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• Eric Béchet, Assistant professor, University of Liège
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Abstract

The main purpose of this thesis is the development of a framework to model fracture
initiation and propagation in thin bodies. This is achievedby the combination of two original
models.

On one hand, (full) discontinuous Gakerkin formulations ofEuler-Bernoulli beams as well
as Kirchhoff-Love shells are established. These formulations allow modeling a thin structure
with discontinuous elements, the continuity being ensuredweakly by addition of interface
terms. The first advantage of the recourse to a discontinuousmethod is an easy insertion
of cohesive elements during the simulation without a modification of the mesh topology. In
fact with a continuous method, the insertion of the cohesiveelements at the beginning of the
simulation leads to numerical issues and their insertion atonset of fracture requires a complex
implementation to duplicate the nodes. By contrast, as interface elements are naturally present
in a discontinuous formulation their substitution at fracture initiation is straightforward. The
second advantage of the discontinuous Galerkin formulation is a simple parallel implementa-
tion obtained in this work by exploiting, the discontinuityof the mesh in an original manner.
Finally, last advantage of the recourse to a discontinuous Galerkin method for thin bodies is to
obtain a one field formulation. In fact, theC 1 continuity is ensured weakly by interface terms
without considering rotational degrees of freedom.

On the other hand, the through-the-thickness crack propagation is complicated by the im-
plicit thickness model inherent to thin bodies formulations. Therefore we suggest an original
cohesive model based on reduced stresses. Our model combines the different reduced stresses
in such a way that the expected amount of energy is released during the crack process leading
to a model which respects the energetic balance whatever theapplied loadings.

The efficiency of the obtained framework is demonstrated through the simulation of sev-
eral benchmarks whose results are in agreement with numerical and experimental data com-
ing from the literature. Furthermore, the versatility of our framework is shown by simu-
lating 2 very different fracture phenomena: the crack propagation for elastic as well as for
elasto-plastic behavior and the fragmentation of brittle materials. This demonstrates that our
framework is a powerful tool to study dynamics crack phenomena in thin structure problems
involving a large number of degrees of freedom.
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Résuḿe

L’objectif principal de cette th̀ese est le d́eveloppement d’une technique permettant de
mod́eliser l’initiation ainsi que la propagation d’une ou plusieurs fissures dans un corps mince.
Cette technique combine deux modèles originaux.

D’une part, une formulation Galerkin (complètement) discontinue des poutres d’Euler-
Bernoulli ainsi qu’une formulation Galerkin (complètement) discontinue des coques de type
Kirchhoff-Love sontétablies. Ces formulations permettent de modéliser une structure mince
avec deśeléments discontinus, la continuité étant assuŕee faiblement par l’addition de termes
d’interface. Le premier avantage inhérentà l’utilisation d’une ḿethode Galerkin discontinue
est une insertion aisée deśeléments coh́esifs au cours de la simulation et ce sans devoir mod-
ifier la topologie du maillage. En fait, dans le cas d’une méthode continue, des problèmes
numériques apparaissent si l’insertion d’unélément coh́esif est ŕealiśee au d́ebut de la sim-
ulation et l’insertion au cours de la simulation rend l’implémentation complexe puisque les
noeuds doivent̂etre dupliqúes dans le cas d’une méthode continue. Au contraire, comme
leséléments d’interface sont naturellement présents dans une formulation discontinue la sub-
stitution de ceśeléments d’interface par deśeléments coh́esifs à l’initialisation de la frac-
ture est aiśee. Le deuxìeme avantage d’une ḿethode Galerkin discontinue est qu’elle facilite
l’impl émentation en parallèle du sch́ema de ŕesolution. Dans ce travail, celle-ci est obtenue en
exploitant la discontinuit́e du maillage d’une manière originale. Enfin, dernier avantage dans
le cas des corps minces d’une méthode Galerkin discontinue est l’obtention d’une formula-
tion à un champ. En fait, comme la continuité C 1 est assuŕee faiblement gr̂ace aux termes
d’interface, il n’y a pas besoin de considérer des degrés de libert́e en rotation.

D’autre part, la mod́elisation implicite de l’́epaisseur, inh́erente aux formulations des corps
minces, complique la propagation d’une fissureà travers celle-ci. D̀es lors, nous suggérons
un mod̀ele coh́esif original baśe sur les contraintes réduites. Notre mod̀ele combine ces
diff érentes contraintes réduites de manièreà dissiper la bonne quantité d’énergie pendant le
processus de fracture ce qui permet d’obtenir un modèle respectant le bilan d’énergie quelque
soit le chargement appliqué.

L’efficacité de la technique proposée est d́emontŕeeá travers la simulation de différents
exemples dont les résultats sont en accord avec les données nuḿeriques et exṕerimentales
tirées de la litt́erature. De plus, deux phénom̀enes de fracture très diff́erents (d’une part, la
propagation de fissure dans un milieuélastique oúelasto-plastique et d’autre part, la frag-
mentation dans des matériaux fragiles) sont simulés pour d́emontrer la versatilit́e de la tech-
nique propośee. Cela d́emontre que cette dernière constitue un puissant outil pourétudier les
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phénom̀enes dynamiques de fissuration dans les structures minces modélisées avec un mail-
lage comportant un nombre important de degrés de libert́e.
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Tables of notations & definitions

This works use several definitions and notations summarizedbelow.

Definitions

Compact A set is compact if every open cover of it is a finite
subcover of the set

Compact closure The closure of the set is a compact
Condition number The condition number of a matrix A measures the

stability and sensitivity of A to an error in the data.
If the condition number of A is near 1, A is well
conditionned.

Consistent A numerical method is consistent if the strong
form satisfies the equations of the method.

Cosserat plane A Cosserat plane is a plane embedded in an
Euclidean space with a deformation vector as-
signed at each points of it. The vector has the prop-
erty to be invariant in length under rigid body mo-
tion and is not necessary along the normal of the
surface.

Hyperelastic A material model is hyperelastic if the stresstensor
derives from a potential

Plate Thin flat structure represented by a Cosserat plane
(without no initial curvature)

Shell Plate with an initial curvature
Stable A numerical method is stable if a quantity related

to the energy of the system remains constant or de-
creases over the time

13



14 Table with notations & definitions

Abbreviations

CG Continuous Galerkin method
CZM Cohesive zone model
DG Discontinuous Galerkin method
DCB Double clamped beam
dof Degree of freedom
ECL Extrinsic cohesive law
EFG Element free Galerkin
FE Finite element
LEFM Linear elastic fracture mechanics
pdf Probability density function
PMMA Polymethylmethacrylate
RKPM Reproducing kernel particle method
RVE Representative volume element
SCB Simply clamped beam
SPH Smooth hydrodynamic particles
TSL Traction separation law
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Conventions

Consider x as a representation of a mathematical quantity (scalar, vector or tensor).

x Italic letter: scalar quantity (0 order tensor with 1 component)
x Bold italic letter:1st order tensor (vector)

x Bold letter: 2nd order tensor (matrix)
x Underlined bold italic letter: unknowns system vector

X Calligraphic italic letter: 4th order tensor (81 components)
X Double lined letter: manifold
x(y) Symbol followed by another one between brackets: x is de-

pending on y. This is not,a priori , used to define a mathemat-
ical priority between operations

ẋ Symbol overcome by a dot: 1st total derivative of x with re-
spect to time

ẍ Symbol overcome by two dots: 2nd total derivative of x with
respect to time

xn The exponent is a bold roman letter: x is evaluated at the
(pseudo-)time stepn

x0 x is expressed in the initial configuration
xiner x is expressed in the reference initial frame
xα The index is a Greek letter:αth scalar component of a two-

component vectorx (formulated in the convected basis in the
case of thin body kinematics)

xα The exponent is a Greek letter:αth scalar component of a two-
component vectorx (formulated in the conjugated basis in the
case of thin body kinematics)

xαβ Both indices are Greek letters: componentαβ of a two by two
matrix x (formulated in the convected basis in the case of thin
body kinematics)

xαβ Both exponents are Greek letters: componentαβ of a two by
two matrixx (formulated in the conjugated basis in the case of
thin body kinematics)

x,α The index is a Greek letter preceded by a comma: partial
derivative of x with respect to theαth variableα ∈ [1; 2] (for-
mulated in the convected basis in the case of thin body kine-
matics)

x,α The exponent is a Greek letter preceded by a comma: partial
derivative of x with respect to theαth variableα ∈ [1; 2] (for-
mulated in the conjugated basis in the case of thin body kine-
matics)

xξ The exponent is a bold greek letter: x is evaluated at nodeξ



16 Table with notations & definitions

xi The index is a roman letter: ith scalar component of a 3-
component vectorx (formulated in the convected basis in case
of thin body formulations)

xi The exponent is a roman letter: ith scalar component of a 3-
component vectorx (formulated in the conjugated basis in
case of thin body formulations)

x,i The index is a roman letter preceded by a comma: partial
derivative ofx with respect to theith variablei ∈ [1; 3] (for-
mulated in the convected basis in the case of thin body kine-
matics)

x,i The exponent is a roman letter preceded by a comma: par-
tial derivative ofx with respect to theith variable i ∈ [1; 3]
(formulated in the conjugated basis in the case of thin body
kinematics)

xi j Both indices are roman letters: scalar componenti, j ∈ [1; 3]×
[1; 3] of matrix x

Xαβγδ All the indices are Greek letter: componentα,β,γ,δ ∈ [1; 2]×
[1; 2]× [1; 2]× [1; 2] of 4th order tensorX (formulated in the
convected basis in the case of thin body kinematics)

X αβγδ All the indices are Greek letter: componentα,β,γ,δ ∈ [1; 2]×
[1; 2]× [1; 2]× [1; 2] of 4th order tensorX formulated in the
conjugated basis in the case of thin body kinematics)

X i jkl All the indices are roman letter: componenti, j,k, l ∈ [1; 3]×
[1; 3]× [1; 3]× [1; 3] of 4th order tensorX (formulated in the
convected basis in the case of thin body kinematics)

x Overlined letter: x is evaluated on the neutral axis of the thin
bodies

x̂ A wide hat above x: x is formulated in the basis of the interface
(and not in the basis of the bulk element)
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Mathematical operations

This work uses the Einstein notation (i.e.
Z

∑
i

xiyi is summarized byxiyi with Z = 2 if the

indices are Greek letters andZ = 3 if the indices are roman letters) unless otherwise stated.
Considerx andy two mathematical quantities (scalar, vector or tensor),

x,y = ∂
∂yx Partial derivative ofx with respect ofy

d
dyx Total derivative ofx with respect ofy
||x|| Euclidean norm of vectorx: ||x||=√

xixi

||x||∞ Infinite norm of vectorx: ||x||∞ = maxi xi

x∧y Vector product betweenx andy: [x∧y]i = εi jkx jyk, with εi jk

the Levi-Civita 3th order tensor
x ·y Scalar product ofx andy: x ·y = xiyi

x⊗y Dyadic product ofx andy: [x⊗y]i j = xiy j

xT Transpose of tensorx: e.g. for a 2nd order tensor,
[
xT
]
i j = x ji

x−1 Invert tensor ofx: e.g. for a 2nd order tensor,
[
x−1
]
ik xk j = δi j

with δi j the Kronecker delta
detx Determinant of second order tensor
|x| Absolute value ofx: |x|= x if x≥ 0 and|x|=−x otherwise
trx Trace of a second order tensorx
xy Tensorial product ofx andy: e.g. for a second order tensor

x and vectory product[xy]i j = xikyk and for 2 second order
tensors[xy]i j = xikyk j

x : y Tensor contraction between a tensorx and a tensory: e.g. for
two second order tensorsx : y = xi j yi j

x : Y Product between a matrixx and a 4th tensorY : [x : Y ]kl =
xi jYi jkl

X : y Contraction between a 4th order tensorX and a second order
y: [X : y]i j = Xi jkl ykl

A→ B Transformation which gives for each point ofA a point ofB
A×B→ C Transformation which gives for each point ofA andB, a point

of C
JxK Jump operator:JxK = (x+−x−)
〈x〉 Mean operator:〈x〉= 1

2 (x
++x−)∣∣∣

∣∣∣
√
H a
∣∣∣
∣∣∣
2

L2(le)
Abusive notation for

∫
le a·H ·adl, with H definite positive

∣∣∣
∣∣∣
√
H a
∣∣∣
∣∣∣
2

L2(s)
Abusive notation for12

∣∣∣
∣∣∣
√
H a
∣∣∣
∣∣∣
2

L2(∂le)
|||u||| Energetic norm defined for the weak discontinuous Galerkin

form
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≪ x ≫ mathematical operator defined such as its value is null ifx is
negative and tox otherwise:≪ x≫= x if x≥ 0 and 0 otherwise
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Variables

Scalar variables

αF Weighting factor of inertial forces for time integration algo-
rithm of Hulbert-Chung

