uniformly and
only expands those nodes to a deeper depth that look ‘promising’. In order to do this, the algo-
rithm relies on a node scoring function e W Tleaf ! R that is used to assign a certain score to every
terminal node ni ,h 2 Tleaf; whenever we want to decide which terminal node to expand next, we
compare all the scores and choose the node with the highest score. Note that the default uniform
development strategy can be obtained as a particular case of best-first search with the following node
scoring function:

euniform.ni ,h/ WD �h. (11)

The work in [2] suggests to use as scoring function the u-scores of the terminal nodes (which
makes the method become closely related to A*):

eoptimistic.ni ,h/ WD u.ni ,h/. (12)

The authors of [2] show theoretically that non-uniform trees developed by the u-score will never
perform worse than uniform trees for the same budget of expansions, but certain conditions must
be met to make them perform better. The extent to which these conditions are fulfilled is problem
specific and depends on how ‘informative’ the reward is (which in turn depends on the coupling of
dynamics and rewards). Informally speaking, a problem will be difficult (i.e., the rewards will be
non-informative) if there are many nodes with the property that, given the observed rewards from
the root to the node in question, one cannot decide whether the node lies on an optimal path or not.
This is, for example, the case for optimal control problems with a flat reward structure, such as in
the mountain car domain [6] (where every transition has �1 reward and only entering the goal gives
0). On the other hand, having an informative reward is not a totally exotic requirement; for many
control problems, an informative reward comes as the natural definition of performance (e.g., the
many pole balancing or inverted pendulum domains, where rewards are taken as a quadratic function
of angle and angular velocity).

3.4. Parameterizing the development of the look-ahead tree

It turns out that a large number of strategies could be used to develop LTs, and it is probably the case
that there exists no single best strategy for all problems. Instead of searching for the best possible
generic strategy, we adopt the approach first introduced in [3], which consists in learning a specific
look-ahead node development strategy in a problem-driven way.

Optimized LTs rely on a parameterized node scoring function e.� I �/ W Tleaf ! R, where � 2 Rd

is a parameter vector. This function should be flexible enough to represent a large variety of tree-
development strategies. In particular, the parameters should encode important aspects of search,
such as the extent to which depth-first search is preferred over breadth-first search, or how short-term
rewards should be used to bias search. Furthermore, as different search strategies may be optimal
in different regions of the state space, we would like e.� I �/ to enable state-dependent strategies. To
meet these requirements, we take, as in [3], the parameterized node scoring function to be a simple
weighted sum of features extracted from the information encoded in the path from the root node to
the node in question.

In our investigations, the node scoring function is defined for each terminal node ni ,h 2 Tleaf in

the following way: let xa.1/ :::a.h/

tCh
D

�
x

.1/

tCh
, : : : , x.nx/

tCh

�
2 Rnx denote the nx-dimensional state cor-

responding to ni ,h, and let %tCh D %.ni ,h/ denote its reward. We consider three blocks of features:
the first nx features correspond to the components of the state, the next nx features correspond to
components of the state multiplied by the reward (enabling the tree to be grown in a more or less

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

262 T. JUNG ET AL.

directed way), and the final set of nx features corresponds to the components of the state multi-
plied by the depth h (enabling to control breadth/depth trade-off). Let � 2 R3nx be the vector of
parameters. The parameterized scoring function e.� I �/ can then be written as

8ni ,h 2 Tleaf W e.ni ,hI �/ WD
nxX

j D1

x
.j /

tCh

�
�j C �nxCj � %tCh C �2nxCj � h

�
. (13)

Notice that with this linear parameterization, the outcome of which node is selected is invariant
under scaling of the parameter vector by positive scalars. Of course, other kinds of features are also
possible and may in fact turn out to be more suitable in some cases (this may be an avenue for
future research).

3.5. Summary: the algorithm

Figure 2 presents a simple algorithm based on a sorted list to implement policies as parameterized
LTs. The algorithm requires as input a state xt and the parameter vector � and returns the action
�f ,%.xt I �/. It depends on the allowed number of node expansions hmax, the domain (represented
by generative model f , %), and the discount factor � . The computational complexity for evaluating
�f ,%.xt I �/ for a budget of hmax node expansions is obtained as follows. Let D be the cost for one
call to the generative model and E be the cost to recursively update the internal scores of a node.
We assume that the leaf nodes are stored in an appropriate data structure, which allows incremental
insertion in logarithmic time and allows finding the maximum of the scores in constant time (such
that for every iteration of the main loop, if the list of terminal nodes contains N elements, we can
find the maximum score and update the structure with log N operations). Note that for every itera-
tion j D 1, 2, : : : of the main loop, our list of terminal nodes contains .K �1/.j �1/CK elements,

Figure 2. Implementing a policy represented by a parameterized look-ahead tree.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 263

which can be shown by simple induction (every time we expand a node, we remove one element
from the list and add K new ones). At each iteration j of the main loop, we do the following: we
first find the best node to expand by looping over the list of current terminal nodes. We then generate
all of its K successors, where each one costs D for having to call the generative model and E to
recursively update its internal scores. After the main loop has run for hmax times, we have to find the
best `-score from the list. The computational complexity of the algorithm is thus

hmaxX
j D1

ŒK.D C E/ C logf.K � 1/.j � 1/ C Kg� C .K � 1/.hmax � 1/ C K

6 hmax.K.D C E/ C logf.K � 1/.hmax � 1/ C Kg C K � 1/ C 1.

(14)

In the particular case where we are expanding by the heuristic uniform (i.e., breadth-first), we
skip the maximization within each iteration of the main loop. The computational complexity
then becomes

hmaxX
j D1

ŒK.D C E/� C .K � 1/.hmax � 1/ C K D hmax.K.D C E/ C K � 1/ C 1. (15)

Note that in order to expand uniformly, hmax must be equal to one of K0, K0CK1, K0CK1C: : : Kd ,
where d is the depth of the tree.

4. GAUSSIAN PROCESS OPTIMIZATION

We now turn to the problem of solving Equation (5), that is, find a vector � such that the induced
policy �.� I �/ (globally) maximizes the score VX0

.�/ over the set of initial states X0. In general,
this will be a difficult optimization problem. First, the dependence of VX0

on � can be a com-
plex one with local extrema occurring frequently; thus we may need to sample the search space
exhaustively. Second, there is no closed-form expression for evaluating the objective function VX0

or its gradient; instead we have to simulate the system (or run real-world experiments), which is
expensive. Among the many alternatives that have been proposed in the past for this purpose, such
as cross-entropy (CE) [7], various stochastic search alternatives [8], or Lipschitzian optimization
[9], GPO is considered to be one of the most efficient methods to optimize expensive functions [10].

The purpose of this section is to provide the required background in GPO to the reader who is not
aware of this. Note that in our experiments, we will illustrate the optimization of LTs with both GPO
and the CE method, the latter being much simpler to understand and to implement than the former.
As choosing a policy representation and optimizing its parameters are two separate tasks, we keep
the description of GPO general and independent of the specific nature of the OLT policies. Readers
less interested in the optimization part may safely skip this section and directly jump to Section 5.

4.1. Notation

To enhance the readability of this section and to conform with the standard notation used in the
literature, we will define a local notation for this section, which overlaps with what we use in the
remainder of the article. Specifically, we will now write f .x/ for the objective function we want to
maximize

�
instead of VX0

.�/
�

and x for its input arguments (instead of �).

4.2. Overview

Gaussian process optimization is an iterative sampling-based search procedure, which constructs a
surrogate for the objective function and optimizes that in place of the original one. GPO is able to
incorporate prior knowledge about the problem and provides a principled way to build and exploit
the surrogate so as to trade-off exploration and exploitation of the search space.

Each iteration of GPO consists of two steps. Assume that at iteration n, we have already sam-
pled the objective function at locations x1, : : : , xn with values f .x1/, : : : , f .xn/. The first step is

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

264 T. JUNG ET AL.

to fit a regression model by using Gaussian process regression to the samples gathered so far, that
is, to fit a regression model to the training data Dn WD f.xi , f .xi /gn

iD1. Let us call the resulting
model GPn. The second step is to use the regression model GPn as input to a scoring heuristic U
(the so-called acquisition function) to find the most promising point xnC1 at which to evaluate the
objective function next. Typically, acquisition functions are defined in an optimistic way such that
high scores correspond to potentially high values of the objective function.

The regression model GPn acts as a surrogate of the objective function: it can be evaluated at
any given point x of the search space to produce an estimate for f .x/ (more precisely, GPn will
produce a distribution over f .x/). The reason for building the surrogate is that, unlike the true
objective function, it is computationally very cheap to evaluate (it can be done analytically and in
closed form). Thus we can afford sampling it as exhaustively as necessary to find the maximum. On
the other hand, as the values the surrogate produces will only be estimates, we can never be sure
that what we get from maximizing the surrogate is indeed the maximum of the objective function or
even close to it. Instead, we have to take into account how accurate the estimates produced by GPn

are; this in turn will depend on the general smoothness of the objective function and the number of
data points we have collected in the neighborhood of x.

Each time GPn is evaluated at a location x, it outputs two values �n.x/ and �2
n .x/, which

together define the Gaussian predictive distribution N
�
�n.x/, �2

n .x/
�

over values f .x/. The mean
of this distribution, �n.x/, can be directly taken as point estimate for f .x/. The variance of this
distribution, �2

n.x/, can be taken as a measure of how certain the GP is about this estimate. Both
�n.x/ and �2

n .x/ will be used by the acquisition function U to assign a score to x, which we will
write as .U GPn/.x/. To determine the next sample location xnC1, we thus have to determine

xnC1 WD argmax
x

.U GPn/.x/, (16)

which, unlike Equation (5), can be solved efficiently by any black-box global optimization method
(in our experimental studies, we will use DIRECT [9]).

In the following two sections, we will describe each of these steps in more detail; a summary of
the algorithm is also given as pseudo-code in Figure 3.

Figure 3. Implementing Gaussian process optimization.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 265

4.3. Using Gaussian processes for regression

Here we briefly review how GPs can be used for function estimation [11]. Note that we will present
GPs for the more general case of a stochastic objective function; although the problems we consider
later are all deterministic, this leaves the door open for stochastic returns in future work.

Suppose we are looking for a function f W X � Rd ! R from which we have observed noisy
samples .x1, y1/, : : : , .xn, yn/, where xi 2 X is the input and yi D f .xi/ C "i the output corrupted
by independent zero-mean Gaussian noise with common variance �2

0 , that is, "i �iid N
�
0, �2

0

�
.

