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ABSTRACT

The present study which relies on a simulation program
integrating on a section, the first three eigen modes of
the vertical and torsional movements, concern a
parametric approach to the phenomenon of galloping.
Our aim is to discover the specific relations necessarily
connecting the structural parameters of the lines liable to
galloping.

The determining factor will be shown to be the torsion of
the conductors as a catalyst of the phenomenon,

Three essential aspects will be discussed :

-the use of four dimensionless parameters ; the
mechanism of galloping depends exclusively on them in
the case of bundle conductors,

-2 parametric study of the stability.

-an  original approach to the analytical predetermination
of the musimum amplitudes.

This will call some commonly accepted ideas into question.
We will draw a critical range of the wind speed favourable
to galloping.

Our calculations are made on the basis of the acrodynamic
curves produced by various laboratories for ice coatings
observed in the field,

Finally we will examine the effect of some anti-galloping
devices (pendulums)

INTRODUCTION

Galloping is a phenomenon which affected the first high
voltage overhead lines . It can appear when the
meteorological conditions are favourable to ice formation
around the conductors. The ice coating tends to develop
dissymmetrically because the matter preferentially settles
on the sides facing the wind or the precipitation. As a
result the profile is rarely cylindrical and most often is
excentered. Whereas on the cylindrical profile the
aerodynamic force is reduced to the drag , Jp .+ parallel 1o

the wind speed, on a dissymmetrical profile it is
accompanied by a lift component fl'_. . perpendicular to

the wind direction , and by a couple Fpp. The three values
fp JL.Fp are proportional to the square of the relative

wind speed (vy) seen by the conductor in movement

f=Vkp C ()
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The aerodynamic and dimensionless coefficients CD ey
and CM are even or odd functions of the yaw angle ¢, and

of the relative wind with respect to the ice coating, as
illustrated for two typical profiles by the diagrams of Fig. 1
2.

g:y modifying the relative wind, any movement of the
conductor thus brings about drag, lift, and moment
variations. Particular formation conditions can bring the
yaw angle into areas in which the derivatives of the
acrodynamic coefficients are such that the con‘duc_mr
movement asscciated wuh some eigen modes of oscillation
goes together with lift variations in phase with speed ; the
drag damping effect can then be compensated and there
appears a sustained oscillation called galloping. )

Galloping can be insignificant of low amplitude, _or
momentary ; but it can also bring the phase into clearing
distance and sometimes it lasts so long that it ruptures

some components through fatigue. Although they are
exceptional, such accidents arc serious and some lines
seem to be more prone to them than others.

Even though the orientation with respect to the prevailing
winds is definitely the major factor, an unfortunate
combination of the mechanical parameters ( sagging
tension, the length of the span, the mass of the conductors,
bundle geometry, number of spans per section) can also be
regarded as likely to increase the undesirable effects of
the climate constraints.

The present work aims at establishing the conditions in
which galloping will start in order to establish from the
planning stage of a line that the stability ensured with an
adequate safety margin and to foresec the nature and
number of the additional anti-galloping devices required.
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Fig.1 et 2 coefficients of drag Cp, of lift CL. and of moment
Cwm for two typical ice coating. (Fig.1 low excentricity,
source O.NIGOL, Fig.2 high excentricity, source /11/)



MATHEMATICAL FORMULATION

The starting mechanisms outlined in the introduction and
formalized by Den-Hartog et al. 's theory /1/ disregards the
torsion of the conductors. But, as shown by experience, an
oscillation of the torsion often appears when there is an
oscillation in the vertical plane. For some authors this
oscillation of the torsion is simply a response to the
periodical pitching moment undergone by the ice coating
exposed by its vertical movement to the pulsations of the
relative wind /6/ ; they refused to admit the torsional
movement as a destabilizing effect. It seems to us that such
an opinion cannot be accepted without reservations,
particularly because the condition which creates
vertical galloping without torsion leads us to expect
unstable areas clearly narrower than that in which the
phenomenon of torsion is included.