αM Weighting factor of external and internal forces for time inte-
gration algorithm of Hulbert-Chung

αs Boolean value to implement fracture criterion:αs = 1 if frac-
ture and 0 otherwise

β Fracture modes coupling parameter (i.e. β = KIIc
KIc

)
βN First Newmark parameter
βi ith non dimensional stability parameters of the discontinuous

Galerkin weak form of a thin body
B Width of the damage localization band
cd Dilatational wave speed
γ Second Newmark parameter
γs Safety factor on the critical time step for explicit time integra-

tion
δi j Kronecker symbol
∆ Unidimensional cohesive opening displacement
∆c Equivalent critical opening of crack lips
∆⋆

n Normal effective opening of the cohesive law
∆⋆

t Tangential effective opening of the cohesive law
∆⋆

max Effective maximal opening of the cohesive law reached during
the simulation

D Damage variable
Dc Critical damage value
D f Final damage value
∆t Time step size
∆tcrit Critical time step for explicit time integration
εi jk Componenti, j,k∈ [1; 3]× [1; 3]× [1; 3] of Levi-Civita tensor
ηI Coupling parameter between resultant cohesive efforts giving

a mode I opening
ηII Coupling parameter between resultant cohesive efforts giving

a mode II opening
E Young modulus
Etot Total energy
G Energy dissipate by a fracture process
Gc Fracture energy of the material
h Thickness of a thin body
hmin Thickness coordinate of the lower skin of a thin body
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hmax Thickness coordinate of the upper skin of a thin body
heq

I Equivalent thickness for membrane/bending coupling of frac-
ture mode I

heq
II Equivalent thickness for in-plane shearing/torsion coupling of

fracture mode II
h Hardening coefficient
hs Characteristic size of an element
Ip Polar moment of mass inertia
I Moment of inertia
j Determinant of the deformation gradient with respect to the

inertial frame
j̄ Determinant of the deformation gradient with respect to the

inertial frame evaluated on the neutral axis
J Jacobian of the two-point deformation gradient
J̄ Jacobian of the two-point deformation gradient evaluated on

the neutral axis
J-integral J-integral
K Bulk modulus
KIc Fracture toughness in mode I
KIIc Fracture toughness in mode II
λ Undefined pressure
λh Describes a change of shell thickness due to deformations
L Length of the Euler-Bernoulli beam
le Length of an element of an Euler-Bernoulli beam
µ Shear modulus
µc Frictional Coulomb coefficient
M Nodal mass (scalar)
MB Bending moment of a beam
m Nodal mass of the diagonalized mass matrix (scalar)〈
m̃22
〉

coh Bending contribution to the cohesive law〈
m̃21
〉

coh Torsion contribution to the cohesive law
Mcoh Unidimensional resultant bending cohesive stress
ν Poisson ratio
να Inplane outward unit normal alongα to a Cosserat plane
νBα Inplane outward unit normal to a beam (used at interface ele-

ment)
n Number of nodes of a system〈
n22
〉

coh Tensile contribution to the cohesive law〈
n21
〉

coh Shearing contribution to the cohesive law
Ncoh Unidimensional resultant membrane cohesive stress
N Shape function
NB Tensile effort of a beam
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p Pressure
pB Distributed load applied on a beam
ρ Density
ρ Reduced density defined in the shell formulation
ρB Density by unit of surface
ρd Spectral radius of the time integration algorithm of Hulbert-

Chung
σeff Effective stress used in the fracture criterion
σc Strength used as fracture criterion in tension (i.e. fracture if

σeff > σc with σeff ≥ 0)
σ0

Y Initial yield stress
σv Von Mises yield stress
τc Shearing strength used as fracture criterion in shearing (i.e.

fracture if|σeff|> τc)
t Unidimensional cohesive traction
Tol Tolerance of Newton-Raphson algorithm
Uint Internal energy
V Volume
VB shearing effort of a beam
wg Weight of Gauss point
W Hyperelastic potential
Wext External work
Wint Internal work
ξI Coordinate of the shell in the reference frame, I∈ [1; 3]
Y Damage energy release rate
Yc Threshold of deformation energy yielding damage

Vectors

B Body forces per unit volume
δx Kinematic admissible virtual displacement
∆x Positions increment during Newton-Raphson resolution
∆ Cohesive displacement opening vector

EI Ith Vector of the inertial (orthogonal) reference frame, I∈
[1; 3]

Fext External forces
Finertial Inertial forces
Fint Internal forces
Freac Reaction forces

gI Ith vector of the shell deformation gradient which corresponds
by definition to the Ith vector of the convected frame, I∈ [1; 3]



22 Table with notations & definitions

gI Ith vector of the conjugated frame to the convected frame, I∈
[1; 3]

F be
int n Elementary internal membrane force vector of the Euler-

Bernoulli beams formulation
F be

int b Elementary internal bending force vector of the Euler-
Bernoulli beams formulation

F bs
int consn Elementary consistent membrane internal force vector of the

Euler-Bernoulli beams formulation
F bs

int compn Elementary compatibility membrane internal force vector of
the Euler-Bernoulli beams formulation

F bs
int stabn Elementary stability membrane internal force vector of the

Euler-Bernoulli beams formulation
F bs

int consm Elementary consistent bending internal force vector of the
Euler-Bernoulli beams formulation

F bs
int compm Elementary compatibility bending internal force vector ofthe

Euler-Bernoulli beams formulation
F bs

int stabm Elementary stability bending internal force vector of the Euler-
Bernoulli beams formulation

F bs
int staba Elementary stability shearing internal force vector of theEuler-

Bernoulli beams formulation
F bs

int cohn Elementary cohesive membrane internal force vector of the
Euler-Bernoulli beams formulation

F bs
int cohm Elementary cohesive bending internal force vector of the

Euler-Bernoulli beams formulation
F e

iner Elementary inertial force vector of the Kirchhoff-Love shells
formulation

F e
int n Elementary internal membrane force vector of the Kirchhoff-

Love shells formulation
F e

int b Elementary internal bending force vector of the Kirchhoff-
Love shells formulation

F s
int consn Elementary consistent membrane internal force vector of the

Kirchhoff-Love shells formulation
F s

int compn Elementary compatibility membrane internal force vector of
the Kirchhoff-Love shells formulation

F s
int stabn Elementary stability membrane internal force vector of the

Kirchhoff-Love shells formulation
F s

int consm Elementary consistent bending internal force vector of the
Kirchhoff-Love shells formulation

F s
int compm Elementary compatibility bending internal force vector ofthe

Kirchhoff-Love shells formulation
F s

int stabm Elementary stability bending internal force vector of the
Kirchhoff-Love shells formulation
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F s
int staba Elementary stability shearing internal force vector of the

Kirchhoff-Love shells formulation
F s

int cohn Elementary cohesive membrane internal force vector of the
Kirchhoff-Love shells formulation

F s
int cohm Elementary cohesive bending internal force vector of the

Kirchhoff-Love shells formulation
l Resultant across-the-thickness stress vector
lB Resultant across-the-thickness stress vector of an Euler-

Bernoulli beams
mα Reduced bending stress along axisα
m̃α Bending resultant stress along axisα
̂̃mα

Bending resultant stress along axisα formulated in the basis
of the interface

mα
B Bending resultant stress along axisα for Euler-Bernoulli

beams
nα Reduced membrane stress along axisα
ñα Membrane resultant stress along axisα
̂̃nα

Membrane resultant stress along axisα formulated in the basis
of the interface

nα
B Membrane resultant stress along axisα for Euler-Bernoulli

beams
m̃A Resultant external torque
nA Resultant external surface traction
ν Outward unit normal of the shell in the inertial frame
νB Outward unit normal of the beam in the inertial frame

t Direction of the Cosserat surface
ẇt Rotational inertia
u Small displacement field to the exact solution
uh Small displacement field corresponding to the discretized so-

lution of the problem
T Cohesive traction vector

Second order tensors

C Right Cauchy strain tensor
Ce Right elastic Cauchy strain tensor
εεε Cauchy strain tensor (small strain)
F Deformation gradient
I Unity tensor (order 2)
K Stiffness matrix
Kbe

int n Elementary internal membrane stiffness matrix
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Kbe
int b Elementary internal bending stiffness matrix

Kbs
int consn Elementary consistent membrane internal stiffness matrix

Kbs
int compn Elementary compatibility membrane internal stiffness matrix

Kbs
int stabn Elementary stability membrane internal stiffness matrix

Kbs
int consm Elementary consistent bending internal stiffness matrix

Kbs
int compm Elementary compatibility bending internal stiffness matrix

Kbs
int stabm Elementary stability bending internal stiffness matrix

Kbs
int staba Elementary stability shearing internal stiffness matrix

Kbs
int cohn Elementary membrane cohesive internal stiffness matrix

Kbs
int cohm Elementary bending cohesive internal stiffness matrix

Mbe Elementary mass matrix of Euler Bernoulli beams
Φ Deformation mapping
P First Piola-Kirchhoff stress tensor
PK Second Piola-Kirchhoff stress tensor
σ Cauchy stress tensor
σ̃ Effective Cauchy stress tensor (for damage theory)
τ Kirchhoff stress tensor
T Push-forward tensor is used to change the metric of shell
χ Two-point deformation mapping

Fourth order tensors

H Hooke tensor
C Tangent modulus of the material law

Manifold

A Cosserat mid-plane surface of a shell
C 0 Manifold of continuous mathematical functions
C 1 Manifold of continuous mathematical functions with a contin-

uous first derivative
C 2 Manifold of continuous mathematical functions with both first

and second derivatives continuous
L2 Lebesgue space of dimension 2
GL+(3,R) The invertible Lie group of dimension 3 with a positive Jaco-

bian
R Mathematical manifold of real numbers
S2 The unit sphere manifold
S Volume representing a shell in the reference frame
S0 Volume representing the reference configuration of a shell in

the reference frame



Chapter 1

Introduction

Use of raw materials is streamlined by environmental and economic reasons. Indeed, the
recent worldwide awareness of environment conservation leads to limit the quantity of raw
materials used in different goods. In fact, if less materialis used their extraction as well as
their carriage impacts decrease their environmental cost.Furthermore, the takeoff on financial
markets of raw materials prices reinforces this point as industrialists tend to produce with the
smallest factory price. An obvious consequence of this reduction of raw material is the thinner
design of some components. For example, pressurized gas cylinders or safety barriers are
designed with a smaller thickness than in the past. However it is important to ensure their safe
mechanical behavior in case of problems. Indeed a gas cylinder has to support an amount of
overpressure and a safety barrier has to hold a car impactingit, motivating the development
of numerical tools predicting the fracture of thin bodies.

The complexity of crack mechanics limits the recourse to analytical models to very simple
situations, which leads during the last three decades to thedevelopment of some numerical
methods. The scope of the present thesis comes within this context and contributes in this
field. In particular, it focuses on the dynamic crack initiation and propagation in large prob-
lems (i.e. problems involving a large number of degrees of freedom) with a special care to
pressurized components.

Toward this end, we present first in the Chapter 2 a review of thedifferent methods de-
veloped in computational mechanics to model crack initiation and evolution. We show that
the actual popular technique XFEM is well suited to model a quasi-static crack propagation in
the context of linear elastic fracture mechanics. Nevertheless, its applicability in dynamics is
still challenging especially for large problems. Besides, for this specific case, a new method
combing cohesive zone method (CZM) and the discontinuous Galerkin (DG) formulation has
been recently presented. This combination suggested by J. Mergheimet al. [157] and R.
Radovitzkyet al. [228, 211] allows avoiding the usual drawbacks of the cohesive element in-
sertion (as lengthy discussed in Chapter 2) to model the crackinitiation and propagation in
a manner that is well designed for a parallel implementation. In fact, industrial components
require models with a lot of degrees of freedom, especially in the case of tearing, as a very
thin mesh is needed to well capture the crack path. Thus the recourse to parallel implemen-
tation is mandatory, on one hand, to reduce the computational time and, on the other hand,
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to avoid memory issues. Nevertheless, this framework is presented in the literature for 3D
elements only. Since the problems investigated in this workconcern thin bodies, we formu-
late an original adaption to thin structure formulations. Indeed, modeling thin structures with
3D elements leads to an excessive number of degrees of freedom motivating the development
of special formulations for thin bodies. However, such a full-DG formulation is lacking in
the literature. Therefore in a first time, we develop a full-DG formulation for non linear thin
structures. Once this formulation obtained, we can simulate the continuum part of the defor-
mation with discontinuous elements and in a second time, we develop an original cohesive
law adapted to thin structures to model a crack. Afterward, the study of the crack initiation
and propagation is performed by a combination of the full-DGformulation with an extrinsic
cohesive law. Such a law models, on phenomenological basis,the work of separation required
to separate the crack lips. It is called extrinsic as it is used to model only the fracture process
by opposition to intrinsic cohesive laws which also model the continuous deformations.