To estimate the function value f .x/ at any given input location x, we proceed as follows. We sup-
pose that the sought function is a realization of a zero-mean†† Gaussian process with covariance
function k# .x, x0/, which we write as f � GP.0, k# .x, x0//, where # is a vector of hyperparame-
ters (as explained below). Hence, the vector of function values at the n observed input locations is
assumed to be drawn from a joint Gaussian distribution

.f .x1/, : : : , f .xn// j X , # � N .0n�1, K#/, (17)

where X WD Œx1, : : : , xn�, and K# is the n � n covariance matrix with entries ŒK# �i ,j D k# .xi , xj /.
The covariance function k#.�, �/ can be thought of as a way to encode our prior information about the
‘smoothness’ of the functions f we believe to come up; typically k# .x, x0/ is chosen as a function
of the distance kx � x0k in which case k# measures the expected amount of variation of the function
values f .x/, f .x0/ in terms of the distance between the locations x and x0.

A typical choice for k is the translation-invariant squared exponential, which is of the form

k# .x, x0/ WD v0 expf�0.5.x � x0/T�.x � x0/g (18)

and which itself is parameterized by hyperparameters v0 > 0 and � D diag.a1, : : : , ad /, ai > 0.
All hyperparameters specifying the GP are thus collected in the vector # WD .v0, a1, : : : , ad /, which
together with �2

0 characterizes the prior distribution of our noisy samples. The actual ‘training’ of a
GP thus consists of finding a good pair

�
, �2

0

�
from the data, for which various alternative proce-

dures exist in the literature: here we stick to the most common one, which is the optimization of the
marginal likelihood. See [11] for a detailed description.

Now suppose that we know # and �2
0 . As the noise is zero-mean Gaussian, white, and indepen-

dent of the function f , it follows from Equation (17) that the n � 1 vector of observed outputs
Y WD Œy1, : : : , yn�T will also be jointly Gaussian and distributed as follows:

Y j X , # , �2
0 � N

�
0n�1, K# C �2

0 In�n

�
. (19)

Furthermore, the joint distribution of the function value f .x/ at query location x and the vector of
observed values of Y is also Gaussian and characterized in the following way:�

Y
f .x/

�
j X , �2

0 , # , x � N
��

0n�1

0

�
,
�
K# C �2

0 In�n k# .x/

k#.x/T 	#

�	
, (20)

where the n � 1 vector k# .x/ is defined by k# .x/ WD Œk# .x, x1/, : : : , k# .x, xn/�T and scalar 	# by
	# WD k# .x, x/. Conditioning f .x/ on Y , we thus obtain

f .x/ j X , # , �2
0 , x, Y � N .�.x/, �2.x//, (21)

where
�.x/ WD k# .x/T �

K# C �2
0 In�n

��1
Y (22)

�2.x/ WD 	# � k# .x/T
�
K# C �2

0 In�n

��1
k# .x/. (23)

Thus given (noisy) observations .x1, y1/, : : : , .xn, yn/ from an unknown function f , with GP
regression, we first infer from the observations hyperparameters # and �2

0 , and then obtain for any
new point x the distribution over function values p.f .x/jX , # , x, y/ D N .�.x/, �2.x//.

††The assumption of zero mean is made here for notational convenience. (Centering the data combined with an ergodicity
assumption allows to avoid a non-zero mean.).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

266 T. JUNG ET AL.

4.4. Choosing an acquisition function

Early work [12, 13] suggested to take as acquisition function the probability of improving over
the current maximum xC WD argmaxx2Dn

f .x/ within the training data Dn. The resulting prob-
ability of improvement (PI) acquisition function is given by P.f .x/ > f .xC/ C
/, which we
write as

.PI GPn/.x/ WD ˆ0,1

�
�n.x/ � f .xC/ �

�n.x/

	
, (24)

where �n.x/ is the mean and �2
n.x/ the variance of the predictive distribution as output by GPn

for point x (Equations (22) and (23)), and ˆ0,1 is the standard normal cumulative distribution.
The trade-off parameter
 > 0 controls the compromise between the strength of the potential
improvement and its probability to be realized.

An alternative acquisition function is the expected improvement (EI), which can be evaluated
analytically [12], giving

.EI GPn/.x/ WD �n.x/.Zˆ0,1.Z/ C �0,1.Z//, (25)

where Z WD .�n.x/ � f .xC/ �
/=�n.x/, and �0,1 is the probability density of the standard normal
distribution.

Figure 4 illustrates how GPO works and how PI and EI give rise to distinct sampling behavior by
using the same GP and data. Which of the acquisition functions works best for a given problem is
usually difficult to say in general and needs experimentation; in our examples in Section 5, we have
found that EI worked best.

5. EXPERIMENTS

This section reports an extensive evaluation of OLTs. The purpose of the experiments is to compare
OLT to both pure DPS and pure LT approaches and to demonstrate its strengths across a variety of
domains. To this end, we have chosen four challenging benchmark problems, which are described in
Section 5.1: inverted pendulum, double inverted pendulum, acrobot handstand, and HIV drug treat-
ment. We compare our approach to two of today’s standard methods for DPS and to four generic LT
policies, all of which are described in Section 5.2. The comparison is structured as follows:

� In Section 5.3, we study the performance of OLT policies in terms of accumulated reward
achieved after learning and compare OLT with both state-of-the-art DPS and LT approaches.
We show that OLT policies significantly outperform the other approaches in some cases and
perform about the same in the remaining ones. We also show that OLT requires significantly
fewer online resources than comparable LT policies.

� In Section 5.4, we study the offline complexity of OLT learning and compare its sample effi-
ciency (both in terms of policy evaluations and number of simulated transitions) with that of
DPS. We show that most of the time OLT requires fewer samples than its DPS competitors to
reach high-performance policies.

� In Section 5.5, we compare how the different policy parameterizations behave with respect
to their respective hyperparameters and show that the OLT representation requires much less
trial-and-error effort than the traditional parametrizations studied in DPS.

� In Section 5.6, we study the robustness of LT, standard DPS, and OLT when the initial states
of the testing set differ from the initial states of the training set and show that OLT policies are
quite robust with respect to both small and large perturbations of the initial state.

� Finally, in Section 5.7, we examine the robustness of OLT when the budget of allowed
node expansions used during evaluation of a policy differs from the budget that was used to
learn it.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 267

Figure 4. A concrete example illustrating Gaussian process optimization over four stages n D 4, 5, 6, 7. Each
panel consists of two subplots. Each upper subplot shows the true (unknown) function we want to optimize
as a dashed curve and the locations at which it was previously evaluated as black filled dots. Using these
as training data Dn in a GP, the black curve denotes the expected value (mean) of the resulting predictive
distribution from Equation (22) and the shaded area denotes its variance from Equation (23), both evaluated
at all locations x 2 Œ�5, 5�. As one would expect, the predictive variance (and thus the uncertainty about the
estimates) is close to zero at ‘known’ locations

�
it would be equal to zero if �2

0
D 0

�
and grows the farther

one gets away from them. Each lower subplot shows the result of evaluating the acquisition function for one
of the two possible choices EI or PI. Note that each of these would lead to a (slightly) different sampling
behavior; here we have chosen the next sample location (marked in the figure by the star-shaped symbol) as

the one that maximizes EI.

5.1. The benchmark domains

We consider four well-known challenging benchmark domains that exhibit some common character-
istics: a continuous vector-valued state space, finite (discretized) actions, deterministic transitions,
and rewards that to some extent are informative about the goal. Each domain corresponds to a real
physical process (either mechanical or bio-chemical) internally described by a system of nonlinear
differential equations, none of which can be solved by traditional control methods such as LQR.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

268 T. JUNG ET AL.

(a) (b) (c)

Figure 5. From left to right: the inverted pendulum task, the double inverted pendulum linked with a spring
task, and the acrobot handstand task.

The transition function is obtained by discretizing in time and keeping the controls constant; the
actions are obtained by discretizing the bounded control space.

Inverted pendulum. Our first domain is the inverted pendulum, a simple enough toy problem
that is widely used in benchmarking different algorithms. The goal is to swing up and stabi-
lize a single-link inverted pendulum as is shown in Figure 5(a). As the motor does not provide
enough torque to push the pendulum up in one single rotation, the pendulum needs first to be
swung back and forth to gather energy before then being pushed up and balanced. This cre-
ates a nonlinear control problem. The state space is two dimensional, x D .x1, x2/ � �

�, P��
,

with � 2 Œ�� , �� being the angle and P� 2 Œ�10, 10� being the angular velocity. The con-
trol force is discretized to a 2 f�5, �2.5, 0, C2.5, C5g and held constant for �t D 0.2 s. The
dynamics of the system and physical parameters we used to instantiate the problem are specified
in Appendix A.

To formulate this task as an optimal control problem of the form given in Equation (5), we used
the following settings: the set of initial states is the singleton X0 D f.� , 0/g, the reward is defined as
%.x.t/, u.t// WD 1 � 0.1

�
�.t/2 � 0.1 P�.t/2 � 0.1u.t/2

�
, the discount factor is set to � D 0.99, and

each policy is evaluated for H D 500 steps.

Double inverted pendulum. The next domain is a more complex variant of the inverted pendulum
given above. This time we have two poles mounted each to a separate cart as depicted in Figure 5(b).
The two carts are linked by a spring and allowed to move some distance horizontally on the x-axis
(until they collide with a wall, which leads to a failure). Each cart is controlled separately;
however, because of the spring, their dynamics is coupled. As in the inverted pendulum, the goal is
to swing up and stabilize the poles as quickly as possible, but now by moving the carts back and
forth. This creates a rather challenging nonlinear control problem. The state space is eight dimen-

sional, x �
�
x1, x2, Px1, Px2, �1, �2, P�1, P�2

�
, with xi 2 Œ�1, 1� being the position and Pxi 2 Œ�10, 10�

the velocity of the i th cart, and with �i 2 Œ0, 2�� being the angle and P�i 2 Œ�5, 5� being the angu-
lar velocity of the i th pole. The two-dimensional control vector is discretized to the four actions
a 2 f.�2, �2/, .�2, C2/, .C2, �2/, .C2, C2/g and held constant for �t D 0.1 s. The dynamics of
the system and physical parameters we used to instantiate the problem are specified in Appendix B.
To formulate this task as an optimal control problem of the form given in Equation (5), we used the
following settings: the set of initial states is the singleton X0 D f.0, 0.5, � , � , 0, 0, 0, 0/g, the reward
is defined as %.x.t/, u.t// WD Œ.1 C cos �1.t // C .1 C cos �2.t //�=4, the discount factor is set to
� D 0.999, and each policy is evaluated for H D 250 steps. In order to achieve a high reward in this

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 269

domain, the policy has to both balance the poles and not collide with one of the walls. Low rewards
usually occur because of such collisions.