When only the fundamental mode is affected , the vertical
displacement of the conductor , y(z.t) , and its rotation
¥(z,1), are expressed in the form :

nz . Mz
y(z,t) = y,(t) sin T Hz,t) = 131([) sin T

The equations of dynamic equilibrium in sag and in
torsion associated with the fundamental mode are then
written, putting 8=mnz /L
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Fig.3 Definitions of the angles and of the applied forces.

If we take the highest mode into account we obtain similar
equations, but
knz

L
(k : rank of the mode) . When we consider the mechanical
tensions the other spans of the sections must be taken into
account We must consider the displacement of the
suspension strings ( for further information see /71.) In
the present paper the consideration of the other spans
amounts to taking account all the possible o, obtained by

modal analysis of the section.
STEADY-STATE STABILITY

The purpose of the study of steady-state stability is the
detection of unstable equilibriums. For each value of the

layer angle and of the wind speed UO . the conductor takes
up an equilibrium position , solution of the system of non-
lincar equations that is obtained by reducing the temporal
derivatives in (3) to zero. Let Yig i ﬁlé , be such a
solution around which the stability of low amplitude
discrepa.nci-:sL\_‘,rl and A%y will be studied.

Taking (2) into account, the equations (3) linearized
around the equilibrium position become

. Rl .2 kU2
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The aerodynamic coefficients or their derivatives
appearing under the integral are calculated for -
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Fig. 4 Mean aerodynamic coefficients or their derivatives
(corresponding to Fig. 1 coefficients)



For convenience's sake, system (4) will be written
A}:l + a; A)‘/l + a4 Ay, = a, Aﬁl
AB, + b,AD, + bAB, = b, Ay, ©)

Coefficient by is the square of the eigen torsional

pulsation in the presence of wind.
If there is no torsion only the first equation subsists,
without right-hand member and the instability coreponds
to a;<0 , Den-Hartog's condition /1/,

In a general way the stability of the system (6) is studied
by expressing that the eigenvalues, solution of the
characteristic equation, are with negative values The
characteristic equation is written

4 3 2

A+ (@ +bA + (by+ay+a b +(a;by - azb; +ab DA +a,b, =0
Q)

By applying a Routh-Hurwitz's criterion to the equation

we obtain - when all the calculations have been made - the
conditions of stability.

i (8.1)
a, + b, >0 (8.2)
albff + (af +byb, + a2y +a30; >0 (8.3)
8,27 +a[a;(ay + by) - azb,] b
+ (g - ay)lay (by - 2)) - aby ] +47 (a;b, - asby ) b,
+agbs[ g (by-a,)- ab,] >0 (8.4)
The condition (8.1) is automatically checked , for the

conductor cannot stay at a value of ;¢ for which by<0 and

will spontaneously change into a stable angle of rotation
for which by>0 .

In the absence of torsional damping the condition (8.2)
merges  into  Den-Hartog's criterion. But such an
assumption is quite imaginary because it would place the
system out of physical reality : as soon as the phenomenon
of torsion appears it is always accompanied by a
dissipation of energy although sometimes at a low rate.
Giving it a zero value is the wrong way of expressing the
problem. It can clearly be observed from (8.2) that the
torsional damping already takes its positive effect under
the form of a positive term in (8.2) .

The last two conditions arise from taking into account the
phenomenon of torsion. New fields of instability appear
that are unpredictable in_ function of Den-Hartog's
ri

Before I give the results, notice that
amplitude by o Ay / Uy

by defining a reduced
the equations (4) and consequently

the criteria of stability depend only - for particular
acrodynamic coefficients - on the following four
dimensionless coefficients

o, kyUy kpUj b,
P] =— 3= i =b—1..E =2_; (9)

o, o, I 1
These coefficients are dealt with in /7/ to extract the
important structural parameters (10)
-The torsional damping &
-The relation between the vertical and torsional
frequencies Pi=o, /o, (11)
-The relation between the diameters conductor/bundle

P
v 2 ) 12

B & 200 ¢ (12)

t (particular cases of ACSR conductors)
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- The reduced wind speed P4 :

B o U
P, = 2 T_O (13)
L d o
-The reduced amplitude Ar
Aok App (14)

Ap =8 = =
R dz_P3 25d

t (particular cases of ACSR conductors)

PARAMETRIC STUDY OF THE STABILITY

Neither the structural parameters mnor the wind speed
appear in Den-Hartog's condition, only the acrodynamic
coefficients of drag and lift (or rather the derivative of
the latter).