These developments are first realized in the case of linear Euler-Bernoulli beams in the
Chapter 3. In fact, the particular case of beams allows performing several simplifications
leading to a more understandable formulation that can be developed in an easier way. We start
from the Euler-Bernoulli beam theory to develop a space discontinuous discretization of the
beam. This discretization is based on the previous works of G. Engelet al. [91] where they
presented a space continuous method but where the DG method is used to ensure weakly the
C 1 continuity (i.e. the continuity of the slope). Such a method has the advantageto be a one-
field formulation (i.e. the nodal unknowns are only the spatial displacements). Starting from
this formulation, we add interface terms to guarantee weakly the continuity of displacements
and thus to have a full-DG formulation of the problem. We showthat a consistent and sta-
ble discontinuous formulation can be obtained using the DG method, which ensures weakly
the continuity at interfaces between elements, by adding some interface integral terms in the
formulation. Furthermore, we illustrate the numerical properties of our original formulation
through a numerical benchmark. We demonstrate that our formulation provides results as ac-
curate as other methods coming from the literature. Afterward as the thickness is implicitly
modeled in a thin bodies formulation, we develop an originalcohesive law based on the resul-
tant tension and bending stresses of the beam and we demonstrate that our model respects the
energetic balance by dissipating the expected amount of energy during crack propagation.

The Chapter 4 suggests an original extension to Kirchhoff-Love shells formulation of our
full-DG formulation presented in Chapter 3 for beams. This original shell formulation is
shown to have numerical properties of consistency, stability and of optimal convergence rate in
two different norms. Furthermore, we prove through severalnumerical benchmarks of contin-
uum mechanics that this novel full-DG shell formulation provides results as accurate as other
(continuous) methods coming from the literature. These examples include large deformations
and plasticity to demonstrate with success the ability of our method in these conditions. As
previously mentioned, a parallel implementation is neededto perform industrial problems
and we present a novel original parallel implementation of the method, which is proved to be
highly scalable on numerical examples. This implementation is performed in an open source
software Gmsh [105], written in C++, allowing for the treatment of large problems.
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Afterward, the Chapter 5 shows how the cohesive model developed for beams in Chap-
ter 3 can be generalized to shells. The combination of this cohesive law with the full-DG
formulation of shells presented in Chapter 4 provides a versatile and powerful framework to
study dynamic crack initiation and propagation in thin bodies. Toward this end, we show
through several numerical benchmarks that our framework isable to model crack propagation
in notched specimen, as well as fragmentation due to acceleration. In particular, a model of
the blast of a notched pressurized cylinder is presented. Inthis example, the deformations lead
to plasticity before the propagation of the crack. It is shown, by comparison with experimental
data coming from the literature that our framework can predict this crack propagation with the
correct crack speed only if the elasto-plastic behavior is included in the formulation.

Finally, as perspective to this thesis we provide the basis to extend the DG/ECL framework
to the ductile fracture in Chapter 6. We keep the same approachand we suggest modeling
the damage in the constitutive behavior. A cohesive elementcan be inserted to model the
apparition of a crack when a criterion based on a critical damage value. This concept is
illustrated through an example demonstrating that the obtained results are qualitative although
some improvements will be necessary to obtain quantitativeones.



28 Introduction



Chapter 2

Computational fracture mechanics:
review & contributions

The outcomes of this thesis are based on the combination of two main concepts: the Cohe-
sive Zone Model (CZM) and the Discontinuous Galerkin (DG) method. Both concepts were
developed independently during three decades before theirrecent combination to solve frac-
ture mechanics problems by several authors as J. Mergheimet al. [157], R. Radovitzkyet
al. [211, 228, 137] or M. Prechtelet al. [210] for 3D problems. The cohesive zone method
is used to model the fracture work inherent to new crack surface initiation. Therefore, this
method can be coupled with the Finite Element (FE) method to model crack initiation or
propagation at interface of elements in an appealing way. Unfortunately, the introduction of
cohesive elements is an issue with Continuous Galerkin (CG) formulations as it has to intro-
duce a discontinuity in a continuous mesh. Some ideas have been developed but the recourse
to DG methods is very appealing in this case as it allows taking into account discontinuities
in the unknowns fields. The continuity is then ensured weaklyby interface terms. These
ones can be used advantageously to insert the cohesive elements leading to a very simple and
elegant implementation of the CZM.

Furthermore, DG/CZM framework is not the only way to compute fracture phenomena
and other methods, as Linear Elastic Fracture Mechanics, meshless methods or enrichment
methods (EFEM, XFEM), are also developed in the literature.Therefore, we summarize all
these methods (with more developments for the chosen approaches) to justify the relevance of
the development of a totally original DG/CZM framework for thin bodies formulation under
dynamic loading. Finally, the perspectives of this review will be exploited in the next chapters
to develop such a framework in an original way.

2.1 Linear Elastic Fracture Mechanics and its extension to
the non linear range

The origin of fracture mechanics analysis comes from the determination of different frac-
ture quantities (stress intensity factors, fracture energy release orJ-integral) under linear elas-
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tic assumption. This one is restrictive but is a good starting point for materials and geometries
leading to a confined plastic zone at the crack tip. This method considers an initial crack
and therefore cannot model a fracture initiation. taill Themost commonly used criterion to

Figure 2.1: Illustration of the three fracture modes.

predict fracture resistance is based on stress intensity factors or fracture energy release. The
stress intensity factors approach was presented by G. Irwin[126], where he introduced the
three fracture modes depicted on Fig. 2.1: the mode I relatedto a normal opening, the mode
II related to a sliding and mode III relative to a shearing (out-of-plane). For each mode he
solved the problem of an infinite plate with a crack and extracted a stress intensity factorK.
He demonstrated that near the crack tip, this one is governedby a term in 1√

r , wherer is the
distance from the crack tip. This solution leads to an unphysical infinite stress at the crack tip
due to the neglecting of plasticity. With this development he postulated that the stress intensity
factors depend on the length of the crack and on a function taking into account the geometry.
To predict the fracture resistance, the fracture toughnessKc is evaluated by experiments. If
an equivalent stress intensity factor (combiningKI ,KII andKIII ) of a component is larger than
Kc, the crack begins to propagate.

Another fracture quantity developed by A. Griffith is the fracture energy [109]. He calcu-
lated the energy variation of a body due to an infinitesimal crack extension. Indeed, due to
crack extension an amount of energy is released, so the totalenergy has to decrease due to the
crack extension. In fact, the fracture process dissipates energy to create new crack surfaces.
Phenomenologically, the work of separation process includes a contribution from the intrinsic
surface energyγs, modeling the energy per unit area requires to form a single new surface after
breaking atoms bondings, and a contribution from the plastic work of the process zoneWd.
Both contributions are depending on the material, and the second,Wd depends on the geome-
try and is negligible for brittle materials. In fact by definition, these materials break without
significant deformation and therefore show a small (negligible) plastic zone confined at the
crack tip. Therefore, callingGc the energy per unit area dissipated by the fracture process,it
comes, for brittle materials,Gc = 2γs, which can be evaluated experimentally. Therefore if
the energy released is larger than this material value then the crack propagates.

The third quantity used to characterize fracture is theJ-integral concept developed by J.
Rice [215]. He suggested to calculate the energy that flows to the crack tip. Indeed, for an
uncracked body, the flow of energy through a closed surface isequal to zero, therefore the
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computation of the flows parallel to the crack tip is able to characterize the fracture. The
concept ofJ-integral has several advantages compared to the stress intensity factor or frac-
ture energy approaches presented above as it is, in linear elasticity, independent of the path of
further crack extension (contrarily to the fracture energycriterion assuming a straight propa-
gation) and it just requires the definition of a potential. ThereforeJ-integral concept can be
used for non linear fracture mechanics contrarily to the stress intensity factor. Notice than
equivalence of the three concepts is demonstrated under theassumption of linear elasticity
and a straight crack extension.

Since their apparition, these quantities have been used in alot of practical and indus-
trial applications. Nevertheless, their analytical evaluation is only possible for very simple
geometries. Thus, their evaluation for complex geometriesis generally performed by numer-
ical methods. The stress intensity factors can be obtaineda posteriorifrom a finite element
analysise.g.[68, 199, 217, 246]. In fact its value can be approximated thanks to the stress or
displacement fields. The last one is generally used as it is more accurate for kinematic for-
mulations. As this technique requires a refinement of the mesh near the crack tip to properly
capture the singularity, R. Barsoum [25] suggested to modify the isoparametric elements by
moving the middle nodes of a quadratic element to capture more accurately the asymptotic
field. Nevertheless the technique remains time consuming due to the mesh refinement.

The crack advance technique [141] allows the evaluation of the fracture energy with a
coarser mesh. The fracture energy is just evaluated by a finite difference of energies for two
computations of the specimen: on one hand with the size of thecrack and on the other hand
with the length of the crack with a small extension. This technique is very appealing as many
commercial codes supply energy as an output. This concept was extended by D. Parks [198]
who introduced the virtual crack extension method to take into account non linear behavior.
Furthermore de Lorenzi extended the virtual crack extension [77, 78] to avoid the numerical
finite differentiation, which requires two computations.

Some numerical methods were also developed to evaluation the J-integral [215]. It can
be easily computed from integration point values along a contour surrounding the crack tip.
This technique has the advantage to be path independent for an elastic case and can be used in
linear or non linear range as long as there is no unloading. Inthe case of plastic deformations,
unloading can occur and the introduction of an appropriate correction is required [59, 64].
The general formulation of theJ-integral, called energy domain integral, was suggested by
C. Shihet al. [171, 229] and R. Doddset al. [81]. They developed a versatile and powerful
framework which can be used for quasi-static or dynamic problems and with elastic, plastic
or viscoplastic materials.

The methods presented above are still used today to perform crack propagation. One of
the fracture quantities is evaluated and then compared withthe critical material value (e.g.
[51, 120, 143]). If it is larger than this critical value, a remeshing operation is realized to
propagate the crack, usually, in the direction of the principal hoop stress as suggested by
F. Erdoganet al. [92]. In fact, they confirmed by experimental comparisons that the crack
propagates in the direction where the stress intensity factor is larger than the toughness of
pure mode I loading. Nevertheless, other kinking criteria exist ase.g.the one suggested by M.
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Hussainet al. [124] who consider a global criterion based on the distribution of the energy in
the neighboring of the crack tip. Moreover, a micro-void continuum damage model can also
be used to determine the direction of the crack propagation as presented by J. van Vroonhoven
et al. [253]. These three mentioned kinking criteria are comparedby P. Bouchardet al. [56]
who conclude that the criterion of F. Erdoganet al. [92] is the easiest to implement while it
provides results as accurate as the other ones. As this technique demands small time steps and
remeshing operations to follow the crack propagation, it isvery time consuming. To avoid the
remeshing operations, meshless techniques can also be used[42] (see Section 2.5).

2.2 Cohesive Zone Model

The cohesive zone model (CZM) was pioneered fifty years ago by G. Barenblatt [24] and
D. Dugdale [89]. They developed this concept to remove the unphysical infinite stress at crack
tip resulting from the linear behavior assumption. Barenblatt focused on brittle elastic bodies
with a decomposition of the crack into two regions. He calledthe physical extent of crack,
which is stress free, the ”inner region” and he named ”cohesive region” the crack extension
where the surface separation is strangled by surface tractions modeling the fracture work.
These tractions model the atomic separation process with a multiscale postulate, see Fig. 2.2,
and lead to a finite stress at crack tip under the two followingassumptions:

(i) The width of the cohesive region is small compared to the size of the whole crack. This
hypothesis is justified by a fast decrease of molecular cohesive forces with the distance
between atoms.

(ii) The shape of the cohesive zone is a material parameter independent of the loading con-
ditions. This restrictive hypothesis is needed to have a local distribution of cohesive
forces unvarying with loading.

With these two assumptions the singularity at crack tip is avoided by the determination of the
cohesive zone size. A few year later, J. Rice introduced theJ-integral [215] and therefore
demonstrated that the second assumption is unnecessary to solve the crack tip singularity
problem. Furthermore he proved that the CZM concept is equivalent to the classical Griffith
energetic approach [109] for the description of brittle elastic fracture.

Dugdale, on his side, investigated a thin sheet of elastic-perfectly plastic materials with
the same idea of removing the crack tip singularity. He postulated that the plastic zone is
confined in a small region ahead of the crack tip and defined this region as the cohesive zone.
Similarly to Barenblatt the size of the zone is such that it ensures a finite stress a crack tip.