Acrobot. Our third domain is the acrobot from [14]: a two-link robot that resembles a gymnast
swinging up above a high bar (Figure 5(c)). The acrobot freely swings around the first joint (the
hands grasping the bar) and can exert force only at the second joint (bending the hips). The acrobot
is an underactuated system; the task we consider here is the inverted ‘handstand’ position, which is

hard to solve using standard RL methods. The state space is four dimensional, x �
�
�1, �2, P�1, P�2

�
,

with �1 and �2 being the angle of the upper and lower links, and P�1 and P�2 their angular velocity,
respectively. The continuous control is discretized to f�1, C1g and held constant for �t D 0.2 s. To
facilitate staying stable in the inverted handstand position (a highly unstable equilibrium), we also
include a third non-primitive ‘balance’ action, which chooses control values derived from an LQR
controller obtained from linearizing the system dynamics about the handstand position. Note that
this balance action produces meaningful outputs 2 Œ�1, C1� only very close to the unstable equi-
librium and thus cannot be used to bring the acrobot from the initial state to the goal region. The
dynamics of the system and physical parameters we used to instantiate the problem are specified in
Appendix C.
To formulate this task as an optimal control problem of the form given in Equation (5), we used
the following settings: the set of initial states is the singleton X0 D f.��=2, 0, 0, 0/g, the reward is
defined by the height of the end of the second link (the feet) as %.x.t/, u.t// D 2 C cos.�1.t / �
�=2/ C cos.�1.t / C �2.t / � �=2/ (C100 if handstand), the discount factor is set to � D 1, and each
policy is evaluated for H D 500 steps.‡‡

HIV drug treatment. Our last problem domain is taken from a real-world application in medical
control [15]. The aim is to optimize the treatment of a patient infected by HIV over a period of a few
years using what is known as structured treatment interruption (STI). The treatment of the patient
consists of choosing a combination of two drugs, yielding four possible choices (including the case
where no drug at all is taken), to administer every 5 days. Administering the correct cocktail with
the correct timing can hinder the spread of HIV-infected cells and will eventually bring the patient
into a healthy state (a locally stable equilibrium); however, the drugs also have side effects on the
patient’s health, and thus their use should be kept to a minimum. Finding an optimal treatment strat-
egy is considered a challenging optimal control problem with highly nonlinear transition dynamics
[16]. The system is represented by a six-dimensional state vector x � �

T1, T2, T �
1 , T �

2 , V , E
�
, where

T1 > 0 and T2 > 0 are the count of healthy type 1 and type 2 cells, T �
1 > 0 and T �

2 > 0 are the
count of infected type 1 and type 2 cells, V > 0 is the number of free virus copies, and E > 0 is
the number of immune response cells. The two-dimensional control vector u � ."1, "2/ consists of
the dosage of two drugs, which is discretized to the four actions f.0.3, 07/, .0.7, 0/, .0, 0.3/, .0, 0/g
and held constant for �t D 5 days. The dynamics of the system and physical parameters we used to
instantiate the problem are specified in Appendix D.

To formulate this task as an optimal control problem of the form given in Equation (5), we used
the following settings: the set of initial states is the singleton X0 D f.163573, 5, 11, 945, 46,
63919, 24/g, which corresponds to the unhealthy locally stable equilibrium (i.e., a high number of
HIV-infected cells). The reward is composed of the number of infected and uninfected cells plus
an additional term reflecting the cost for using a drug: %.x.t/, u.t// D �0.1V.t/ C 10, 000E.t/ �
20, 000"1.t / � 20, 000"2.t /. The discount factor is set to � D 0.98, and each policy is evaluated for
H D 300 steps. Note that in this domain, unlike in all the previous ones, the reward is not upper
bounded (and thus the optimistic tree-development strategy from Equation (12) cannot be applied).
Moreover, the values of the state variables can vary over a large range, from 0 up to the order of 106;
to counter any unwanted scaling effects in our learning methods, we transformed the state variables
by taking their logarithm.

‡‡Note that as � D 1, the criterion that we optimize for this problem is the (time-independent) finite sum of rewards.
Changing the criterion in this way does not make any technical difference for any of the DPS techniques.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

270 T. JUNG ET AL.

5.2. Contestant methods

We compare OLT policies with both pure DPS approaches and pure LT approaches. From the point
of view of DPS, we consider three alternative policy representations (neural networks, adaptive
radial basis functions, and OLTs) and two alternative optimizers (CE and GPO). Our pure LT
approaches are composed of the uniform tree-development strategy, the optimistic development
strategy proposed in [2], and two greedy tree-development strategies.

DPS representations. We consider the following two common policy representations:

� Neural network. This representation is probably the most widely used in the DPS literature
[1]. The policy is represented by a fully connected feed-forward neural network, which has
one hidden layer, one input layer with one neuron per state variable, and one output layer with
one neuron per possible action (plus bias neurons). Given the current state, the neural network
computes one activation score per action, and the policy returns an action with maximal score.
Hidden nodes have tanh activations, and their number is a hyperparameter that enables to con-
trol the complexity of the policy; output nodes have a linear activation function. The entries of
the state vector fed to the input layer are scaled to lie in Œ�1, 1�.

� Adaptive radial basis functions. In this representation proposed in [17], a policy is encoded
through a set of radial basis functions defined over the state space, where each basis function
is attached to a particular action. Given the current state, the policy works by searching for
the nearest basis function (‘nearest’ being measured under the Mahalanobis distance metric)
and by returning the action attached to it. Each single basis function is parameterized by the
location of its center, the length scales along each dimension, and the recommended action.
The entries of the state vector fed to the policy are raw values because the scale is incorporated
into the adaptive length scales. The number of basis functions used to encode the policy is a
complexity hyperparameter that has to be tuned externally.

Table I summarizes the characteristics of the three policy representations that we consider in this
paper. Each representation has a hyperparameter that controls the complexity of the policy. Note that
OLT is unique in the sense that the number of parameters in the representation—the dimensionality
of the search space over which global optimization is performed—does not depend on the value of
this hyperparameter.

DPS optimizers. CE [7] is a versatile global optimization technique that is widely used in DPS [1].
In particular, this method was used in previous work [3], under the alternative name of estimation of
distribution algorithm. The chief advantage of CE (and the main reason for it being highly popular)
is that it is very easy to implement and, because it is population based, can deal with a potentially
very large number of sample locations (i.e., CE operates only on small batches of sample locations
the size of which is constant throughout, whereas GPO has to consider all current sample locations
to determine the next one). The algorithm works by fitting a distribution to the best currently found

Table I. Summary of the policy representations compared in this paper.

Name Policy representation Hyperparameter Number of parameters

Neural network (NN) Feed-forward neural network
with tanh activation and one
hidden layer

Number of hidden
neurons (nHidden)

.nx C 1/ � nHidden C
.nHidden C 1/ � K

Radial basis functions
(RBF)

Adaptive radial basis functions
with Mahalanobis distance as
in [17]

Number of basis
functions (nBF)

2 � nx � nBF

Optimized look-ahead
trees (OLT)

Look-ahead tree (algo 2)
with optimized node scor-
ing heuristic e.� I �/ as in
Equation (13)

Budget of node
expansions (hmax)

3 � nx

nx denotes the dimensionality of the state space, and K is the number of actions.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 271

solutions and by using this distribution to sample new candidate solutions. In our case, we use a
simple variant of CE that relies on a multi-variate Gaussian distribution with diagonal covariance
matrix. This distribution is first initialized to cover the whole search space: we start with a Gaussian
with zero mean and a diagonal covariance matrix, the entries of which are equal to the square of
the half-length of an interval centered at zero and containing the corresponding coordinate of the
search space. The algorithm then draws a number NCE of observations from this distribution, where
each observation is a parameter vector and represents a possible policy, evaluates the NCE resulting
policies, and sorts them according to their performance. It then picks a number MCE of the top best-
performing policies and uses them to update the generating distribution: the old mean is replaced by
the sample mean, and each diagonal entry of the covariance matrix is replaced by the per-coordinate
variance of the MCE best parameter vectors. These two steps are iterated until a stopping condition,
in our case a predefined maximum number of iterations, is reached.

LT strategies. Classical LT policies rely on fixed generic node scoring functions. In order to
demonstrate the benefits of learning the node scoring function in a problem-driven way, we compare
our approach OLT to LT policies by using euniform (uniform tree development, see Equation (11)),
eoptimistic (the method proposed in [2], see Equation (12)) and two forms of greedy tree development:

egreedy�1.ni ,h/ WD %tCh egreedy�2.ni ,h/ WD �h%tCh. (26)

5.3. Performance comparison

We start by comparing the performance we obtain with the different approaches discussed
previously. Note that, contrarily to OLT, NN and RBF typically involve solving challenging global
optimization problems with tens or hundreds of parameters. Whereas GPO is quite efficient for
problems that have a reasonable number of parameters, this approach requires sophisticated approx-
imations to scale to higher-dimensional problems (e.g., see [18]). In this paper, we use a naive
textbook implementation of GPO that is able to solve OLT optimization problems, but that suffers
from scaling problems when the number of samples increases, which happens to be problematic
in high-dimensional problems. Therefore, we use CE to learn NN-based and RBF-based policies.
To make the comparison fair, we also use CE to optimize the parameters of OLT policies in this
first part of our empirical study. A comparison between CE and GPO for learning OLT policies is
provided in Section 5.4.

Experimental protocol. We use the same test procedure for all policies, and the performance
is measured as the discounted sum of rewards obtained when executing the policy for H steps
(Section 5.1), starting from the initial state§§ x0.

The parameters of CE were tuned by hand so as to give in each case a good result with a rea-
sonable amount of computation. The result of this tuning is given in Table II. Note that, as OLT
involves lower-dimensional optimization problems than the two other representations, the required
optimization budget (NCE � nIter) is lower on all problems for this representation. For the RBF
representation, the CE has to optimize both continuous parameters (RBF centers and length scales)
and discrete parameters (action assignments). To optimize these discrete parameters, we chose a
multinomial distribution with Dirichlet prior where the initial count of each action was set to 10.
The hyperparameters of the three policy representations were tuned by grid search. For both
the number of hidden nodes in the NN representation and the number of basis functions in
the RBF representation, we tested the following values: f1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 30, 40, 50g.
As in [2, 3], we tested budget values for LT policies that correspond to the number of nodes
of fully developed trees of varying depth d D 1, : : : , 8. These budgets values are as follows:
hmax 2 f1, 1 C K , 1 C K C K2, 1 C K C K2 C K3, : : :g.

§§Recall that for each of our four benchmark domains, the set X0 only contains one single initial state x0. Yet as we
will see below, robustness with respect to perturbations of the initial state is one of the strengths of LT policies, so that
optimizing only over one initial state is justified.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

272 T. JUNG ET AL.

Table II. Cross-entropy parameters for the four problems and the three policy representations.

Inverted pendulum Double inverted pendulum Acrobot handstand HIV drug treatment

NCE MCE nIter NCE MCE nIter NCE MCE nIter NCE MCE nIter

NN 400 20 100 400 20 200 1000 20 50 400 20 200
RBF 200 20 100 500 10 200 500 10 200 500 20 200
OLT 100 10 25 100 10 50 100 10 50 100 10 50

Table III. Quality of learned policies with neural networks, radial basis functions, and optimized
look-ahead trees.