When applied to the profiles for
aerodynamic curves this condition is never checked. The
layer angles most likely to satisfy the condition are
situated opposite the set of the wind( =180°) , where CD
is minimal , and the derivative of the lift positive ( see our
conventions of signs).

Under some conditions (irregularity and shape of the ice
layer, turbulent wind, etc...) CD may be low enough and the

derivative of the lift high enough to create a small area of
layer angle favourable to galloping. This was
experimentally checked on artificial ice coating /3/.

The condition (8.4) seems to us more prone to account for
the appearance of galloping on the basis of the
experimental curves we can see that the critical areas of
layer angles are situated between 0 and -100° (upper
quadrant °, windward) and better fit the actual conditions
of the formation of an ice coating. In the condition (8.4)
the structural conditions of the line and the wind speed
are the determining factors. We shall make a further
analysis of it .

If we want to make it more suggestive the condition (8.4)
can conveniently be converted into a graph parametered
by the dimensionless values explained above. In function
of the layer angle ﬂg Fig. 5 and 6 thus give the value of E

for which (8.4) is equal to zero. The values of & indicate
the lower limits of the damping coefficient beyond which
stability is maintained. Such a presentation is all the more
justified since an a priori value of & cannot easily be
determined , the data concerning torsional damping being
still quite few.

which we have the

STABLE

PL = L-s
(Uy=5m/s)
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Fig. 5 Minimum torsional damping which ensure the
stability of the bundle, vs. ice accretion angle and for some
different P,‘ values.



Fig. 5 is parametered in function of P, i in order 10 make
things clear the values of P, are accompanied by the
corresponding U0 values for the following data :

©,  =1.23 radfs, @, =143 rad/s , ¢ =32.3 mm, 1=0.15 Kg.m,
m=3.4 Kg/m, L=360 m, sag = 8 m, d=0.45 m

3C.3 Cy<O

Fig. 6 Minimum torsional damping which ensure the
stability of the bundle, vs. ice accretion angle and for
different P, = vy [ ® values.

Fig.6 is parametered in function of P, the value of which

can be reduced by the presence of pendulum type devices.
Without any devices , the value of P1 remains slightly

under 1 for all the bundled lines. (Pl=0.95) This confirms

that torsion place a determining role in the conditions
under which galloping occurs.

We can see (see Fig. 5) that above a certain wind speed ( or
rather for certain values of P4) the condition of instability

is no longer respected. The critical speed of the Belgium
line is of the order of 30 m/s for a low eccentricity of the
coating and of 20 m/s for a high eccentricity.

We shall come back to this point later when estimating the
amplitudes. .

In the particular case examined, torsional dampings, even
if they are small, are clearly sufficient to inhibit the
phenomenon of galloping, at least for the most commonly
observed wind speeds ( <10 my/s) .

Ar Ag

T T PLIT!

In Fig. 7 the reduced amplitude is plotted vs Py . The

curves are parametered in function of the torsional
damping (%) and of the eccentricity of the ice layer (g) .
For each curve the relations of the frequencies
(vcrlical/lorsional) - Pl - and of the diameters
(conductor/bundle) - P3 - are corstant.

In order to eliminate the parameter of the ice layer angle,
the whole windward upper quadrant will be scanned unti]
we find the layer angle corresponding to the maximum
amplitude, the only one to be preserved.