Both models were combined by A. Hillerborget al. [117] to obtain the first numerical
implementation of the cohesive zone concept. They insertedsuch a zone along edge of ele-
ments where a crack can be formed. The gradual separation of these ones is governed by a
Traction Separation Law (TSL) linking the traction to the opening. The phenomenological
observations lead to consider cohesive tractions startingfrom zero, reaching a maximal value
σc, which depends on the fracture mode, decreasing to zero for acritical opening∆c value
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Figure 2.2: Illustration of multiscale postulate of Barenblatt with a decomposition of crack
into two regions. (Picture comes from [228]).

and then remaining null as illustrated on Fig. 2.3(a). The value of σc is supposed to be a
material parameter and the value of∆c is chosen by energetic considerations with regards to
A. Griffith [109] works,

Gc =
∫ ∆c

0
T (∆)d∆ , (2.1)

whereT (∆) represents the TSL . This one is either relative to a fracturemode or is an
effective law modeling a fracture modes combination. This model was used by A. Hillerborg
et al. [117] to insert explicitly the discontinuity resulting from crack in a finite element mesh.
The cohesive element is simply inserted between bulk elements and the crack appears due to
nodal displacement jumps governed by inter-element cohesive tractions.

Furthermore, the application ofJ-integral on the cohesive zone [215] introduces a cohesive
length equal to, for mode I fracture under static loading (E = Young modulus,ν = Poisson
ratio),

R =
πEGc

2(1−ν2)σ2
c
, (2.2)

which conditions the mesh size. Indeed, the length of cohesive elements has to be sufficiently
small to resolveR. For example for the material Al2024-T3, the mesh size is limited to
approximately 6[mm] to respect this characteristic size. Therefore for large components the
mesh becomes ultra thin and its sequential resolution can bean issue.

Finally, as it was demonstrated experimentally by several authors [108,129,131,132] that
the fracture strength is rate dependent, G. Camachoet al. [63] introduced a characteristic time
of the cohesive zone for dynamic problems,

tc =
ρcd∆c

fts
, (2.3)

with ρ the density,cd the dilatational wave speed andfts the maximal quasi-static tensile
strength of the material. Note thattc is not a determining factor of the critical time step of the
simulation. The Eq. (2.3) is obtained by G. Camachoet al. in formulating the equilibrium of
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incident and transmitted wave equilibrium to establish an exponential law relying the dynamic
and static values ofσc,

σdyn
c = σstat

c
exp

τ
tc

exp
τ
tc
−1

, (2.4)

whereτ is the duration of the pulse of incident wave. The choice of a finite critical opening
∆c included this characteristic time in the TSL which ensures to a rate insensitive TSL to be
strain-rate sensitive as demonstrated by G. Ruizet al.[220] and thus to account for the fracture
strength rate dependency.

At this point, the remaining challenging issue concerns theinsertion of the cohesive ele-
ments for 3D geometries. Indeed, their insertion during thesimulation requires topological
mesh modifications and therefore a complex implementation.In this case the assorted cohe-
sive law is called extrinsic as it has not to model the reversible continuum part of the defor-
mation. The other approach, used by A. Hillerborget al. [117], inserts the cohesive elements
at the beginning of simulations. In this case the assorted cohesive law is called intrinsic as it
models the continuum deformation. This cannot be achieved in a consistent way and leads
to numerical problems as discussed here below. An example ofthe TSLs considered in both
cases is depicted on Fig. 2.3.

T

σc

∆∆c

Gc

(a) Intrinsic TSL.

T
σc

∆∆c

Gc

(b) Extrinsic TSL.

Figure 2.3: Compared to the extrinsic TSL (b) the intrinsic one (a) models the reversible
continuum part of the deformation thanks to an initial slope.

2.2.1 Intrinsic cohesive law

Historically the intrinsic cohesive laws were the first developed due to their easy imple-
mentation, mainly to solve interface delamination problems. Indeed in this case, the initial
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slope of the TSL has a physical meaning, as it represents the interface cohesion, and the co-
hesive elements can be inserted along a well known crack path. Different shapes of TSL
were suggested by several authors to describe different phenomena of decohesion. A. Needle-
man [175] introduced a polynomial potential law to study thedebonding of a spherical inclu-
sion in a ductile matrix (see Fig. 2.4(a)). Despite the fact that the delamination occurs due
to the normal opening, A. Needleman took into account the tangential opening in his model.
Furthermore, the shape of the TSL suggested by A. Needleman allows to model the behav-
ior of the decohesion (i.e. the normal traction increases, reaches a maximal value and then
decreases until zero for a finite critical opening). Even if it is not motivated by experimental
evidences, the choice of a polynomial potential form leads to a path independent law. Finally,
it has to be mentioned that this polynomial law is restrictedto normal opening dominated
problems.
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Figure 2.4: Different shapes of the intrinsic cohesive law for a uniaxial tension test.

This limitation is removed by an extension of the polynomialpotential cohesive model
supplied by V. Tvergaard [247]. In fact the initial model of A. Needleman was inefficient in
case of mixed mode with a high normal compression as it leads to a negative normal opening.
Therefore, V. Tvergaard suggested, considering a unidimensional effective opening, to model
mixed mode fracture. However, as he focused on interface debonding in a fiber-reinforced
metal matrix composite, the mixed mode capability of the model is not demonstrated. Indeed,
pure normal separation occurs at the fiber tips and pure tangential separation occurs for fiber
pull-out. Moreover, V. Tvergaard highlighted the necessity to conduct experiments to deter-
mine correct values of cohesive parameters likeσc. This one is still generally considered as a
constant despite it is known that it can vary due to material heterogeneities.

With regard to the atomistic simulations conducted by several authors [99, 218, 219], the
polynomial shape of the TSL has to be reconsidered. Indeed, the simulations show a universal
exponential shape between the binding energy and the atomistic separation. Following these
works, A. Needleman [176, 177] adapted his model to take intoaccount this exponential de-
pendency of the normal opening (see Fig. 2.4(b)). Nevertheless, he kept the linear assumption
on the tangential component as no data were available in thiscase. He included also in the
model a spatial variation ofσc to study the decohesion of a viscoplastic block from a rigid sub-
strate under uniaxial plane strain conditions [176], extended to the multiaxial loading in [177].
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In this case, as large tangential openings can arise, the linear assumption is not valid and it
is replaced by an exponential potential. Therefore, based on phenomenological periodicity of
the crystal lattice, the cohesive tractions are consideredas periodic despite the fact that it leads
to consider null interfacial work over one a period of tangential displacement.

Further simulations performed by G. Bozzolo [57] confirm the periodic behavior of tan-
gential cohesive components in the plane of interface. For complex modes of fracture involv-
ing shear and normal separation, X.-P. Xuet al. [261] suggested an exponential displacement
potential, based on the works of G. Beltzet al. [35], who introduced a maximal shearing trac-
tion τc different fromσc. Notice that this model ensures the isotropy of the tangential traction
in relation to the tangential sliding. X.-P. Xuet al. [261] considered this model to study the
void nucleation by inclusion debonding in an elastic-plastic crystalline matrix. Afterward,
several authors used this model to analyze different problems of dynamic crack growths, for
brittle materials [160,161,262], for elastic-viscoplastic materials [178,231], for functionally-
graded materials [273] and for interfacial fracture [263,264].

Although the exponential potential law is suitable for brittle materials it cannot model the
dependency of fracture toughness with the plasticity. Toward this end, V. Tvergaardet al.
developed a trapezoidal cohesive law, first restricted to mode I [249] (see Fig. 2.4(c)), and
then for mixed mode fracture [250]. The dwell region introduced in this law is supposed to
model the plastic work of the fracture process. In their study they varied the length of the
plateau and demonstrated the little effect of the shape of cohesive law on the results except
for the initial slope, which the sensitivity is discussed below. I. Scheideret al. [225] modified
this law by inserting quadratic and cubic functions in placeof linear branches to remove
the slope discontinuity at the extremities of the dwell region (see Fig. 2.4(c)). With this
modified model they successfully simulate the cup cone fracture of a uniaxial tension test in
a 2D axisymmetric setting. However, the nature of ductile fracture cannot be modeled by
this cohesive law. Indeed, ductile fracture involves nucleation, growth and coalescence of
microcavities which cannot be resolved by a cohesive law with constant fracture parameters.
To solve this issue V. Tvergaardet al. modified their model and considered aσc depending on
the plastic strain rate [251].

Despite of this improvement, damage models as the Gurson model [110] remain more
suitable to describe ductile fracture. Therefore, severalworks [5, 6, 230, 231, 249] have been
realized to merge this continuum damage model with the cohesive approach. The main idea is
to considered a representative volume element (RVE) governed by the Gurson model to extract
the cohesive law. Nevertheless, it seems that the cohesive values obtained are dependent on the
constraints prescribed to the RVE. In another work, V. Tvergaard [248] suggested to govern the
cohesive surface by a Gurson model but with a new implementation of the cohesive surface.
Finally, J. Oliveret al. [121,187,189,188,222] suggested a new approach where a continuum
damage theory is used until the verification of Hadamard criterion [113] relative to the lost of
ellipticity of the acoustic tensor. At that time, they inserted a cohesive element to take into
account the local and discontinuous nature of fracture.

The specific case of thin structures was addressed in the literature by F. Ciraket al.[69,70]
who studied in a first time the petalling of an aluminum plate subsequent to a bullet impact



2.2 Cohesive Zone Model 37

[70]. Afterward, they used the same model to study the crack propagation in an initially
notched pipe subjected to a blast wave [69]. Although they performed the simulations with
a shell formulation, they conserved the 3D TSL approach. Therefore to propagate the crack
through the thickness they suggested using the Simpson points of the thickness integration.
In fact, they computed the fracture criterion at each point and used the cohesive law only at
fractured points. Nevertheless, the manner of moving neutral axis during crack propagation
for bending dominant problems is not presented in their papers. Furthermore, the use of a TSL
based on the stress tensor can be an issue for thin bodies formulations as for these methods, the
governing equations are formulated in terms of resultant stresses,i.e., stress tensor integrated
on the thickness. Therefore, P. Zavattieri [268, 269] introduced a traction displacement law
coupled to a bending moment rotation law to model the through-the-thickness dynamic crack
propagation in thin structures. He compared the results of this model with full 3D FE models
and showed that they are well correlated.

Whatever the shape of the cohesive law, the intrinsic cohesive elements are inserted at
the beginning of the simulation, and thus, have to model the continuum part of the defor-
mation field with an initial slope. This fact leads to some numerical problems as mesh de-
pendency, lift-off and artificial compliance. The mesh dependency was not an issue in the
beginning as works mainly focused on delamination or problems with ana priori known
crack path [175,176,177,247,249,252], allowing the insertion of cohesive elements only in a
well defined zone. As promising results were obtained, it wasnatural to extend the method to
ana priori unknown crack path, which became an output of the simulation. Therefore several
authors investigate the fragmentation of brittle materials due to dynamic impact and the crack
branching instability problem. Toward this end, X.-P. Xuet al. [262] used their exponential
cohesive law [261] and inserted a cohesive element between all the bulk ones of their mesh
built with quadrilateral elements cut in ”cross triangles”to allow crack branching. Although
they modeled with success crack branching, X.-P. Xuet al. reported a crack path depending
on the triangle orientation. They obtained a straight crackpropagation for triangles with a±
45 degrees orientation but for triangles oriented at± 15 or± 30 degrees they obtained a crack
path in zigzag. I. Scheideret al. [225] noted the same phenomena. Indeed, in their cup cone
fracture simulation, they obtained the correct crack path only if the cohesive elements were in
the direction of the maximal tangential stress. The convergence of the solution with the mesh
was only achieved for crack path confined in a single plane without crack branching as,e.g. ,
reported by A. Needleman [178] in the case of a pure Mode I crack growth in a plane-strain
block with a pre-existing central crack subjected to impacttensile loading. Nevertheless, in
this case as emphasized by P. Geubelleet al. [104], ultra thin meshes are needed to resolve
the cohesive zone and achieve convergence.

The second issue related to an intrinsic cohesive law, called lift-off, is a spurious high crack
speed. This one is illustrated in [177, 262] and results fromthe initial opening of elements
along a potential crack path which can be close from the critical opening. In this case, a
sufficiently large load leads to the instant crack of all these elements and therefore a crack
speed faster than expected is observed.

Finally, the last drawback of the intrinsic cohesive law is an artificial compliance of the
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material. Indeed, the insertion of cohesive elements whichmodel the continuum part of de-
formations by an initial slope degrades the elastic modulusof material. The effective modulus
becomes, in the case a one-dimensional network of cohesive surfaces at constant spacing h,

Ee f f = E
sh

E+sh
(2.5)

with s the value of the initial slope of the TSL. The softening effect of the cohesive law
is negligible only ifsh>> E, which can only be reached for very large value ofs ash is
typically the mesh size. Notice that for a constants this effect will increase with the refine-
ment of the mesh. Furthermore this artificial compliance affects the wave propagation in an
anisotropic way for a multidimensional problem. The influence ofswas studied by several au-
thors [93,94,95,104,270] who concluded that the wave propagation is not affected ifs> 10E

h .
Nevertheless, a resolution of the initial slope in many steps is required and the time step has
to be decreased with the increase ofs, which can lead to very large computational time.