Inverted Double inverted Acrobot HIV drug
pendulum pendulum handstand treatment

NN
nHidden 50 50 20 15
Performance 89.9 134.9 3.89e4 0.88e9

RBF
nBF 30 6 30 15
Performance 73.4 122.5 4.09e4 1.39e9

OLT
Budget 31 1365 40 85
Performance 93.2 145.2 4.07e4 4.22e9

For each problem, the best performance is shown in bold. For each method and each problem, we also display the
value of the tuned hyperparameter.

Performance comparison. Table III reports the best scores obtained by the tree kinds of policies
as well as the values of the tuned hyperparameters. We observe that OLT works significantly better
than the other DPS methods on three out of the four benchmark domains, which demonstrates the
usefulness of the LT-based representation over the flat representations used in traditional DPS. On
the HIV domain, OLT enables us to obtain even better results than the current state-of-the-art [16]
(4.22e9 against 4.16e9), whereas both of the two other representations only manage to reach policies
with very moderate scores (1e9). RBF slightly outperforms OLT on the acrobot domain. However,
as we will see later, this result holds thanks to a very careful tuning of the number of radial basis
functions, whereas OLT works well for a wide range of budget values.

Learning the node scoring function and online efficiency. We have seen that the OLT policy
representation enables to reach policies outperforming those obtained with neural networks and
radial basis functions. One could wonder whether this result could be obtained by using LTs without
learning. We therefore performed a series of experiments that, for various budget values, compare
the performance of LT policies, with and without learning. Note that in these experiments, the budget
is set before optimization; hence, we optimize one OLT policy per tested budget value.

The results of our comparison between OLT policies and traditional LT policies are given in
Figure 6. OLT policies achieve a better score on three domains out of the four (inverted pen-
dulum, acrobot, and HIV). Furthermore, thanks to learning, OLT requires a significantly smaller
budget and hence online computational resources to reach a given level of performance, again on
three domains out of the four (double inverted pendulum, acrobot, and HIV). The most impres-
sive results are obtained on the HIV domain, for which an OLT policy with a budget of two node
expansions already performs better than all other LT policies with a budget up to hmax D 87, 381

node expansions (which corresponds to fully developed trees of depth 8). An OLT with such a small
budget consists in first expanding the node corresponding to the current state and then expanding
one of its successor nodes. Our results show that carefully selecting this successor state is much
more efficient to solve the HIV problem than developing large trees in a generic way. In the same
spirit, on the acrobot problem, an OLT policy with only eight node expansions performs slightly
better than a uniformly developed tree with a budget of 9841 nodes (corresponding to a tree of
depth of 7).

On the double inverted pendulum problem, OLTs are ultimately outperformed by LT policies
using u-score. However, we observe that our approach is much better able to deal with a constrained

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 273

Figure 6. Performance of optimized look-ahead tree policies (OLT) versus baseline look-ahead tree policies
for various budget values. As � D 1 in the acrobot domain, the greedy-2 policy degenerates to greedy-1 and
the u-score-based policy degenerates to the uniform policy. As the reward is not upper bounded in the HIV
domain, the u-score is not defined for this problem. As explained in the text, because the time required to
make a single decision increases linearly in the number of node expansions and because we have to evaluate
many more policies to produce a single OLT curve than we have to produce an LT curve, we did not evaluate

OLT on the same large budget values as LT.

computational budget. For example, using only 341 node expansions, we obtain a reasonably well-
performing policy, that outperforms all other generic tree-development strategies even when they
have very large budgets.

On the inverted pendulum problem, we see that all LT policies achieve a near-optimal perfor-
mance (which we can compute for this domain, e.g., see [19]) already with a budget of 5. It thus
seems that there is little interest in learning a specific node scoring function for this problem.

Illustration of the HIV policy. In order to allow a direct comparison between the performance of
our method on the HIV domain with the performance given in the earlier related work [16, 17, 20],
we plot in Figure 7 the trajectory that we obtain on the HIV system. These results show that
our policy applies reverse transcriptase inhibitor (RTI) and protease inhibitor (PI) drugs in a way
which is very similar to what other state-of-the-art policies do (which, however, are obtained
in a fundamentally different manner, e.g., by fitted Q-value iteration using millions of sample
transitions).

5.4. Offline complexity and sample efficiency

We have seen that the OLT representation enables to reach high-performance policies, which
often outperform alternative DPS representations. Besides performance, another aspect of major

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

274 T. JUNG ET AL.

Figure 7. Trajectory of the HIV system when controlled by an OLT policy with a budget of 85 node expan-
sions. The first six panels show the development of the six system states, the following two panels show the

dosage of the RTI and PI drugs applied, and the last panel shows the reward obtained in each step.

importance in DPS is the computational complexity of the learning process, that is, how fast good
policies can be obtained. We study the offline computational complexity by looking at the perfor-
mance of our different methods as a function of two metrics: the number of policy evaluations
performed and the number of transitions simulated.

Experimental protocol. The most common solution to measure sample efficiency in a DPS
scheme is to look at the number of policy evaluations required to reach a certain level of perfor-
mance. This measure corresponds to the number of different parameter values that have been tried
by the optimization algorithm. Here, we consider two different optimization algorithms: CE and
GPO. CE is tuned as previously and GPO is instantiated as follows: as kernel, we chose, as it is
standard for GP regression, the squared exponential given in Equation (18), where the hyperparame-
ters are found for each batch of data via marginal likelihood optimization [11]. In this optimization,
the best setting of the hyperparameters found in the previous iteration is used as the mean of the
hyperprior in the next iteration. To generate an initial batch of training data, we generated 10 sam-
ples (100 samples in the double inverted pendulum domain) via Latin hypercube sampling; these
initial samples are taken into account when we compare sample efficiency. To find at each iteration
of GPO the best next sample location, we optimize the EI acquisition function from Equation (25)
with
 D 0.01 using DIRECT.

We are interested in two questions: ‘How does GPO compare against CE when using the OLT rep-
resentation?’ and ‘How does the choice of representation impact the sample efficiency?’ To answer
these questions, we selected the three setups (OLT with GPO, OLT with CE, and RBF with CE) and
plotted the corresponding learning curves for different values of the hmax and nBF hyperparameters.
These plots are given in Figure 8.

Impact of the optimizer. We observe that GPO requires about one order of magnitude fewer
policy evaluations than CE on all four problems (note that the GPO curves stop at 500 policy eval-
uations, whereas we display CE results until 5000 evaluations). We observe no notable difference
between the performance of the final policies obtained with GPO and CE, and the overall shapes of
the learning curves are similar. Note that CE is much easier to implement than GPO. Therefore, in
the light of these results, we suggest using CE when sample complexity is not a big problem and
selecting GPO in the case where the number of policy evaluations is a strong applicative constraint.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 275

Figure 8. Performance versus number of policy evaluations. From left to right: OLT with GPO, OLT
with CE, and RBF with CE. From top to bottom: inverted pendulum, double inverted pendulum, acrobot

handstand, and HIV drug treatment.

Using GPO requires a bit more work, but is profitable because it enables to roughly perform learning
one order of magnitude faster.

Impact of the representation. Our results show that optimizing LTs is substantially more sample
efficient than optimizing the parameters in a basis function representation, this difference being 5K
versus 50K–100K policy evaluations when using the CE method. The same kinds of differences
are observed when comparing with the NN representation. One obvious explanation for this is that
optimizing the node scoring function involves fewer parameters, which results in the search space
having lower dimensionality (cf. column 4 of Table I). As mentioned previously, a key advantage
of OLT is that the complexity of the policy (i.e., the computational budget hmax) can be arbitrarily
scaled without increasing the number of parameters to be optimized. In contrast, for both the neu-
ral network and adaptive basis function representation, higher complexity can only be achieved at

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

276 T. JUNG ET AL.

Figure 9. Performance versus number of simulated transitions.

the expense of a larger number of policy parameters, which generally involves harder optimization
problems.

Performance versus number of simulated transitions. An important characteristic of OLT poli-
cies is that they use more online computational resources than NN and RBF policies to take their
decisions. Specifically, in order to take a single decision, an LT policy requires simulating Khmax

transitions using a generative model of the problem, because computing the policy involves expand-
ing hmax nodes and expanding a node invokes the model once per possible action. Hence, it is also
important to study the learning performance with respect to the number of simulated transitions.
This new sample complexity measure is computed in the following way. Note that one policy evalu-
ation requires making a trajectory of H steps (assuming we have a unique training initial state) and
that the simulator is called once per step of this trajectory. The number of simulated transitions per
policy evaluation is thus H for NN and RBF policies. If we add the additional simulation cost of
OLT policies, the number of simulated transitions per policy evaluation becomes H � .1 C Khmax/.
We compare our three policy representations with the tuned hyperparameters given in Table III.
As OLT policies with high budget values are strongly disadvantaged w.r.t. the number of simulated
transitions, we consider an additional low-budget OLT setting, where the budget values were chosen
by hand to be as small as possible while still producing reasonably good policies. Figure 9 reports
the learning curves obtained by CE for the NN and RBF settings and by both GPO and CE for the
two OLT settings.
We observe slightly different behaviors depending on the problem. In the first two problems, the
best policies are obtained with NN and RBF for small number of simulated transitions, and after
a given threshold, OLT policies become better. This was expected as evaluating a single OLT pol-
icy can already require simulating thousands of transitions. In the acrobot and HIV problems, OLT
policies outperform the other ones on almost the whole x-axis range, which was more unexpected.
This proves that the larger number of transitions required to take decisions is partly compensated by
the smaller number of parameters to optimize.
On all four problems, we observe that (i) low-budget OLT policies outperform tuned OLT poli-
cies when the number of simulated transitions is small, (ii) policies optimized with GPO always

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 277

Figure 10. Performance versus hyperparameter value. Top: Performance of NN as a function of the number
of hidden neurons. Bottom: Performance of RBF as a function of the number of basis functions.

outperform their counterparts optimized with CE, and (iii) the asymptotically best (or almost best in
the case of acrobot) policies are based on OLTs.

5.5. Robustness with respect to hyperparameters

In addition to performance and learning efficiency, another property of DPS approaches particu-
larly relevant for practical applications is that their hyperparameters should be easy to tune. Indeed,
tuning these parameters is part of the whole policy learning process and contributes to the offline
complexity; hence, the more trial and error is required, the longer it takes to obtain high-performance
policies. The behavior of OLT policies as a function of the hmax hyperparameter was shown in
Figure 6. We report the performance of the other two kinds of policies as a function of their
respective hyperparameters in Figure 10. As CE is a stochastic optimization algorithm, we per-
formed these experiments ten times for each setting and report the empirical means and standard
deviations.