Observations

1) As foreseen the amplitude increases as P
gets closer to the unit

2) When moving from 4% 1o 8% the torsional
damping noticeably reduces the amplitude. The rate of
increase becomes higher when P3 becomes higher

(remember P3 =2000¢0/d for ACSR conductors)

1

3) The eccentricity of the ice has hardly any
influence on the maximum amplitude. This remarkable
conclusion can be drawn from the results of the
calculations made on 2 very different ice layers (5 mm and
3.5 cm) ; their experimental aerodynamic curves were
produced by two different laboratories ( typical ice
coatings). The range of variation of the wind yaw angle
during the limit cycle thus seems to be independent on the
eccentricity. Such a significantly wide variation of the
yaw angle leads us to replace the specific values of the
aecrodynamic coefficients and of their derivatives by
average values calculated on intervals of approximately
40° to 60° : if this is done , local irregularities are smoothed
out and the curves become uniform.

The yaw angle corresponding to the limit cycle is
connected with the average values of the aerodynamic
cocfficients giving the zero value to the stability criterion.

4) The maximum amplitude moves towards lower
wind speed as the ice coating eccentricity increases.

5) The wind range connected with the
appearance of galloping can be seen in Fig. 8 The wind
range is affected only by & and the eccentricity.

6) On the bases of the curves in Fig. 7 one can
give an analytical expression of the maximum (peak to
peak) amplitude in function of the reduced parameters,
After calculating we obtain i

O-AL
2
d’p,

2
=(-55 - 0016).P; + 05F + 07 (15)

=08 =08 . o
P als P 220 Numerical application For conductors ACSR
3 3" in bundles with stranded cables (E=6%) :
Las A
pkopk 16)
Sz = -0.034P, + 05P% + 07 (
25d 3 1 D
Fa2s
P Without any anti-galloping devices, we have
k4 P; = 095 and the expression becomes :
(] 1 20 30 o
i B A (17)
~ ORDONNEES : AMPLITUDE REDUITE - Aga-A_ A kpk = - 170.¢ + 29.d
ORDINATES : REDUCED AMPLITUDE 254 oited eekte el P
€ ABSCISSE :VENT REDUIT .p ,glUs & heakitoipeaic{m ) ) .
ABSCISSA :REDUCED WIND  ° @, o2 Where we immediately obtain the maximum
Ag Ag

P =095

P =035
P,= 10 B e Py=20

peak to peak amplitude in meters  although
we only know the diameter of one
subconductor (¢ in m.) and the diameter of
the bundle ( d in m., equal to the distance
between subconductors in the case of twin
bundle).

Fig. 7 Reduced amplitude AR vs. reduced
wind speed P, for several P, and Py and
for two different eccentricity and two

different torsional damping.



In a classical bundle it is thus better to increase the
diameter of the conductors ( for example by using a
smaller number of conductors) and to decrease the

diameter of the bundle - subject to the constraints imposed
on the constructor by the corona effect,
of kissing, and the subspan oscillations- .
The use of so-called 'smooth' conductors would enable us to
significantly

the phenomenon

reduce the maximum

increasing &

amplitude by

Fig. 8 Reduced wind speed ranges prone to galloping vs.
torsional damping,

In some cases new wind ranges favourable to galloping
can appear when the maximum amplitude is reduced by
appropriate devices.
We should add that it is highly probable that &
with the age of the conductor but it is difficult to
this effect,

7) In the case of several spans we simply have

increases
quantify

to use , in P1 evaluation, the much more numerous cigen
frequencies corresponding to the various modes
(symmetrical, antisymmetrical,etc...) ; the wind speed must

of course remain in credible range.

8) The treatment of a multi-modal galloping is
more problematic for when we have several unstable
modes only one of them can reach its maximum value.

By reducing the ranges of P, open 1o galloping , torsional
'amping is again favourable to the the
ombined multi-loops gallopings.