The drawbacks of the intrinsic TSL lead to an inefficient framework to study fragmentation
problems. Indeed, in this case, interactions and propagation of stress waves play a key role.
An accurate resolution can only be achieved for large initial slopes leading to very small
time steps and therefore to infeasible 3D large simulationswith regard to the computational
time required. Beside, to our knowledge, such a case is not reported in the literature1 and
the dynamic fragmentation was only investigated for 2D cases by several authors [94, 95, 96,
160,261]. They all highlighted a fragment size dependence on the distance between cohesive
elements except if they are sufficiently closed. From these studies it is not clear whether the
intrinsic TSL can predict fragmentation in case ofa priori unknown crack paths.

As the initial slope of the TSL inherent to the intrinsic approach leads to the numerical
problems highlighted above, several authors developed methods using extrinsic cohesive laws,
which can be seen as an intrinsic TSL with an initial infinite slope.

2.2.2 Extrinsic cohesive law

M. Ortiz et al. [63,191] pioneered the investigation of the extrinsic approach, which con-
sists in the insertion of cohesive elements when a fracture criterion is reached. As the contin-
uum part of the deformation has not to be modeled by the cohesive law, an infinite initial slope
of the TSL can be considered avoiding artificial compliance,as well as lift-off and stress wave
propagation issues. The principal drawback of this approach compared with the intrinsic one,
is the topological mesh modifications required during the simulation to insert the cohesive ele-
ments. Indeed, with a continuous Galerkin method (i.e. with a classical FE method), elements
are also continuous and there is the necessity to split nodesat interfaces where fracture occurs
to model the crack lips that are initially constrained by an extrinsic cohesive law. A further
challenge of the extrinsic approach is to account for the unloading after fracture initiation: the
crack can close and as the normal opening cannot become negative, a contact condition has to

1There are 3D examples of dynamic fragmentation in literature but they use an extrinsic approach.
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be implemented to constrain the normal opening to zero (otherwise this leads to the unphysi-
cal interpenetration of the medium). Such a condition is naturally inserted in the intrinsic case
where the initial slope of the TSL plays the role of a penalty contact conditions.

The most popular extrinsic cohesive law was suggested by G. Camachoet al.[63] and was
extended a few years later by M. Ortizet al.[191]. As it was demonstrated from [191,249,250]
that the shape of the law, as long as it is monotonically decreasing, has little effects on results
for brittle materials, they used a simple linear monotonically decreasing law (as depicted on
Fig. 2.3(b)) and postulated that in case of unloading, for a positive effective opening, the
relation between traction and opening decreases linearly to zero in a reversible way. They
assumed, based on the two first thermodynamic laws [191], that the cohesive law derives
from a free energy which allows, as for the intrinsic case, considering a law which derives
from a potential. By analogy with the work of V. Tvergaard [247] for intrinsic TSL, they
used an effective opening, which combines normal and tangential openings, for mixed modes
fracture.

The applications of the extrinsic cohesive approach focus on problems for which the intrin-
sic one suffers from problems and so concentrate on dynamic fragmentation and crack propa-
gation problems for brittle materials. G. Camachoet al. studied [62,63] high rate impacts and
fragmentation. Their results were in agreement with the experiments of J. Field [100], which
proves the efficiency of the cohesive approach to model crackinitiation and propagation. Fur-
thermore, in their 2D benchmarks, they obtained convergence of crack path and crack growth
rate for sufficiently small cohesive elements (tens of micrometer) when they used remeshing
to propagate the crack independently of the mesh. Afterward, A. Pandolfiet al. [193] studied
the experiment of D. Gradyet al. [107] of a ring fragmentation. The ring is submitted to a
uniform radial expansion, which leads to multiple simultaneous neck formations where frac-
ture can happen to lead to fragmentation. The simulation reproduced quite well the general
behavior of the experiment, but A. Pandolfiet al. [193] did not perform a convergence study
as the computational cost of the method is high for 3D simulations. Another fragmentation
study, performed by E. Repettoet al. [214], concentrates on the glass rods. Once again in this
experiment they captured the initiation and propagation ofthe fracture waves.

Moreover, several authors focused on three-point bending simulations [192, 221]. In this
case they showed that the extrinsic method is able to predictthe time of fracture initiation as
well as the shear lips formation at lateral surfaces. For completeness notice that this approach
is also used to model in dynamics, crack propagation [220, 267], fatigue problems [179],
sandwich components [265, 266] or firearm injuries to the human cranium with 3D models
[172].

As all the previous studies reproduced well the fracture phenomena, the proof of con-
vergence with the mesh size was obtained for ana priori known crack path, by I. Ariaset
al. [11], who performed (parallel) 2D simulations of pure mode Iinterfacial fracture of two
weakly bonded, pre-notched Homalite plates. They also compared the numerical results with
experiments. With the extrinsic approach, they reproducedthe crack tip trajectory and velocity
with a high level of accuracy.

Nevertheless at first sights, it seemed that for ana priori unknown crack path, this one
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depends on the mesh size. Indeed, Z. Zhanget al. [274] studied the microbranching insta-
bility for brittle materials by simulating symmetric loading of a pre-cracked PMMA2 strip
and captured the crack branching. Nevertheless they reported a crack path depending on the
mesh. Furthermore, G. Ruizet al. [221] observed the same phenomenon despite they ob-
tained convergence for the load-history curve. Moreover, F. Zhou et al. [275] studied the
mesh dependency to highlight the circumstances leading to this phenomenon and concluded
that a few randomness in the mesh size and orientation allowssignificantly reducing the mesh
dependency. Finally, K. Papouliaet al. [197] reported the convergence for a pin-wheel based
mesh. Nevertheless, if the spatial convergence seemed to bean issue, the temporal conver-
gence was observed in the different studies.

As well as the convergence of the crack path and crack growth rate, J.-F. Molinariet
al. [168] studied the convergence of the dissipated energy withrespect to the mesh size. They
focused first on symmetric impulse loading of a pre-cracked PMMA strip. For this case they
reported an increase of the dissipated energy with the mesh size without convergence. In a
second time, they studied the fragmentation of a ring meshedwith one dimensional elements.
They proved the convergence in this simple case, but for a mesh size tending to zero when a
uniform mesh is used, as predicted in their earlier works [275]. For meshes with elements of
various sizes a monotonic convergence was observed and achieved for ultra thin meshes.

Finally, time discontinuity drawback has to be reported. Indeed, at fracture initiation
the stresses computed by the constitutive material law are replaced by values coming from
the cohesive law. Therefore the continuity of the stress field is not ensured for mixed mode
fracture without special care. K. Papouliaet al. [196] highlighted this phenomenon and they
demonstrated the non convergence in time and the presence ofunphysical oscillations in case
of discontinuity.

The extrinsic cohesive framework can therefore be summarized as follow. It seems very
appealing to model dynamic fragmentation and crack growth but it requires ultra thin meshes
with a randomness on the mesh size and structure to achieve the convergence of the crack
growth rate and of the dissipate fracture energy. Nevertheless, ultra thin meshes lead to high
computational time and to a difficult management of memory. Indeed, for dissipative materials
(ase.g. elasto-plastic laws) the history of the material has to be stored during the computa-
tion at each integration point. Number of Gauss points increases with the refinement of the
mesh leading to memory problems. Both issues (time computation and storage) can be solved
with an efficient parallel implementation, which is complicated due to the topological mesh
modifications inherent to the insertion of cohesive elements. Beside difficulty of developing a
parallel implementation [194], this one can suffer from lowscalability unless a graph-based in-
ternal structure is used [173,200]. To avoid this mesh modification, several authors suggested
using the extrinsic cohesive law in combination with a DG formulation. Indeed, as the DG
method considers discontinuous elements and ensures weakly the continuity between them,
the interface elements exist at the beginning of the simulation. Therefore the substitution of
an interface element by a cohesive one is straightforward. Note that another method combin-
ing advantages of both extrinsic and intrinsic approaches has been developed [4,204,232]. It

2PMMA = Polymethylmethacrylate
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is based on inserting interface elements from the beginningbut compatibility is enforced by
Lagrangian multipliers, which, in turns, introduces new unknowns.

2.3 Discontinuous Galerkin methods

The main feature of DG methods is their ability to take into account discontinuities in the
interior domain. In these methods, the integration by partstakes place element by element
leading to interface terms which can be used to ensure weaklythe continuity. Historically
the first DG methods were introduced to study hyperbolic equations where discontinuities and
numerical fluxes are naturally present in the exact solution. The first one was suggested by W.
Reedet al. [213], who focused on the transport of neutrons. As the equations of mechanics
are purely elliptic, the resolution of hyperbolic equations is out of the scope of this work and
therefore is not developed herein. Nevertheless, interested reader can refer to [71, 72] for a
complete review on this topic. A subsequent work by J. Nitsche [180] uses this technique to
prescribed weakly boundary conditions. Furthermore, he suggested the incorporation in the
formulation of a quadratic term to stabilize the method.

2.3.1 DG methods for solid mechanics problems

For continuum mechanics problems, the use of DG methods seems at the first sight useless
as it considers more degrees of freedom to solve a problem than its CG counterpart. Never-
theless, they can be useful in different situations, in particular to ensure weakly the high order
continuity. Indeed, in the beginning of the seventies some authors [15, 20, 84, 85, 205, 259]
generalized the hybrid method of T. Pianet al. [206] to enforce theC 1 continuity between el-
ements for fourth order elliptic equations of thin body formulations. Nevertheless after these
initial developments, the interest for this technique vanished to the benefit of the method com-
bining displacement and rotation [58]. This well established technique uses independentC 0

interpolation for displacement and rotation and enforce the C 1 continuity through the shear-
ing equation. This technique is very appealing from the implementation viewpoint but has
the drawbacks of considering more degrees of freedom and cansuffer from locking without
special care. More recently, with regards to this issue, G. Engelet al. [91] suggested a new
framework coupling CG and DG methods. Extending the past idea[15,20,84,85,180,205,259]
they obtained a one-field formulation of Euler-Bernoulli beams and Kirchhoff plates. The use
of C 0 shape functions allows having recourse to continuous elements and the DG method is
used at element interfaces to ensure in a weak manner theC 1 continuity. Some improvements
were brought by several authors [115, 257], who applying also the technique to strain gradi-
ent damage theory [167, 258]. Furthermore, this framework was extended to Kirchhoff-Love
shells by L. Noelset al. , first with linear elasticity assumption [185] and in the second time
to the non linear range [181]. Note that in this thesis, we suggest an original extension to full
discontinuous elements (i.e. C 0 is also weakly ensured) of this one-field shell formulation for
further combination with ECL.
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DG methods can also be useful for hp-adaptive meshes, even ifit appears that this tech-
nique is commonly used for fluid mechanics [27, 49, 119] and isless developed for solid
mechanics. Indeed hp-adaptivity consists in the local refinement of the mesh with elements
not necessary of the same order yielding hanging nodes. The enforcement of continuity trough
elements becomes an issue. Several continuous techniques exist [46,47,58] but the DG meth-
ods are very appealing in this case as the weak enforcement ofcontinuity at interfaces does
not require element of the same order nor conforming meshes [16,118].

Another advantage of DG methods is that they reduce considerably the locking effects
which can arise from finite element discretization. This phenomenon is particularly important
for thin bodies where the membrane and bending modes are coupled. The common solu-
tion used in this case is the recourse to reduced integration[38, 271] or mixed formulation
eventually coupled with assumed stains methods [28, 29, 233, 234]. Nevertheless, several
authors used, with success, DG methods in this situation forbeams [67, 66], plates [17] or
shells [112,111] elements.

One interesting feature appears when using DG methods in combination with the cohesive
zone theory, which is the main aim of this thesis.

2.3.2 DG methods combined with extrinsic cohesive law

As a result of previous sections it appears that an efficient framework to solve dynamic
fragmentation or crack propagation problems can be obtained by coupling the DG method and
the extrinsic cohesive approach. Indeed, the major difficulty of this last one is the insertion of
the cohesive elements at the onset of fracture. Nevertheless, as interface elements are naturally
present for the mesh in the DG method, this interface elementcan be very easily replaced by
a cohesive one when a fracture criterion is reached. Such a framework has been pioneered by
J. Mergheimet al. [157] , R. Radovitzkyet al. [211,228] and M. Prechtelet al. [210].

Firstly, J. Mergheimet al. focused on mixed continuous and discontinuous Galerkin for-
mulation first for linear elasticity [157] and then they extended the method to non linear elas-
ticity [159]. They simulated composite material examples with a well known crack path and
therefore inserted discontinuous elements only along thiscrack path. They observed a con-
vergence of the results with the mesh size.