Depending on the problem domain, NN and RBF can be quite sensitive to the setting of their
complexity parameter. For both methods, there are some problems for which tuning the complexity
hyperparameter is rather easy and others for which it is much harder. We observe that on the acrobot
benchmark, which is the only one where NN and RBF are able to produce policies competitive with
OLT policies, both the performance of NN and RBF policies have large variances: performance
varies strongly both for increasing the complexity (number of nodes/basis functions) or across dif-
ferent runs in the same setting. To understand this large variance, it should be noted that acrobot
is different from the previous domains in that there is no partial solution: a policy is either able to
swing up and successfully balance in the handstand position indefinitely (the reward is > 104) or
not at all (the reward is of order 103 at most). Successful balance is only possible if the system
approaches the tiny region in the state space from where LQR can take over.

Although we observe in some cases that good policies can be found using a fairly compact rep-
resentation, our results indicate that, seen across all domains, finding the best possible complexity
parameter for NN and RBF requires a large amount of trial-and-error experimentation. On the other
hand, as is shown in Figure 6, OLTs are rather easy to tune, because, in general, increasing the bud-
get increases the quality of the policy or only slightly degrades it. In all our experiments, a default
value corresponding to a fully developed tree of depth 3 or 4 yielded good policies.

5.6. Robustness with respect to initial states

In DPS, policies are optimized w.r.t. a particular distribution over initial states. An important issue
is that this distribution may not perfectly match future unexpected usage of the learned policy. In

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

278 T. JUNG ET AL.

(a) NN (b) RBF (c) OLT

Figure 11. Regret for NN, RBF, and OLT policies on the inverted pendulum domain when the testing initial
state differs from the training initial state.

general, preference should be given to policies that are robust w.r.t. such mismatches. To compare
the robustness of the NN, RBF, and OLT policies and to study how well they are able to general-
ize when starting from initial states, which differ from those used during learning, we performed
experiments by evaluating them on perturbed or completely different initial states on the inverted
pendulum problem and the HIV drug treatment problem.

Stability on inverted pendulum. To analyze the stability of the various policies on this domain,
we started by learning NN, RBF, and OLT policies with the single initial state x0 D .�� , 0/ and
then evaluated these policies across the whole domain by systematically varying the initial state.
Remember that in the pendulum domain, other than in the higher-dimensional domains, we are
actually able to compute the optimal policy (using a high-resolution grid). We use this latter policy
to report the regret for each initial state, that is, the difference between the optimal performance
and performance obtained from the learned policy. The results of these experiments are given in
Figure 11. It can be seen that an OLT policy (budget 20) performs well and incurs close to zero
regret across large parts of the state space, with an exception being the region around .� , 0/ (which
can be explained by the choice of the parametrization in Equation (13) in which � and �� are max-
imally separated). When comparing with NN and RBF policies, we see that both representations are
less able to generalize and can incur comparatively large regrets even for small perturbations.

Stability on HIV drug treatment. Figure 12 illustrates the robustness of an OLT policy (bud-
get 85) in the HIV domain. This time we are no longer able to exhaustively sample the state space;
instead, we perturb each state variable in turn by multiplying each variable of x0 independently by a
factor ranging from 0.1 to 10. The figure then shows that the performance stays largely stable even
for large perturbations.¶¶ In particular, even for large perturbations, the performance of the OLT
policy remains significantly higher than the best results obtained by NN and RBF (>3e9 vs. 	1e9).

5.7. Robustness with respect to the budget

With DPS, OLT policies are optimized w.r.t. a fixed budget of allowed node expansions. We now
examine how robust the solution is when the budget used during evaluation of a policy differs
from the budget used to learn it. For each of the four domains, we took two or three representative
OLT policies and evaluated them with various evaluation budgets. Figure 13 shows the results of
this experiment.

¶¶Note that in doing this we did not pay attention to the physical meaning of the variables; thus by increasing the value of
the sixth state variable, it appears as if the policy begins to perform even better. However, as this state variable denotes
the count of healthy cells in the blood of a patient, increasing its value by an order of magnitude alters the whole
problem.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 279

Figure 12. Robustness of an OLT policy for the HIV drug treatment domain. The plot examines how the
performance of the policy (with budget 85) decreases when the initial state for which the policy was opti-
mized is perturbed: each curve corresponds to the perturbation of one state variable independently. The

vertical line at x D 100 denotes the unperturbed value.

Figure 13. Robustness of OLT when the budget of allowed node expansions used during evaluation of a
policy differs from the budget that was used to learn it. Each curve corresponds to a policy that was first
optimized for a fixed budget of node expansions (as indicated by the legend) and then later evaluated with

the number of node expansions varying as indicated by the x-axis.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

280 T. JUNG ET AL.

We observe different kinds of behaviors. In some cases, OLT policies are rather robust w.r.t.
changes in the evaluation budget. As an example, the HIV policy learned with a budget of 40 works
reasonably well for evaluation budgets ranging from 10 to 100. In some other cases, small changes
in the budget lead to fast performance drops. The acrobot domain leads to an extreme case of this
phenomenon, in which, as an example, the OLT policy trained for a budget of 40 only works well
if the evaluation budget is also 40. These results thus stress the fact that OLT policies are opti-
mized for a given online budget and that the same budget should be available during both learning
and evaluation.

6. RELATED WORK

The approach proposed in this paper lies at the intersection of two families of solutions for sequen-
tial decision making. We first overview DPS in Section 6.1 and then discuss relevant work on LT
search in Section 6.2. Section 6.3 positions our approach with respect to model predictive control
(MPC) techniques. Finally, Section 6.4 suggests that OLT policies belong to a larger emergent class
of techniques: parameterized algorithms for decision making.

6.1. Direct policy search

Direct policy search is a widely used class of solutions that comes from RL. For a general overview
over the field of RL, refer to one of the books in [1,6,21,22]. Over the years, many DPS techniques
have been proposed and giving credit to every one of them would be hardly possible. Individual
techniques differentiate themselves by their policy parametrization and the optimization method
used for identifying parameters leading to a high-performing policy. The main distinction is whether
the policy search is gradient free or gradient based.

Gradient-based DPS, which very often also goes by the name of policy-gradient method, follows
an iterative optimization scheme and uses the gradient of the value function to adapt and change the
policy parameters such that performance increases. This requires the value function to be a smooth
function of the policy parameters, which is typically achieved by considering compatible stochastic
policies. Often however, the gradient cannot be computed analytically because the value function
itself is not available in closed form. Instead, the gradient has to be estimated using, for example,
finite difference approximation, Monte Carlo rollouts, or value function approximation, which leads
to the actor-critic methods. One of the best known examples is probably the natural policy-gradient
method described in [23]; another more recent example is the work in [24]. Although impressive
results have been obtained in particular for learning controllers in robotics, policy-gradient methods
do have some weaknesses: the most notable ones being a high sensitivity to the initial value of the
policy parameters (the starting point of the iteration), abundance of local minima, and difficulties
when the return is noisy or stochastic. Note that in this paper we do not deal with gradient-based
policy search.

Gradient-free DPS on the other hand finds the best policy parameters via derivative-free global
optimization. Its main strength is simplicity and generality; the latter meaning that, because it is
derivative free, the representation of a policy by any algorithm with adjustable parameters is admis-
sible, and not only those for which the value function will be differentiable. As gradient-free DPS
techniques perform a global search in the parameters space, they do not suffer from local minima
or from the problem of having to guess a good initial solution; these techniques were also shown to
cope well with stochastic returns and hidden states. For certain domains in RL such as Tetris, the best
performing policies known today have been obtained by gradient-free DPS (see [25] and follow-up
work). The weakness of this approach is that conceptually it is less sample efficient than policy-
gradient methods and thus will require a substantially higher number of policy evaluations. This
comes as a consequence of having to solve a global optimization problem over a potentially high-
dimensional search space; however, by carefully designing the policy parametrization and choosing
powerful optimizers, sample efficiency is often improved.

Early examples of DPS came under the guise of evolutionary approaches for RL, or neuroevo-
lution, and consisted of neural networks as policy representation, with the weights making up the

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 281

policy parameters, and variants of genetic algorithms acting as global optimizer. Examples can be
found in [26, 27], where later work also considered optimization of the network structure [28] or
using recurrent neural networks to better cope with hidden states [29]. A recent comparison of these
methods can also be found in [30,31].

As an alternative to genetic algorithms, more recent work started to explore the use of the CE
method [7], or variants such as the covariance matrix adaptation evolution strategy CMA-ES [8] as
global optimizer for policy search. Examples include [32], where the policy was represented by a
simple linearly parametrized function; [31], where the policy was represented by a neural network;
or [17], where the policy was represented by adaptive radial basis functions. These latter two were
also used in this paper as baseline methods during the experimental evaluation of our LTs. Another
example for a policy parametrization is to use domain-specific building blocks, such as motor prim-
itives, as was done in [5,33] to optimize the gait of the AIBO quadrupedal robot. A different kind of
policy representation is used in [34] to learn a policy for the game of Ms. Pac-Man; here the policy
is represented by a list of domain-specific parameterized rules.

Section 4 described a third option for the global optimization part: GPO [10,13]. GPO can achieve
very good sample efficiency and was previously considered for policy search in [4, 5]. In the end,
however, the choice of which global optimizer one uses will always be secondary; what is more
important is how the policy is represented and to what extent this representation facilitates the
optimization process by shaping the ‘fitness landscape’.

6.2. Look-ahead tree search

The algorithm studied in this paper can also be related to the larger field of tree-based planning and
search. One of the most seminal works in this field is the A� algorithm [35], which uses a best-first
search to find the shortest path from a source state/configuration to a goal state/configuration. The
conceptual difference between A� and related methods on the one side and what we are presenting
here on the other side is that our method implements an online mechanism and a finite computational
budget mechanism: a search tree is grown at each decision-making step, and only a finite number of
node expansions is allowed during tree development (the larger the computational budget, the better
the decision). In A�, the search tree needs to be grown until a goal state is reached. Our method
is thus capable of online planning and producing closed-loop policies, whereas A� is not. More
specifically, the algorithm studied in this paper can also be interpreted as a method for learning an
exploration strategy in a tree. In A�, the function used for evaluating the nodes is the sum of two
terms: the length of the so far shortest path from the source to the current node and an optimistic
estimate of the shortest path from this node to the goal (a so-called admissible heuristic). Several
authors have sought to learn good admissible heuristics for the A� algorithm. For example, we can
mention the LRTA� algorithm [36], which is a variant of A� and which learns over multiple trials an
optimal admissible heuristic. More recent work for learning strategies to efficiently explore graphs
have focused on the use of supervised regression techniques by using various approximation struc-
tures to solve this problem (e.g., linear regression, neural networks, and k-nearest neighbors); for
example, see [35,37–39].