[t can also be asserted that wind speed favours a certain
amount of loops. Indeed, for a given range of P4 , only one

limitation of

given frequency corresponds for a given wind.
EFFECT OF A DEVICE OF THE PENDULUM TYPE

Modification of the dimensionless parameters

The presence of pendulums as suggested by /4/ increases
the stiffness and the moment of inertia of the phase. It can
be shown that in the cases with which we are dealing (
bundle) the stiffness increase is greater than the increase
of the moment of inertia and thus pendulums contribute
to increase the torsional frequency

The new frequency is estimated : it will be introduced into
P]. Parameters Py and P4 are also slightly modified by a

factor k (0.8 < k < 1 ) depending the number and locations

of pendulums /7/ ( new P3 = k. P3 )
Expression 4f becomes

bringing Pl back from 0.95 to 0.8)

2
Ao = - 170k%0 +25kd

Note that the modification of the torsional frequency
shifts the area favourable to galloping towards higher
winds (see Fig. 8). The displacement of this area account
for the fact that two phases of an experimental line - one
with pendulums and the other without - do not always
gallop simultaneously.

However, the phase fitted with pendulums will reach a
lower maximum amplitude. On the other hand, the
efficiency of the presence of pendulums cannot be tested
at the same wind speeds when they are no pendulums.
Numerical application
Diameter of the subconductor :

(with  pendulums

(18)

0.03 m
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Distance between the two  subconductors : 045 m
Natural € of the line :6%
max. amplitude without pendulum , eq. (17) : 795 m

idem with pendulums ,P1=0.8, k=0.8, eq. (18) : 570 m

max. amplitude with pendulums and additional torsional
damping , eq. (15) : 44 m if §& =8%
2.66 m if & =10%

CONCLUSIONS

Trying to give a general explanation of galloping without
taking into account the phenomenon of torsion is
pointless. It alone accounts for the structural paramelers
and for the existance of a critical interval for the wind
speeds that cannot be explained by Den-Hartog's theory.
Remember that Den-Hartog's theory is based exclusively
on the aerodynamic properties of the ice coating. Besides ,
given the shape of the acrodynamis curves , Den-Hartog's
criterion is not likely to be checked if the ice coating is
windward .Ice naturally increases on the side of the
conductor facing the precipitation. We must admit that if
galloping is to occur , the ice coating must turm because of
the effect of the pitching moment thanks to a low
torsional stiffnes. Such a situation may appear with simple
conductors but not with bundles which would then always
be preserved against galloping. But this conclusion is
contradicted by the facts.

Our study draws attention to a value rarely dealt with in
the relevant publications , ie. torsional damping. This
value is the major factor in helping us to understand the
comparative rarity of galloping and the gradual and even
total disappearance of the conditions which created in the
course of time ( line ageing).

The ratio between the vertical and torsional
missing from Den-Hartog's criterion and yet
demonstrated its determining importance
forefelt

In the course of our study we showed the impact of putting
in pendulums separating the torsional frequency from the
vertical frequency.

The introduction of a parameter depending mostly on the
simple ratio between the diameter of the conductor ( ¢ )
and the diameter of the bundle ( d ) means that this ratio
should be increased , subject - of course - to the
constructor's constraints connected with other electrical
or mechanical effects ( corona effect, subspan oscillations,
kissing)

frequencies is
we have just
. which can be

Finally, an analytical expression of the peak to
peak amplitude is proposed as follows :

Apkpk = -af + bd
where 'a’ and 'b' are positive coefficients depending on the
torsicnal damping ( for 'a') and on the ratio between the
vertical and torsional frequencies ( for By .
This formula does not depend on the shape of the ice
coating, which is accounted for in our report.
Finally the formula shows the importance of limiting the
number of subconductors in the bundle, even if it means

increasing the diameters of each
decreasing the bundle diameter.
Any reluctance to use conductors with large diameters is
therefore unjustified (for bundle configuration).
We are continuing our research, particularly on the field
of a single conductor per phase. Concerning bundles w e
have completed Nigol's theory /8/ by introducing a
supplementary term into the expression for the torsional
stiffness. The presence of such an analytically deduced
term accounts for the discrepancies of more than 50%
discovered by Nigol between his theoretical assumptions
and some of his experimental results.
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