Afterward, R. Radovitzkyet al. [211, 228] studied with this approach the longitudinal
wave propagation and the resulting spall of an elastic bar. They proved that, contrarily to
the intrinsic cohesive element approach, the use of discontinuous Galerkin elements does not
affect the wave propagation (i.e. the wave propagates through discontinuous elements exactly
as if they were continuous). Furthermore they suggested a scalable parallel implementation
of the framework opening perspectives to treat ultra thin meshes and they revisited the high-
velocity impact of ceramic plates by a hard spherical projectiles studied before in 2D with
axisymmetric assumption by G. Camachoet al. [63]. This time R. Radovitzkyet al. simu-
lated this problem with a full 3D model and they captured the complex 3D fracture pattern.
Moreover, in case of crack closure they introduced back the normal DG components to avoid
interpenetration.
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Recently, M. Prechtelet al. investigated thea priori unknown propagation of crack in a
2D composite [210]. As the fracture energy is dependent on the geometry of the fibers they
implemented an optimization algorithm to obtain the best design of the fibers shape [209].

Finally, R. Abediet al. [1,2,3] developed a space-time discontinuous Galerkin method for
2D elasto-dynamic problems. Their method respects energetic balance for linear and angular
momentum over every space-time element and is well designedto capture shock wave without
spurious oscillations. They coupled their method with an extrinsic cohesive law to model
crack propagation and used an unstructured space time grid which is refined near the crack
tip. Mesh independent crack propagation and convergence ofcrack path were observed with
the refinement. Therefore their method is very accurate and efficient. Nevertheless it is very
difficult to implement in a standard FE code as the usual time integration procedure has to be
replaced by a more complicated space-time grid integration.

2.4 Enrichment methods

The main idea of enrichment methods is the enhancement of theunknown (displacement)
field to take into account a discontinuity. In fracture mechanics, this one represents a crack
which can propagates without necessary following the boundary of the mesh, as the discon-
tinuity can pass through an element. Two kinds of enrichmenthave been suggested in the
literature. On the one hand, the Extended Finite Element Method (XFEM), pioneered by N.
Moëset al. [165] and T. Belytschkoet al. [36], considers a nodal enrichment, and on the other
hand the Embedded Strong Discontinuity Finite Element Method (EFEM), firstly developed
by F. Armeroet al. [12,13,14,145,146] uses the elements as support for the enrichment. The
main advantage of EFEM compared to XFEM is inherent to its local enrichment which allows
static condensation at elementary level and therefore facilitates its implementation in a stan-
dard FE software as the number of unknowns of the system remains constant during whole
the computation. F. Armero and his coworkers, first studied the strain localization in inelastic
materials [12], and afterward they investigated the crack propagation [145], by solving several
elementary problems with 2D solid elements under the small strain assumption. Their embed-
ded discontinuities method includes a cohesive law to modelthe fracture process. Then, they
extended the method to large deformations [13], to dynamic fracture [14] and to crack branch-
ing [146]. Furthermore, G. Wellset al. focused on 3D problems [256]. Nevertheless, EFEM
does not ensure the continuity of the crack through elementsbut, regardless, convergence of
the results is obtained. But recently, several authors [79,212] improved the EFEM with the use
of interface elements and considered discontinuities parallel to the edges or the facets of the
mesh. Proceeding this way, they ensured the continuity of the crack propagation. J. Oliveret
al. [190] compared EFEM and XFEM. They showed the methods converge with the same rate
to the same results. Furthermore, they obtained more accurate results with EFEM for coarser
meshes at a lower computational cost, especially in case of crack branching. Nevertheless, it
seems that the XFEM remains the most popular method today andless attention is focused on
EFEM.

The first uses of XFEM methods focused on specimen with an initial crack ase.g.the work
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of N. Moëset al. [165] where they enhanced the nodal unknowns with Heavisidefunctions
and with the asymptotic solution of LEFM, allowing for the capture the material behavior
at the crack in an accurate way. They used the hoop stress criterion to propagate the crack.
Then, these authors improved the method to model 3D crack propagation [242] as well as
crack branching or intersecting [75].

Afterward, several authors modeled the displacement jump with a level set method [43,
163], which allows combining the XFEM with the cohesive approach. Thanks to the level
sets they computed the jump between crack lips and the resulting cohesive traction. Toward
this end, R. de Borstet al. [55] developed the so called ”cohesive crack segment” technique
to avoid any mesh bias. An extrinsic cohesive element can be inserted without mesh modifi-
cation but new unknowns have to be inserted in the resolutionsystem. N. Möeset al. [163]
add extra enrichment functions (different from the LEFM asymptotic solution) to resolve the
stress concentration near the crack tip. Nevertheless it seems that this extra enrichment is
not necessary [277]. As the crack does not follow element boundaries in this method, the
maximal hoop stress criterion is still used to determine thedirection of crack propagation. J.
Mergheimet al. extended the approach to inelastic material behavior [158]and R. de Brostet
al. extended it to damage [54].

Afterward, T. Elguedjet al.[90] used the Hutchinson-Rice-Rosengren elasto-plastic fields
[125, 216] to obtain elasto-plastic enrichment functions.Nevertheless, they kept the assump-
tion of confined plasticity to study the fatigue crack growthin notched specimen. Then, B.
Prabel [208] extended this approach to dynamic crack propagation.

These methods cannot take into account a crack initiation and only propagate existing
crack. The model of crack initiation with the XFEM was achieved by P. Areiaset al. [7],
where they considered the damage as fracture initiation criterion. Recently, using the same
idea N. Möeset al. [166] suggested the thick level set approach3 where a crack is inserted
when a damage criterion is reached.

The XFEM method was applied to a large set of mechanical problems involving composite
materials [18, 82, 174], contact [37, 128], dynamic propagation [156], multiscale [101, 164]
among others. Moreover, the approach was also applied to shell structures on one hand by
P. Areiaset al. [8, 10] for static propagation and on the other hand by R. Larsson et al. [98,
133] for dynamic crack growth. In particular, the last reference studies a notched pressurized
cylinder by combining the XFEM and the cohesive approach. Despite of the shell elements
reduce the computational cost of thin structure problems they fail to model accurately a 3D
crack propagation. To overcome this issue E. Wyartet al. developed a multiscale approach
where they recourse to 3D elements at the microscale to modelthe crack propagation and they
recourse to shell elements at the macroscale.

Nevertheless, the XFEM has some drawbacks as difficulty in prescribing Dirichlet bound-
ary conditions or Gauss integration when discontinuities get close to a node. The first draw-
back appears when a Dirichlet boundary condition has to be prescribed on an enriched ele-
ment. In this case as there are extra nodal unknowns, the implementation of the boundary

3However the thick level set approach can be well suited with the XFEMit can be used in combination with
another method of crack representation.
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condition requires special attention [162]. The second drawback is related to the crack prop-
agation. In fact, spurious results can be obtained if the crack cut the element very close to
a node or an edge as it is difficult to have in this case integration points on every side of the
crack. Therefore special attention is required in this case[239], which complicates the imple-
mentation. This integration problem is not negligible as a sufficiently thin mesh is required
to capture accurately the crack path which increases the risk to have a crack cutting an ele-
ment near a node. The necessity of mesh refinement was recently highlighted by M. Duflotet
al. [88], who studied 3D multi-sites crack spread in a blade. Despite the cracks can propagate
through elements, they had to refine the mesh to capture the cracks path in an accurate way
and therefore to obtain a crack independent of the crack tip.The refinement is so huge that
to solve the problem in a reasonable computational time, they fell back on remeshing. Never-
theless, as the crack has not to be conformed with the mesh, their remeshing operation is less
costly than in the case of the approach presented in the Section 2.1 requiring to have a new
mesh which an edge or face coinciding with the direction of the crack propagation.

2.5 Meshless methods

The development of meshless methods was motivated to avoid problems of mesh distor-
tions in cases of large deformations or to avoid mesh constrained cracks propagation. Indeed,
if there is no mesh, the crack can growth without following the boundary of elements. The
first meshless method, called Smooth Particle Hydrodynamics (SPH), was developed by, on
one hand, L. Lucy [151] and on the other hand by R. Gingoldet al.[106] to solve astrophysics
problems. The method was then applied to fluid mechanics [53,169, 170] and afterward to
solid mechanics by L. Liberskyet al. [144] where impact problems were studied. As these
problems involve large deformations, SPH has advantages compared to the FE for which high
mesh distortion leads to computational issues. SPH methodsare based on the strong form res-
olution and the first meshless method based on a weak form was presented by T. Belytschkoet
al. [42]. They developed the Element Free Galerkin Method (EFG)whose equations are close
from the Reproducing Kernel Particle Method (RKPM) [149]. Theonly difference between
both methods is the basis, which is intrinsic for EFG and extrinsic for RKPM. Finally, based on
a local weak form, meshless local Petrov-Galerkin methods were developed [19]. Among the
difficulties of meshless methods, their major drawbacks arethe treatment of essential bound-
ary conditions and their computational cost generally higher for the same problems than for
traditional FE methods.

The extension to crack growth of meshless methods is obviousand has been pioneered
by T. Belytschkoet al. [40, 41, 44, 150]. They propagated the crack by evaluating the stress
intensity factor coupled with the hoop stress criterion. Moreover to keep constant the node
density at crack tip, J.-P. Ponthotet al.[207] suggested to use an Abritary Eulerian Lagrangian
formalism. Such a method allows to study crack growth for 2D static and dynamic problems.
Later, P. Kryslet al. [130] extended the approach to 3D cases. Furthermore, M. Duflot et
al. [86,87] improved the solution of the meshless method by enriching the displacement with
the LEFM analytical solution at the crack tip. This enrichment allows capturing the stress
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field with a moderate number of degrees of freedom. M. Duflotet al. simulated some fatigue
crack propagation [87] as well as several crack propagationin 3D elastic media [86].

The extension of meshless methods to shell fracture problems has recently been realized
by B. Maurelet al. [154]. They resolved the issue of modeling a shell with only one particle
on the thickness and presented a SPH shell formulation. Theystudied fragmentation of elasto-
plastic shells due to high velocity impact. They obtained phenomenological results although
their fracture criterion is based on a maximal strain without modeling explicitly the fracture
process (i.e. full opening without remaining traction is considered as soon as the strain is
larger than a critical value). Furthermore F. Cayleron [61] and J. Liu [148] obtained good
agreements between simulations and experimental results for respectively a tank perforation
and a crack propagation in a pipe. Their fracture criterion is different (based on a critical
damage for F. Cayleron and on a critical stress for J. Liu). Thefracture process, of the decrease
of the cohesive strength, seems unmodeled in these studies.

2.6 DGvs. XFEM

At this point, two methods seem appealing to model crack propagation: on one hand
the DG/CZM method and one the other hand the XFEM. Both methods have advantages
and disadvantages. Therefore the choice of the method is related to the aim of this the-
sis, which is to investigate the initiation and propagationof fracture in industrial pressur-
ized components, especially in the case of dynamic loadingssuch as impact or blast. These
ones often include fragmentation, which seems easier to study with the interface element ap-
proach [63, 137, 138, 168, 241, 276] than with the XFEM [240].Besides, to our knowledge
only a few 2D fragmentation cases are reported in literaturefor XFEM, and the interface el-
ement approach is more developed in this subject and has recently been combined with DG
on this topic for 3D elements [137,211]. Furthermore, industrial applications require (i) easy
use of elasto-plasticity in the cohesive zone, (ii) thin meshes and (iii) a recourse to parallel
implementation. Once again the DG/CZM method seems more suitable than XFEM to ad-
dresses these points. Finally, for industrial considerations, it is required that the developments
can be easily integrated in an existing software. In this oneit will be easier to add extra
integration terms through elements than to incorporate nodal enrichment inherent to XFEM
although more and more FE software include XFEM. For all these reasons, we choose to
develop the DG/CZM framework for thin bodies formulations. As this framework used and
extrinsic cohesive law we called it the DG/ECL framework.

2.7 Original developments

This chapter is a review of the different methods used to model fracture in computational
mechanics. One appealing method is the CZM whose main issue isrelated to the introduction
of the cohesive elements, which has to be performed during the simulation to obtain accurate
results, especially in dynamics when the wave propagation plays a key role in the fracture
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process. Two methods are suggested in the literature to solve this problem. On one hand, the
XFEM inserts the cohesive elements by the level set technique. This does not require mesh
modification during the simulation but enriched nodes have to be added in the system. On
the other hand, as the DG method considers interface elements between discontinuous bulk
elements to ensure weakly the continuity between them, these interface elements can very
easily be substituted by cohesive ones to model fracture. From the previous section we decide
to investigate the initiation and propagation of fracture in thin bodies under dynamic loading
using the DG/ECL framework as promising results for large systems including fragmentation
have been reported in the literature for 3D problems. As sucha framework has never been
presented for a thin bodies formulation, we extend the approach to this case. Thus this thesis
introduced five new original developments:

(i) Development of an original full-DG formulation of linear Euler-Bernoulli beams under
small strain assumption: this case constitutes the simplest case to study and therefore is
very suitable to illustrate the formulation.