Another noteworthy example for combining learned heuristic functions and LT search (in this
case IDA* and a bootstrapping procedure) is the recent work in [40]. However, it should be noted
that this approach is not directly comparable as it is applied to search problems and puzzles, and
not, as we do here, to continuous optimal control tasks with its more general concept of per-step
costs and rewards.

6.3. Model predictive control

Model predictive control techniques have originally been introduced as ways to stabilize large-scale
systems with constraints around equilibrium points (or around a reference trajectory) [41–43]. They
exploit an explicitly formulated model of the problem and solve in a receding horizon manner a
series of finite-time, open-loop deterministic optimal control problems. In such, they are very much
related to LT techniques. Actually, an MPC technique that searches for the first action of the optimal
sequence of actions over the finite optimization horizon through (clever) exploration of a tree is an

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

282 T. JUNG ET AL.

LT technique. However, most of the control techniques labeled as MPC techniques do not use tree
exploration for identifying (near-) optimal sequences of actions. They rather assume strong regular-
ity assumptions on the system dynamics and the reward function (e.g., linearity)—that we do not
make here— which are exploited to reformulate the search for an optimal open-loop sequence of
action as a standard mathematical programming problem (e.g., convex optimization problem and
mixed integer programming problem). This reformulation of the problem as a mathematical pro-
gramming problem often leads to techniques that are able to scale well to very large state–action
spaces, provided of course that the regularity assumptions hold.

6.4. Parameterized algorithms for decision making

We see our work here as an application of a more generic meta-algorithm and research method-
ology: for a given targeted class of problems, (i) identify an algorithm skeleton that is believed to
provide promising solutions to problem instances, (ii) parameterize this algorithm, and (iii) opti-
mize the parameters in a problem-driven way, through DPS, that is, through direct optimization of
the algorithm performance. This methodology can be applied to a wide range of problem kinds and
has already inspired several authors. The system proposed in [44] places an optimization layer on
top of an approximate value iteration algorithm to optimize the location of its basis functions. In
[45] (Section 5.3), the authors consider multi-stage stochastic programming techniques and opti-
mize the scenario trees by using Monte Carlo methods. Closer to our work, it is proposed in [46]
to parameterize a tree-search technique for decision making: upper confidence trees. In this work,
the parameters enable to control the simulation policy used to estimate long-term returns within the
upper confidence tree algorithm.

Parameterized algorithms have also been shown to be relevant to solve various kinds of explo-
ration/exploitation dilemma in a problem-driven way. References [47, 48] propose to learn explo-
ration/exploitation strategies for multi-armed bandit problems either by using the same kind of
parameterizations (a simple linear function) and the same kind of optimizers (derivative-free global
optimizers) as ours or by searching in a space of formulas. Reference [49] extends this idea to the
exploration/exploitation dilemma that occurs in single-trajectory RL. Here, the parameters are no
longer real-valued vectors but rather small formulas that depend on the internal variables of the pol-
icy. Given a target class of Markov decision problems, this method is able to learn high-performance
policies that outperform state-of-the-art generic RL algorithms.

We believe that with the recent progress in derivative-free global optimization (with algorithms
such as CE, CMA-ES, and GPO) and the continuously growing available computing power, the
class of such parameterized algorithms optimized in a problem-driven way is likely to play a more
prominent role in the near future, as they offer a systematic way to improve upon generic solutions,
by exploiting problem-dependent characteristics through learning.

7. DISCUSSION AND FUTURE WORK

This paper has focused on a particular kind of sequential decision-making problems: finite actions,
deterministic transitions, known transition and reward function (i.e., a generative black-box model,
which allows us to simulate arbitrary transitions), and an ‘informative’ reward. However, it relies
on a generic idea—learning online strategies in an offline way—that we believe to be relevant to
several other kinds of sequential decision-making problems.

Optimized LTs can be extended in many different ways by applying the following general method-
ology: (i) choose a tree-based decision algorithm adapted to the target class of problems, (ii)
parameterize its exploration strategy, and (iii) learn the parameters through DPS. We now detail
various possible extensions of OLTs.

� Stochastic transitions. Reference [20] extended the work on optimistic planning [2] to deal
with sparsely stochastic systems (sparsely meaning that there is only a small number of pos-
sible successor states for each state/action pair). In this extension, expanding a node means
simulating all possible one-step transitions for every action. Expanding OLTs in a similar way

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 283

is rather immediate and mainly impacts the computation of `-score of nodes used for taking
final decisions (Section 3.2).

� Sparse rewards. In OLTs, it is assumed that short-term sums of rewards are sufficiently infor-
mative to take high-quality decisions. This assumption can be problematic in many decision
problems. For example, in games, a single reward, such as C1 in case of win or �1 in case
of loss, is only observed at the end of the game. In the field of game playing, Monte Carlo
tree-search (MCTS) techniques [50] have raised a huge amount of interest recently thanks to
breakthrough results in computer Go [51]. The tree-development strategy of OLTs is the equiv-
alent of the so-called selection phase of MCTS. The successful results presented in this paper
thus suggest to parameterize the selection policy used in MCTS and to learn it through DPS.

� Large number of actions. Large number of actions means that we can no longer exhaustively
generate all successor states when predicting one step ahead; instead, one would have to use
sampling techniques or progressive widening techniques, which is also an active research topic
in tree-based search [51–53]. Some of these techniques have also been proposed in the context
of continuous actions for RL [54–57].

� Model learning. To what extent OLTs can be useful for solving sequential decision-making
problems in which the model is unknown (the classic RL setting) is an open question. We
believe that OLTs could in principle deal with imperfect models, by learning a node scoring
function that compensates for the weaknesses of the model. We could thus imagine combining
OLTs with an online model learner (e.g., see [19]).

� Choice of parameterization. Although the current work already achieves good results with
the node scoring heuristic being just linearly parameterized as in Equation (13), one can eas-
ily imagine using more powerful nonlinear parameterizations, for example, neural networks
or radial basis function networks. Similarly, one could also explore the benefit of including
additional features when computing the node scores, for example, the u-score.

� OLT and RL. Another promising direction that remains to be explored is how OLTs can be
combined with value function-based RL. As the value function estimated by RL could also act
as a node scoring heuristic (in fact, the node scoring heuristic can be seen as a surrogate for
the value function with the difference being that the former is ranking nodes for expanding an
LT over multiple steps into the future, whereas the latter is directly ranking nodes in a one-step
look-ahead), combining OLTs with RL could produce further improvements.

� Varied applications. The current paper explores OLT from the point of view of DPS and stud-
ies its properties in the context of deterministic optimal control tasks, such as pole balancing.
Coming from the point of view of LT, another interesting application area would be planning
and search, and in particular the domain of games (cf. item sparse rewards above).

8. CONCLUSION

This paper has introduced OLT policies, a novel model-based technique that bridges the gap between
two major families of solutions for solving optimal control problems: DPS and LT policies. Our
approach uses a new way of representing a policy by using parameterized LTs. In this represen-
tation, the parameters of the policy over which optimization takes place encode the node scoring
function by which the tree is grown (until a predefined computational budget is exhausted) every
time an action is required from the system. This approach manages to combine the best of both DPS
and LT approaches. From the point of view of DPS, OLT policies provide a more generic way of
representing policies that largely avoids the trial and work required to find a suitable functional form
for a parameterized policy. From the point of view of LT, DPS is the key to significantly reduce the
online computational requirement, through a principled offline procedure for learning the heuristic
driving the construction of the LT.

We have shown through an experimental study that our approach has several desirable qualities:
it (i) produces high-performance and robust policies that often outperform both pure LT and pure
DPS policies, (ii) has lower offline complexity than pure DPS and lower online complexity than
pure DP, and (iii) can, in particular, be optimized for a fixed online budget to meet the requirements
of a specific application.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

284 T. JUNG ET AL.

Table A.1. Physical parameters of the inverted pendulum domain.

Symbol Value Meaning

g 9.81 m/s2 Gravitation
m 1 kg Mass of link
l 1 m Length of link
� 0.05 Coefficient of friction

APPENDIX A: DYNAMIC MODEL OF THE INVERTED PENDULUM

Refer to the schematic representation of the inverted pendulum given in Figure 5(a). The state vari-
ables are the angle measured from the vertical axis, �.t/ (rad]0, and the angular velocity P�.t/ (rad/s).
The control variable is the torque u.t/ (N m) applied, which is restricted to the interval Œ�5, 5�. The
motion of the pendulum is described by the differential equation:

R�.t/ D 1

ml2

��� P�.t/ C mgl sin �.t/ C u.t/
�

. (A.1)

The angular velocity is restricted via saturation to the interval P� 2 Œ�10, 10�. The values and
meaning of the physical parameters are given in Table A.1.

The solution to the continuous-time dynamic equation is obtained by writing Equation (A.1) as a
first-order system and using a Runge–Kutta solver with h D 40 intermediate steps. The time step of
the simulation is �t D 0.2 s, during which the applied control is kept constant. The two-dimensional
state vector is x.t/ � �

�.t/, P�.t/
�
, the scalar control variable is u.t/. As our algorithm requires a

finite set of possible actions, we discretized the continuous control space into five discrete action
choices a 2 f�5, �2.5, 0, 2.5, 5g.

APPENDIX B: DYNAMIC MODEL OF THE DOUBLE INVERTED PENDULUM

Refer to the schematic representation of the double inverted pendulum on spring-linked carts given
in Figure 5(b). The state variables are, for each cart i D 1, 2, the angle of displacement measured
from the vertical axis, �i .t / (rad), the angular velocity P�i .t / (rad/s), the position of the cart xi .t /
(m) measured from the origin (note x1.t / < x2.t /), and its velocity Pxi .t / (m/s). The vector-valued
control is the force ui .t / (N m) applied to each cart, which is restricted to the interval Œ�2, 2�. The
system as a whole is described by the system of differential equations (see online appendix of [2]):

R�i .t / D

b2

i .t /a12
i .t / � a22b1

i .t /
� ı

a12
i .t /a21

i .t / � a11a22
�

, i D 1, 2 (B.1)

Rxi .t / D
h
b1

i .t / � a11 R�i .t /
i ı

a12
i .t / , i D 1, 2, (B.2)

where
a12

i .t / WD � cos �i .t /

a21
i .t / WD lmp cos �i .t /

b1
i .t / WD g sin �i .t / � �p

P�i .t /=.lmp/

b2
i .t / WD lmp

P�2
i .t / sin �i .t / � fi .t / C �c sign . Pxi .t //

fi .t / WD ui .t / C K.ls � jx2.t / � x1.t /j/
a11 WD 4l=3

a22 WD �.mc C mp/.