(ii) Development of an ECL for thin bodies: as, the implicit model of the thickness inherent
to thin bodies formulation makes difficult the use of the usual stress-tensor-based TSL,
an original cohesive law based on resultant stresses is suggested. This law is coupled
to the full-DG formulation of beams to model the through-the-thickness crack propaga-
tion.

(iii) Extension of the framework to non-linear Kirchhoff-Love shells: an original full-DG
formulation of shells coupled to the original cohesive law based on resultant stresses is
suggested.

(iv) The study of large problems: it requires suitable temporal integration scheme, including
parallel implementation. We suggest herein an original parallel implementation of the
whole framework based on ghost elements at mesh partitions boundary. Furthermore,
for quasi-static cases, as the inversion of stiffness matrix is prohibitive for large systems,
we suggest an original adaptation of the dynamic relaxationconcept, for the Hulbert-
Chung [123] time integration algorithm. The choice of Hubert-Chung time integration
algorithm, in place of the traditional central difference scheme, allows introducing nu-
merical dissipation to avoid spurious crack branching.

(v) Investigation of the possibility to couple damage to crack transition using the DG/ECL
framework: toward this end, we suggest to insert a cohesive element between bulk
elements where a criterion based on the damage is reached.

All these developments have been published (or submitted for publication) in peer-reviewing
international journals:

[32] G. Becker& L. Noels, A fracture framework for Euler-Bernoulli beams based on a full
discontinuous Galerkin formulation/extrinsic cohesive law combination,International
Journal for Numerical Methods in Engineering, John Wiley & Sons, Ltd., 2011,85,
1227-1251
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[31] G. Becker, C. Geuzaine& L. Noels, A one field full discontinuous Galerkin method
for Kirchhoff-Love shells applied to fracture mechanics,Computer Methods in Applied
Mechanics and Engineering, 2011,200, 3223 - 3241

[34] G. Becker & L. Noels, Validation tests of the full discontinuous Galerkin / extrinsic
cohesive law framework of Kirchhoff-Love shell,International Journal of Fracture,
CFRAC2011 special issue, submitted

[33] G. Becker & L. Noels, A full discontinuous Galerkin formulation of non-linear Kirch-
hoff - Love shells: elasto-plastic finite deformations, parallel computation & fracture
applications,International Journal for Numerical Methods in Engineering, submitted



Chapter 3

Discontinuous Galerkin / Extrinsic
Cohesive Law framework for
Euler-Bernoulli beams

The aim of this chapter1 is to simulate the initiation and the through-the-thickness propa-
gation of a crack in an Euler-Bernoulli beam. As a result of theprevious chapter, we suggest to
perform this using a combination between a discontinuous Galerkin formulation of the beam
equations, modeling the continuum part of the deformation,and an extrinsic cohesive law,
modeling the fracture process.

We summarize the Euler-Bernoulli beam theory to obtain the strong form of the problem
in terms of the resultant stresses. Furthermore, as the mainidea of this chapter is to illustrate
the concept and not to solve industrial problems we restrictour analysis to:

(i) Linear small strains;

(ii) Straight rectangular beam without initial deformation;

(iii) Problems where the out-of-plane shearing is neglected;

(iv) Plane stress state.

Moreover, to simplify the notation the contribution of external forces is omitted in the estab-
lishment of the formulation. A more general and rigorous analysis will be presented for shells
in the next chapter.

In a second time we present an original manner to discretize abeam with fully discontinu-
ous elements. Then we demonstrate that our new method has thesame numerical properties as
a classical FE method: consistency, stability and optimal convergence rate. These properties
and the ability of the formulation to simulate a continuum mechanics problem are illustrated

1The main results of this chapter are published in theInternational Journal for Numerical Methods in Engi-
neering[32].

49
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through several benchmarks. It has to be mentioned that the presented method is a gener-
alization to discontinuous test functions of aC 0/DG formulation of beams presented by G.
Engelet al. [91]. This paper suggests a method for Bernoulli beams, whichconsiders con-
tinuous test functions (i.e. continuous elements) but uses the DG method to ensure theC 1

continuity required by a thin bodies formulation. Besides weestablish that in case of contin-
uous test functions both formulations are identical. To remove any ambiguity between both
formulations, we call our formulation ”full discontinuousGalerkin”.

Third, as we did not find an appealing cohesive model for thin bodies in the literature, we
present an original extrinsic cohesive law dedicated to thin bodies. Indeed in the literature two
ideas are developed to propagate the crack through-the-thickness. On one hand, F. Ciraket
al. [70] suggested to insert the stress-based cohesive law on the integration points across the
thickness where the fracture criterion is reached. Such a framework allows the propagation
but leads to a very complex implementation in case of a bending effort. On the other hand, P.
Zavattieri idea [269] is to use the reduced quantities as tension and bending moment. We keep
this idea but we adapt it in an original way to combine membrane and bending contributions
with respect to the energetic balance.

Finally, we perform a numerical example of through-the-thickness crack propagation in a
double clamped beam to validate our method and demonstrate its capabilities.

3.1 Balance equations of beams

We present herein the set of equations governing a beam, which traditional theory consid-
ers only the bending mode. Nevertheless, as we are interested to study fracture in the case of
tension-bending coupling, we add by linear superposition the membrane contribution2. These
equations can be rigorously obtained from the linear shell theory presented by F. Simoet
al. [233] as we report in Appendix A.2. But to simplify this chapter, with the aim of introduc-
ing the main concepts in a more comprehensive way, we use the Euler-Bernoulli beam theory
to obtain the balance of angular momentum and the equilibrium equation to derive the balance
of linear momentum. Furthermore, as the main idea of F. Simoet al. is to integrate the stress
on the thickness, we introduce this idea here to facilitate the transition to the shell theory.

In the following, we consider by convention that the beam lies in a orthonormal frame
(E1,E2,E3) with its neutral axis corresponding toE1 and the thickness of its rectangular
cross section oriented alongE3. The coordinate alongE3 is notedξ3, and the unknown
displacement field is writtenu (see Fig. 3.1).

The balance equations alongE3 of a beam are written

(MB),1−VB = 0 and, (3.1)

VB,1+b pB(ξ1) = ρbhü3 , (3.2)

where the rotational inertia is neglected, whereρ is the density and wherepB is the applied

2This linear assumption holds as the beam has initially no curvature and as only first order terms are consid-
ered.
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Figure 3.1: Configuration of the beam in the reference frame studied in this chapter.

load on the beam.MB andVB are respectively the moment in the beam and the shear loading
defined by,

MB =
∫

A
σ11ξ3dAand, (3.3)

VB =
∫

A
σ13dA, (3.4)

whereA = b× [−h/2; h/2] is the area of the cross section, withb the width of the beam
and whereσ11 andσ13are respectively the axial and shear stress distributions on the section.
Euler-Bernoulli beams theory assumes a negligible effect ofthe shearing on the bending de-
formation, but in order to develop the full-DG formulation it is convenient to keep it, as it will
be shown later.

Furthermore as it is also convenient in shell formulations to consider the moment and
shear by unit width we define,

m̃B
11 =

∫ h/2

−h/2
σ11ξ3dξ3 =

MB

b
and, (3.5)

lB
1 =

∫ h/2

−h/2
σ13dξ3 =

VB

b
. (3.6)

as well as the density by unit width,

ρB =
∫ h/2

−h/2
ρdξ3 . (3.7)

It has to be mentioned that for further compatibility with the shell equation, we consider the
stress components in the conjugated basisEI of EI defined by the identity:EI ·EJ = δIJ,
although both bases are identical for an orthonormal frame.



52 DG/ECL framework for Euler-Bernoulli beams

Finally, using both definitions (3.5) and (3.6) in Eqs. (3.1-3.2), it comes,

m̃B
11
,1 − lB

1 = 0 and, (3.8)
(
lB

1)
,1+ pB(ξ1) = ρBü3 . (3.9)

Note thatlB1 in Eq. (3.9) corresponds to the shearing along the neutral axis while lB1 in Eq.
(3.9) corresponds to the shearing along the beam section.

The membrane behavior of the beam is governed by the equation,

NB,1−ρbhü1 = 0, (3.10)

whereNB is the tension in the beam which reads,

NB =
∫

A
σ11dA. (3.11)

Then, exactly as for the bending equations, we can define,

n11
B =

∫ h/2

−h/2
σ11dξ3 , (3.12)

(3.13)

the tension per unit width. With this definition, the governing equation of the beam in tension
reads,

n11
B ,1 = ρBü1 , (3.14)

This equation constitutes with the Eqs. (3.8-3.9) the set ofequation formulating the strong
form of Euler-Bernoulli beams considered herein. The previous relations involve two un-
known fieldsu andσ which can be related using a constitutive model. Under linear elasticity
assumption, the Hooke law is used.

The deformation of the section alongξ1 results from the curvature of the neutral axisθ,1
and from the extension of the neutral axisu1,1 with,

ε11 = u1,1+θ,1ξ3 . (3.15)

The deformation in shearing of the section is assumed to be constant and reads,

ε13 =
u3,1+θ

2
, (3.16)

where
(
u3,1+θ

)
is the angle between the neutral axis and the cross section direction. Euler-

Bernoulli assumption consists in neglecting this angle leading to θ =−u3,1.
Finally, the stress field, using the unit metric related toE1 reads,

σ11 = Eε11 = E
(
u1,1−u3,11ξ3) and, (3.17)

σ31 = µ
A′

A
ε31 = µ

A′

A

(
u3,1+θ

)
≈ 0, (3.18)



3.2 Full-DG formulation of Euler-Bernoulli beams 53

whereA′
A takes into account the reduced section for the shearing. It has to be noticed thatσ11

results from the linear superposition of membrane and bending mode which are uncoupled
under the assumptions mentioned at the beginning of this chapter. Indeed, using Eq. (3.17) in
Eqs (3.12) and (3.5) it comes respectively,

nB
11 =

∫ h/2

−h/2
Eu1,1dξ3−

∫ h/2

−h/2
Eu3,11ξ3dξ3 = Ehu1,1and, (3.19)

m̃B
11 =

∫ h/2

−h/2
Eu1,1ξ3dξ3−

∫ h/2

−h/2
Eu3,11ξ32

dξ3 =−E
h3

12
u3,11. (3.20)

Therefore, the membrane contribution has no influence on theangular momentum and recip-
rocally the bending contribution has no influence on the linear momentum.

3.2 Full-DG formulation of Euler-Bernoulli beams

In this section the full-DG FE discretization of the set of Eqs. (3.8-3.9) and (3.14) is intro-
duced under the assumptions given at the beginning of this chapter. Once the weak formula-
tion of the problem is established, the numerical properties of the presented method are stud-
ied and illustrated on a numerical example. In this example the full discontinuous Galerkin
formulation is compared to theC0/DG formulation introduced by G. Engelet al. [91]. It is
observed that the full-DG formulation gives the same results as theC0/DG approach, and has
the same advantages,i.e. one-field locking-free approach. Obviously the purpose of devel-
oping the full-DG approach is to take into account a pre-fracture stage when combined to the
ECL.

In this section, all the terms are per unit width of the beam.

3.2.1 Weak bilinear form of Euler-Bernoulli beams

For the particular case of beams of lengthL in small deformations and linear elasticity,
illustrated on Fig. 3.1, the weak form is obtained by multiplying Eq. (3.8) byδ(−u3,1), Eq.
(3.9) byδu3 and Eq. (3.14) byδu1 and integrating on the beam length. In Eq. (3.9)lB,1 is
omitted as the shearing is neglected. However it is kept temporarily in Eq. (3.8) to establish
the full-DG formulation. Proceeds this way gives,

∫ L

0
ρBü ·δudx =

∫ L

0

[
nB

11
,1 δu1+ m̃B

11
,1 δ(−u3,1)− lB

1δ(−u3,1)
]
dx. (3.21)

As a reminder, we omit the external loading to simplify the equations but it can be added in
a usual way. This equation can be integrated by parts on each element of lengthle of the FE
discretization,

∑
e

∫
le

ρBü ·δudx = −∑
e

{∫
le

[
nB

11δu1,1+ m̃B
11δ(−u3,11)− lB

1
,1δ(−u3)

]
dx

+
(

nB
11δu1

]
le
+ m̃B

11δ(−u3,1)
]
le
− lB

1δ(−u3)
]
le

)}
, (3.22)
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where an unusual integration by parts was applied onδ(−u3,1) instead oflB1 for the third
term of Eq. (3.21). In the Eq. (3.22), the terms∑e nB

11δu1
]
le
, ∑e lB1δ(−u3)

]
le

and the term

∑e m̃B
11δ(−u3,1)

]
le

are related to discontinuities in the polynomial approximation between
two elements. For a continuous Galerkin formulation, the continuity of the test functions
allows to simplify the two first terms as∑e •]le = •]L0 = 0, since the test functions or the strains
are null in 0 andL (assuming pure Dirichlet boundary conditions). For the DG formulation,
the test functions are discontinuous and these three terms can be rewritten as a sum of jumps
over the interface elementss,

∑
e

nB
11δu1

]
le

= −∑
s

q
nB

11δu1
y

s, (3.23)

∑
e

m̃B
11δ(−u3,1)

]
le

= −∑
s

q
m̃B

11δ(−u3,1)
y

sand, (3.24)

∑
e

lB
1(−δu3)

]
le

= −∑
s

q
lB

1(−δu3)
y

s, (3.25)

with the jump operator3 J•Ki = [•+−•−]i . The sign at right hand side of Eqs. (3.23-3.25)
depends on the convention chosen for minus and plus element.Herein, we consider the con-
vention shown on the Fig. 3.2 with the minus element at the left of the plus element yielding,

∑
e

nB
11δu1

∣∣
le

= ∑
e

νB
+
1 nB

11+δu+1 +νB
−
1 nB

11−δu−1 =−∑
s

q
nB

11δu1
y

s , (3.26)

as normalsνB
+
1 =−1 andνB

−
1 = 1 (see Fig. 3.2). The Eqs. (3.24) and (3.25) are obtained in

the same way.