The angular velocity is restricted via saturation to the interval P�i 2 Œ�10, 10� and the velocity
of the cart to Pxi 2 Œ�5, 5�. The system knows two terminal conditions, which lead to a stopping of
the process: collision between one of the carts and a wall, and collision between the carts. More

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 285

Table B.1. Physical parameters of the double inverted pendulum domain.

Symbol Value Meaning

g 9.81 m/s2 Gravitation
L 1.0 m Half-length of the track
l 0.5 m Half-length of a pole
mc 1.0 kg Mass of a cart
mp 0.1 kg Mass of a pole
�c 0.0005 Coefficient of friction of a cart
�p 0.000002 Coefficient of friction of a pole
K 2.0 Coefficient K of the spring
ls 0.5 m Relaxed length of the spring
lsmin 0.1 m Minimum length of the spring before deformation
lsmax 1.5 m Maximum length of the spring before deformation

specifically, these conditions are implemented as follows: the temporal evolution of the system is
halted if at any time t at least one of the following is true:

� jxi .t /j > L (first cart collides with left wall or second cart collides with right wall);
� x2.t / 6 x1.t / (first cart has passed the second cart);
� jx2.t / � x1.t /j … Œlsmin, lsmax� (outside minimal and maximal length of spring before

deformation).

The values and meaning of the physical parameters are given in Table B.1.
The solution to the continuous-time dynamic equations is obtained by writing Equations (B.1)

and (B.2) as a first-order system and using a Runge–Kutta solver with h D 10 intermediate steps.
The time step of the simulation is �t D 0.1 s, during which the applied control is kept constant.

The eight-dimensional state vector is x.t/ �
�
x1.t /, x2.t /, Px1.t /, Px2.t /, �1.t /, �2.t /, P�1.t /, P�2.t /

�
,

and the control vector is u.t/ � .u1.t /, u2.t //. As our algorithm requires a finite set
of possible actions, we discretized the control space into four discrete action choices a 2
f.�2, �2/, .�2, C2/, .C2, �2/, .C2, C2/g.

APPENDIX C: DYNAMIC MODEL OF THE ACROBOT

Refer to the schematic representation of the acrobot domain given in Figure 5(c). The state variables
are the angle of the first link measured from the horizontal axis, �1.t / (rad), the angular velocityP�1.t / (rad/s), the angle between the second link and the first link �2.t / (rad), and its angular velocityP�2.t / (rad/s). The control variable is the torque .t/ (N m) applied at the second joint. The dynamic
model of the acrobot system is [14]

R�1.t / D � 1

d1.t /

�
d2.t / R�2.t / C �1.t /

�
(C.1)

R�2.t / D 1

m2l2
c2 C I2 � d2.t/2

d1.t/

�
.t/ C d2.t /

d1.t /
�1.t / � m2l1lc2

P�1.t /2 sin �2.t / � �2.t /

	
, (C.2)

Table C.1. Physical parameters of the acrobot domain.

Symbol Value Meaning

g 9.8 m/s2 Gravitation
mi 1 kg Mass of link i
li 1 m Length of link i
lci 0.5 m Length to center of mass of link i

Ii 1 kg m2 Moment of inertia of link i

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

286 T. JUNG ET AL.

where

d1.t / WD m1l2
c1 C m2

�
l2
1 C l2

c2 C 2l1lc2 cos �2.t /
� C I1 C I2

d2.t / WD m2

�
l2
c2 C l1lc2 cos �2.t /

� C I2

�1.t / WD �m2l1lc2
P�2.t /2 sin �2.t / � 2m2l1lc2

P�2.t / P�1.t / sin �2.t /

C .m1lc1 C m2l1/g cos �1.t / C �2.t /

�2.t / WD m2lc2g cos.�1.t / C �2.t //.

The angular velocities are restricted via saturation to the interval �1 2 Œ�4� , 4��, and �2 2
Œ�9� , 9��. The values and meaning of the physical parameters are given in Table C.1; we used
the same parameters as in [6].

The solution to the continuous-time dynamic equations in Equations (C.1) and (C.2) is obtained
using a Runge–Kutta solver with h D 20 intermediate steps. The time step of the simulation is
�t D 0.2 s, during which the applied control is kept constant. The four-dimensional state vector is

x.t/ �
�
�1.t /, �2.t /, P�1.t /, P�2.t /

�
, and the scalar control variable is .t/.

The motor was allowed to produce torques in the range Œ�1, 1�. As our algorithm requires a
finite set of possible actions, we discretized the continuous control space. Here we use three actions:
the first two correspond to a bang-bang control and take on the extreme values �1 and C1. However,
a bang-bang control alone does not allow us to keep the acrobot in the inverted handstand position,
which is an unstable equilibrium. As a third action, we therefore introduce a more complex balance
action, which is derived via LQR. First, we linearize the acrobot’s equation of motion about the
unstable equilibrium .��=2, 0, 0, 0/, yielding

Px.t/ D Ax.t/ C Bu.t/,

where, after plugging in the physical parameters of Table C.1,

A D

2
64

0 0 1 0

0 0 0 1
6.21 �0.95 0 0

�4.78 5.25 0 0

3
75 , B D

2
64

0

0
�0.68

1.75

3
75 , x.t/ D

2
664

�1.t / � �=2
�2.t /
P�1.t /
P�2.t /

3
775 u.t/ D .t/.

Using MATLAB, an LQR controller was then computed for the cost matrices Q D I4�4 and R D 1,
yielding the state feedback law

u.t/ D �Kx.t/, (C.3)

with constant gain matrix K D Œ�189.28, �47.46, �89.38, �29.19�. The values resulting from
Equation (C.3) were truncated to stay inside the valid range Œ�1, 1�. Note that the LQR controller
works as intended and produces meaningful results only when the state is already in a close neigh-
borhood of the handstand state; in particular, it is incapable of swinging up and balancing the acrobot
on its own from the initial state .0, 0, 0, 0/.

APPENDIX D: DYNAMIC MODEL OF THE HIV DRUG TREATMENT DOMAIN

The HIV infection dynamics are described by a six-dimensional nonlinear system with the state
vector x.t/ � �

T1.t /, T2.t /, T �
1 .t /, T �

2 .t /, V.t/, E.t/
�
, where

1. T1.t / > 0
�
T �

1 .t / > 0
�

is the number of non-infected (infected) CD4C T-lymphocytes
(in cells/ml);

2. T2.t / > 0
�
T �

2 .t / > 0
�

is the number of non-infected (infected) macrophages (in cells/ml);
3. V.t/ > 0 is the number of free HI virus particles (in copies/ml); and
4. E.t/ > 0 is the number of cytotoxic T-lymphocytes (in cells/ml).

The dynamics is described by the following system of first-order differential equations (see [15]):

PT1.t / D �1 � d1T1.t / � .1 � "1.t //k1V.t/T1.t / (D.1)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 287

PT2.t / D �2 � d2T2.t / � .1 � f "1.t //k2V.t/T2.t / (D.2)

PT �
1 .t / D .1 � "1.t //k1V.t/T1.t / � ıT �

1 .t / � m1E.t/T �
1 .t / (D.3)

PT �
2 .t / D .1 � f "1.t //k2V.t/T2.t / � ıT �

2 .t / � m2E.t/T �
2 .t / (D.4)

PV .t/ D .1 � "2.t //NT ı
�
T �

1 .t / C T �
2 .t /

� � cV .t/�

Œ.1 � "1.t //�1k1T1.t / C .1 � f "1.t //�2k2T2.t /�V .t/ (D.5)

PE.t/ D �E C bE

�
T �

1 .t / C T �
2 .t /

�
T �

1 .t / C T �
2 .t / C Kb

E.t/ � dE

�
T �

1 .t / C T �
2 .t /

�
T �

1 .t / C T �
2 .t / C Kd

E.t/ � ıE E.t/. (D.6)

The vector-valued control variable is u.t/ D ."1.t /, "2.t //, where "1 and "2 corresponds to the
dosage of the reverse transcriptase inhibitor (RTI) and the protease inhibitor (PI) drug, respectively.
In STI, drugs are either fully administered (they are ‘on’) or not at all (they are ‘off’). A fully
administered RTI drug corresponds to the value "1 D 0.7, whereas a fully administered PI drug
corresponds to the value "2 D 0.3. This leads to a discrete actions space with four possible choices
a 2 f.0.7, 0.3/, .0.7, 0/, .0, 0.3/, .0, 0/g. Because it is not clinically feasible to change the treatment
daily, the state is measured and the drugs are switched on or off once every 5 days. Therefore, the
system is controlled in discrete time with a sampling period of �t D 5 days (during which the
chosen controls are kept constant).

As shown in [15], in the absence of treatment (i.e., "1 D "2 � 0), the system in Equations (D.1)–
(D.5) exhibits three physical equilibrium points:

1. an unstable equilibrium point
�
T1, T2, T �

1 , T �
2 , V , E

� D .106, 3198, 0, 0, 0, 10/, which repre-
sents an uninfected state;

2. a ‘healthy’ locally stable equilibrium point
�
T1, T2, T �

1 , T �
2 , V , E

� D .967839, 621, 76, 6,
415, 353108/, which corresponds to a small viral load, a high CD4C T-lymphocytes count
and a high HIV-specific cytotoxic T-cells count;

3. a ‘non-healthy’ locally stable equilibrium point
�
T1, T2, T �

1 , T �
2 , V , E

� D .163573, 5, 11, 945,
46, 63, 919, 24/ for which T-cells are depleted and the viral load is very high.

Numerical simulations show that the basin of attraction of the healthy steady state is relatively small
in comparison with the one of the non-healthy steady state. Furthermore, perturbation of the unin-
fected steady state by adding as little as one single particle of virus per milliliter of blood plasma
leads to asymptotical convergence towards the non-healthy steady state.

The solution to the continuous-time dynamic equations in Equations (D.1)–(D.5) is obtained by
using a Runge–Kutta solver with h D 500 intermediate steps. The values and meaning of the con-
stants in the model are the same as in [15,16]: �1 D 10, 000, d1 D 0.01, k1 D 8 � 10�7, �2 D 31.98,
d2 D 0.01, f D 0.34, k2 D 1 � 10�4, ı D 0.7, m1 D 1 � 10�5, m2 D 1 � 10�5, NT D 100, c D 13,
%1 D 1, %2 D 1, �E D 1, bE D 0.3, Kb D 100, dE D 0.25, Kd D 500, ıE D 0.1.

ACKNOWLEDGEMENTS

The authors first wish to thank the anonymous reviewers for their hard but fair criticisms, which greatly
helped to improve the positioning and tone of the paper. Tobias Jung acknowledges financial support from a
research fellowship of ULg. This paper presents research results of the PASCAL2 European FP7 Network
of Excellence, and of the BIOMAGNET Network funded by the Interuniversity Attraction Poles Programme
initiated by the Belgian State, Science Policy Office.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

288 T. JUNG ET AL.

REFERENCES

1. Busoniu L, Babuska R, De Schutter B, Ernst D. Reinforcement Learning and Dynamic Programming Using Function
Approximators. Taylor & Francis CRC Press, 2010. ISBN: 978-1439821084.

2. Hren J-F, Munos R. Optimistic planning of deterministic systems. Proceedings of European Workshop on
Reinforcement Learning (EWRL 2008), Villeneuve d’Ascq, France, June 30–July 3, 2008; 151–164.

3. Maes F, Wehenkel L, Ernst D. Optimized look-ahead tree policies. Proceedings of the 9th European Workshop on
Reinforcement Learning (EWRL 2011), Athens, Greece, September 9–11, 2011; 5–17.

4. Frean M, Boyle P. Using Gaussian processes to optimize expensive functions. In AI 2008: Advances in Artificial
Intelligence, vol 5360 LNCS, Wobcke W, Zhang M (eds). Springer: Berlin, 2008; 258–267.

5. Lizotte D, Wang T, Bowling M, Schuurmans D. Automatic gait optimization with Gaussian process regression.
Proceedings of IJCAI 2007, Hyderabad, India, January 6–12, 2007; 944–949.

6. Sutton R, Barto A. Reinforcement Learning: An Introduction. MIT Press: Cambridge, MA, 1998.
7. Rubinstein RY, Kroese DP. The Cross Entropy Method: A Unified Approach to Combinatorial Optimization,

Monte-Carlo Simulation, and Machine Learning. Springer: Berlin, 2004.
8. Hansen N. The CMA evolution strategy: a comparing review. In Towards a New Evolutionary Computation.

Advances on Estimation of Distribution Algorithms, Lozano JA, Larranaga P, Inza I, Bengoetxea E (eds). Springer:
Berlin, 2006; 75–102.

9. Perttunen CD, Jones DR, Stuckman BE. Lipschitzian optimization without the Lipschitz constant. Journal of
Optimization Theory and Application 1993; 79(1):157–181.

10. Brochu E, Cora VM, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application
to active user modeling and hierarchical reinforcement learning. CoRR 2010; abs/1012.2599.

11. Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. MIT Press: Cambridge, MA, 2006.
12. Jones DR. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization

2001; 21:345–383.
13. Mockus J. Bayesian Approach to Global Optimization. Kluwer Academic Publishers: Dordrecht, Holland, 1989.
14. Spong M. The swing up control problem for the acrobot. IEEE Control Systems Magazine 1995; 15:49–55.
15. Adams B, Banks H, Kwon H-D, Tran H. Dynamic multidrug therapies for HIV: optimal and STI control approaches.

Mathematical Biosciences and Engineering 2004; 1:223–241.
16. Ernst D, Stan G, Goncalves J, Wehenkel L. Clinical data based optimal STI strategies for HIV: a reinforcement

learning approach. Proceedings of the 45th IEEE Conference on Decision and Control CDC 2006, San Diego, USA,
December 13–15, 2006; 667–672.

17. Busoniu L, Ernst D, Babuska R, De Schutter B. Cross-entropy optimization of control policies with adaptive basis
functions. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 2011; 41(1):196–209.

18. Osborne M, Garnett R, Roberts SJ. Gaussian processes for global optimization. Proceedings of 3rd International
Conference on Learning and Intelligent Optimization (LION 3), Trento, Italy, January 14–18, 2009; 1–15.

19. Jung T, Stone P. Gaussian processes for sample efficient reinforcement learning with RMAX-like exploration.
Proceedings of ECML 2010, Barcelona, Spain, September 20–24, 2010; 601–616.

20. Busoniu L, Munos R, De Schutter B, Babuska R. Optimistic planning for sparsely stochastic systems. Proceedings
of IEEE International Symposium on Adaptive Dynamic Programming and Reinforcement Learning ADPRL 2011,
Paris, France, April 11–15, 2011; 48–55.

21. Bertsekas D. Dynamic Programming and Optimal Control, Vol. II. Athena Scientific, 2007.
22. Powell W. Approximate Dynamic Programming. Wiley: New York, NY, 2007.
23. Peters J, Schaal S. Natural actor-critic. Neurocomputing 2008; 71(7–9):1180–1190.
24. Deisenroth MP, Rasmussen CE. Pilco: a model-based and data-efficient approach to policy search. Proceedings of

the International Conference on Machine Learning ICML 2011, Montreal, Canada, 2011; 465–472.
25. Szita I, Lőrincz A. Learning Tetris using the noisy cross-entropy method. Neural Computation 2006;

18(12):2936–2941.
26. Moriarty DE, Schultz AC, Grefenstette JJ. Evolutionary algorithms for reinforcement learning. Journal of Artificial

Intelligence Research 1999; 11:241–276.
27. Gomez F, Mikkulainen R. Active guidance for a finless rocket using neuroevolution. Proceedings of the Genetic and

Evolutionary Computation Conference GECCO 2003, Chicago, July 9–11, 2003; 2084–2095.
28. Stanley KO, Mikkulainen R. Evolving neural networks through augmenting topologies. Evolutionary Computation

2002; 10:99–127.
29. Gomez F, Schmidhuber J, Mikkulainen R. Accelerated neuroevolution through cooperatively coevolved synapses.

Journal of Machine Learning Research 2008; 9:937–965.
30. Whiteson S, Taylor ME, Stone P. Critical factors in the empirical performance of temporal difference and

evolutionary methods for reinforcement learning. Autonomous Agents and Multi-Agent Systems 2010; 21(1):1–35.
31. Kalyanakrishnan S, Stone P. Characterizing reinforcement learning methods through parameterized learning

problems. Machine Learning 2011; 82(3):205–247.
32. Heidrich-Meisner V, Igel C. Variable metric reinforcement learning methods applied to the noisy mountain car prob-

lem. Proceedings of European Workshop on Reinforcement Learning EWRL 2008, Villeneuve d’Ascq, France, June
30–July 3, 2008; 136–150.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

OPTIMIZED LOOK-AHEAD TREE POLICIES 289

33. Kohl N, Stone P. Machine learning for fast quadrupedal locomotion. Proceedings of the 19th National Conference
on Artificial Intelligence AAAI-04, San Jose, California, July 25–29, 2004; 611–616.

34. Szita I, Lőrincz A. Learning to play using low-complexity rule-based policies: illustrations through Ms. Pac-Man.
Journal of Artificial Intelligence Research 2007; 30:659–684.

35. Hart P, Nilsson N, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 1968; 4(2):100–107.

36. Korf RE. Real-time heuristic search. Artificial Intelligence 1990; 42(2–3):189–211.
37. Maes F. Learning in Markov decision processes for structured prediction. Ph.D. Thesis, Pierre and Marie Curie

University, Computer Science Laboratory of Paris 6 (LIP6), October 2009.
38. Minton S. Machine Learning Methods for Planning. Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA,

1994.
39. Yoon SW, Fern A, Givan R. Learning heuristic functions from relaxed plans. International Conference on Automated

Planning and Scheduling ICAPS 06, The English Lake District, Cumbria, UK, June 6–10, 2006; 162–171.
40. Arfaee SJ, Zilles S, Holte RC. Learning heuristic functions for large state spaces. Artificial Intelligence 2011;

175:2075–2098.
41. Morari M, Lee JH. Model predictive control: past, present and future. Computers & Chemical Engineering 1999;

23(4):667–682.
42. Coen T, Anthonis J, De Baerdemaeker J. Cruise control using model predictive control with constraints. Computers

and Electronics in Agriculture 2008; 63(2):227–236.
43. Ernst D, Glavic M, Capitanescu F, Wehenkel L. Reinforcement learning versus model predictive control: a compari-

son on a power system problem. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 2009;
39(2):517–529.

44. Busoniu L, Ernst D, Babuska R, De Schutter B. Fuzzy partition optimization for approximate fuzzy q-iteration.
Proceedings of the 17th IFAC World Congress IFAC-08, Seoul, Korea, 2008.

45. Defourny B, Ernst D, Wehenkel L. Multistage stochastic programming: a scenario tree based approach to planning
under uncertainty. In Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions,
Morales EF, Sucar LE, Hoes J (eds), 2012. ISBN: 978-1609601652.

46. Couetoux A, Doghmen H, Teytaud O. Improving the exploration in upper confidence trees. Proceedings of the 6th
International Conference on Learning and Intelligent Optimization LION 6, Paris, France, January 16; 366–371.

47. Maes F, Wehenkel L, Ernst D. Learning to play K-armed bandit problems. Proceedings of International Conference
on Agents and Artificial Intelligence, Vilamoura, Algarve, Portugal, February 2012.

48. Maes F, Wehenkel L, Ernst D. Automatic discovery of ranking formulas for playing with multi-armed bandits.
Proceedings of the 9th European Workshop on Reinforcement Learning (EWRL 2011), 2011; 5–17.

49. Castronovo M, Maes F, Fonteneau R, Ernst D. Learning exploration/exploitation strategies for single trajectory rein-
forcement learning. Journal of Machine Learning Research Workshop & Conference Proceedings 24(JMLR W&CP)
(Proceedings of the EWRL 2012), Edinburgh, Scotland, June 30; 1–9.

50. Kocsis L, Szepesvári C. Bandit based Monte Carlo planning. Proceedings of the 17th European Conference on
Machine Learning ECML 2006, Berlin, Germany, September 18–22, 2006; 282–293.

51. Coulom R. Efficient selectivity and backup operators in Monte-Carlo tree search. Proceedings of the 5th International
Conference on Computers and Games, Turin, Italy, 2006; 72–83.

52. Sokolovska N, Teytaud O, Milone M. Q-learning with double progressive widening: application to robotics.
Proceedings of ICONIP, Shanghai, China, 2011; 103–112.

53. Chaslot G, Winands M, Uiterwijk J, van den Herik H, Bouzy B. Progressive strategies for Monte-Carlo tree search.
New Mathematics and Natural Computation 2008; 4(3):343–357.

54. Rolet P, Sebag M, Teytaud O. Boosting active learning to optimality: a tractable Monte-Carlo, billiard-based
algorithm. Proceedings of ECML, Bled, Slovenia, 2009; 302–317.

55. Xu X, Liu C, Hu D. Continuous-action reinforcement learning with fast policy search and adaptive basis function
selection. Soft Computing 2011; 15(6):1055–1070.

56. Lazaric A, Restelli M, Bonarini A. Reinforcement learning in continuous action spaces through sequential Monte
Carlo methods. Advances in Neural Information Processing Systems NIPS 2007, Vancouver, Canada, 2007.

57. van Hasselt H, Wiering MA. Reinforcement learning in continuous action spaces. Proceedings of IEEE Sympo-
sium on Approximate Dynamic Programming and Reinforcement Learning ADPRL 2007, Honolulu, HI, USA, 2008;
272–279.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:255–289
DOI: 10.1002/acs