−1 0 1

−
ξ

νB
−
1

−1 0 1

+

ξ

νB
+
1

Figure 3.2: Sign of interface contributions depends on the choice of the minus and plus el-
ements. Illustration for second order elements, the filled circles are nodes on the elements
boundaries and the other circles are internal nodes. For continuous elements the node located
in ξ = 1 of the minus element corresponds to the node located inξ =−1 of the plus element.
For discontinuous elements these two nodes remain very close from the interface (dotted line).

In DG formulations these jumps are commonly replaced by fluxes, which must be con-
sistent. The developments are exactly the same for the threejumps, so in the following, only
the equation (3.23) is developed and the two other terms (3.24) and (3.25) can be derived
in the same way. Using the mathematical identityJabK = 〈a〉JbK+ 〈b〉JaK, relation (3.23) is
rewritten as,

∑
s

q
nB

11δu1
y

s = ∑
s

[〈
nB

11〉Jδu1K+
q
nB

11y〈δu1〉
]
s, (3.27)

3To be rigorous we should add the contributions atξ1 = 0 andξ1 = L as it will be done for shells
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with the mean operator〈•〉 = 1
2 (•++•−). As for the exact solution there is no jump in

the stress tensor between two elements, the second term of (3.27) can be neglected without
altering the consistency of the method and the flux related to(3.23) becomes,

q
nB

11δu1
y

→
〈
nB

11〉Jδu1K . (3.28)

Nevertheless if the numerical flux (3.28) ensures the consistency of the formulation, the
compatibility (continuity) between elements is not guaranteed. This requirement can be ob-
tained in a weak way by the introduction of an extra term in theflux,

〈Ehδu1,1〉Ju1K . (3.29)

As the exact solution of the problem is continuous (Ju1K = 0), this term does not modify the
consistency of the problem. It has to be mentioned that otherexpressions can be chosen to
ensure the compatibility but the term (3.29) allows to obtain a symmetric formulation (i.e.
stiffness matrix is symmetric) and an optimal convergence rate.

Finally, as it is well known that, for elliptic problems, such a formulation is unstable, the
method is stabilized by introducing a quadratic term in the numerical flux,

Ju1K
〈

β2Eh
hs

〉
Jδu1K . (3.30)

For the exact solution this term is equal to zero so consistency is not modified. In this ex-
pressionhs is the characteristic dimension of the element allowing therespect of the dimen-
sions. Furthermore,β2 is a non dimensional constant, whose value has to be sufficiently large
to ensure the stability of the problem as presented here below in Section 3.2.2. Pratically,
the stability is generally ensured as long asβ2 is greater than 10. Such an introduction of
interior penalty term is usual for discontinuous Galerkin method applied to solid mechan-
ics, [16, 97, 140, 182] among others, and allows ensuring stability. Although the DG method
is now slightly dissipative, this does not impact on the numerical accuracy as the method re-
mains consistent and converges toward the solution with an optimal rate, see Section 3.2.2,
contrarily to methods using only a penalty coefficient. Thisuser parameterβ2 is independent
of the mesh and material properties and is without dimension. Following these developments,
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the mathematical fluxes related to the Eqs. (3.23), (3.24) and (3.25) are,

∑
e

nB
11δu1

]
le
→

−∑
s

(〈
nB

11〉Jδu1K+ 〈Ehδu1,1〉Ju1K+ Ju1K
〈

β2Eh
hs

〉
Jδu1K

)

s
, (3.31)

∑
e

m̃B
11δ(−u3,1)

]
le
→

−∑
s

(〈
m̃B

11〉Jδ(−u3,1)K+
〈

Eh3

12
δ(−u3,11)

〉
J−u3,1K

+ J−u3,1K
〈

β1Eh3

12hs

〉
Jδ(−u3,1)K

)

s
and, (3.32)

∑
e

lB
1(−δu3)

]
le
→

−∑
s

(
Ju3K

〈
β3Eh

2(1+ν)hs

〉
J(−δu3)K

)

s
, (3.33)

as lB1 = 0 (Euler-Bernoulli assumption) in the relation (3.33), which implies that only the
stabilization term remains in this equation. Let us note that the asymmetry in signs of relation
(3.33) results from definition (3.6). Finally, after introducing the Eqs. (3.31), (3.32) and (3.33)
in (3.22), the weak discretized form of the problem becomes,

a(u,δu) = ∑
e

∫
le

[
ρBü ·δu+nB

11δu1,1+ m̃B
11δ(−u3,11)

]
dx

+∑
s

(〈
nB

11〉Jδu1K+ 〈Ehδu1,1〉Ju1K+ Ju1K
〈

β2Eh
hs

〉
Jδu1K

+
〈
m̃B

11〉Jδ(−u3,1)K+
〈

Eh3

12
δ(−u3,11)

〉
J−u3,1K

+ J−u3,1K
〈

β1Eh3

12hs

〉
J−δu3,1K+ Ju3K

〈
β3Eh

2(1+ν)hs

〉
Jδu3K

)
= 0.

(3.34)

The relation (3.34) shows that a DG framework can be easily integrated in a CG FE code.
Indeed the integral part of (3.34) is exactly the same as the one of a CG formulation of the
problem with, as differences, the computation of a sum on interface elements which can be
easily added in the FE code. For more convenience in further developments the relation (3.34)
can be expressed in the form,

Structural terms+DG terms= 0, (3.35)

with ”Structural terms” and ”DG terms” respectively the integral part and the interface sum
part of (3.34).
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Furthermore, if continuous test functions are used for displacement (ie the elements are
continuous),Jδu1K = Jδu3K = 0, and the equation (3.34) can be simplified as,

a(u,δu) = ∑
e

∫
le

[
ρBüδu+nB

11δu1,1+ m̃B
11δ(−u3,11)

]
dx

+∑
s

(〈
m̃B

11〉Jδ(−u3,1)K+
〈

Eh3

12
δ(−u3,11)

〉
J−u3,1K

)

+ J−u3,1K
〈

β1Eh3

12hs

〉
J−δu3,1K

)
= 0. (3.36)

The pending part of this last equation is identical to the previouslyC0/DG formulation sug-
gested by G. Engelet al. [91].

3.2.2 Numerical properties

In this section the numerical properties of the weak formulation (3.34) are studied in the
particular case whereuh1 anduh3 are polynomial approximation of degreek> 1 in each ele-
ment and are discontinuous between elements. The associated virtual displacements have the
same properties. It is demonstrated that the framework satisfies two fundamental properties
of a numerical method: consistency and stability. This lastone is demonstrated if the param-
etersβ1 andβ2 are large enough, and ifβ3 is non zero. The convergence rate of the method
in the energy norm with respect to the mesh size is proved to beequal tok− 1, with k the
degree of the polynomial approximation. Finally, optimal-convergence rate in theL2-norm is
demonstrated for at least cubic elements. Afterward, some numerical examples are presented
to illustrate these properties. In this section we assumeδu1 = δu3,1 = 0 at the beam extremities
as we consider Dirichlet boundary conditions.

Consistency

To prove the consistency of the method, the exact solutionu of the problem is considered.
As this exact solution isC 2([0; L]), this impliesJu1K = Ju3K = Ju3,1K = 0, and relation (3.34)
becomes,

∑
e

∫
le

[
ρBü ·δu+nB

11δu1,1+ m̃B
11δ(−u3,11)

]
dx (3.37)

+∑
s

(〈
nB

11〉Jδu1K+
〈
m̃B

11〉Jδ(−u3,1)K
)

= 0. (3.38)

Integrating by parts on each element, asnB
11 andm̃B

11 of the exact solution are continuous,
leads to,

∫ L

0
ρBü ·δudx−

∫ L

0
nB

11
,1 δu1dxand,−

∫ L

0
m̃B

11
,1 (−δu3,1)dx = 0. (3.39)
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The arbitrary nature of the test functions leads to the two following equalities,

nB
11
,1 = ρBü1 in [0; L] and, (3.40)

m̃B
11
,1 = ρBü3 in [0; L] . (3.41)

These two equations (3.40) and (3.41) correspond to the strong formulation of the problem
where the shearing is neglected (lB1 = 0). Thus the consistency of the method is demon-
strated. This property implies that the exact solutionu satisfies (3.34), which provides the
orthogonality relation,

a(uh−u,δu) = a(uh,δu)−a(u,δu) = 0. (3.42)

whereuh is the FE solution.

Stability

The demonstration of the spatial stability is performed under a quasi-static assumption.
Therefore the inertial term is not considered in the following. To study the stability and
convergence rate with respect to the mesh size of the framework, an energy norm has to be
defined. If constrained displacementsu and directions of the mid-surfaceu3,1 are assumed to
be equal to zero on boundaries then the following energy normcan be considered for a field
u discontinuous between elements,

|||u|||2 = ∑
e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
2

L2(le)
+∑

s

∣∣∣∣∣

∣∣∣∣∣

√
β2Eh

hs Ju1K
∣∣∣∣∣

∣∣∣∣∣

2

L2(s)

+∑
e

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
(−u3,11)

∣∣∣∣∣

∣∣∣∣∣

2

L2(le)

+∑
s

∣∣∣∣∣

∣∣∣∣∣

√
β1Eh3

12hs J(−u3,1)K
∣∣∣∣∣

∣∣∣∣∣

2

L2(s)

+∑
s

∣∣∣∣∣

∣∣∣∣∣

√
β3Eh

2(1+ν)hs Ju3K
∣∣∣∣∣

∣∣∣∣∣

2

L2(s)

, (3.43)

where,

∣∣∣
∣∣∣
√
H a
∣∣∣
∣∣∣
2

L2(le)
=

∫
le
H a2dl and, (3.44)

∑
s

∣∣∣
∣∣∣
√
H JaK

∣∣∣
∣∣∣
2

L2(s)
= ∑

e

1
2

∣∣∣
∣∣∣
√
H JaK

∣∣∣
∣∣∣
2

L2(∂le)
. (3.45)

The expression (3.43) defines a norm as|||u||| = 0 only for u = 0 on [0; L]. This is
demonstrated in the following way: if|||u||| = 0 then each term is equal to zero. So on each
element the derivativesu1,1 and−u3,11 are also equal to zero, which implies thatu1 andu3,1

are constant on each element. Moreover, as jumps are equal tozero on the interface,u1,u3
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andu3,1 are constant on]0; L[. Finally, the boundary conditionsu = 0 andu3,1 = 0 imply
u1 = u3 = u3,1 = 0 on[0; L].

To demonstrate the stability of the framework an upper and a lower bounds of the bilinear
form (3.34) are needed. Both bounds are established in Appendix A.3.1 and A.3.2 and we
report here only the final results. Therefore an upper bound of the linear form is given by,

|a(u,δu)|2 ≤ C′′k(β1,β2) |||u|||2 |||δu|||2 , (3.46)

whereC′′k(β1,β2) is a number larger than max(4,(Ck
α)

2/βα), with Ck
α > 0 are constants de-

pending only on the polynomial degree ofu. In caseu= uh, the degreek is the degree of the
polynomial approximation.

A lower bound of the bilinear form is given by stating that there exist 0< ε1 < 1 and
0< ε2 < 1,

a(u,u) ≥ (1− ε2)∑
e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
2

L2(le)
+(1− ε1)∑

e

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
u3,11

∣∣∣∣∣

∣∣∣∣∣

2

L2(le)

+

(
1− 2(Ck

2(β2))
2

ε2β2

)
∑
e

∣∣∣∣∣

∣∣∣∣∣

√
Ehβ2

2hs Ju1K
∣∣∣∣∣

∣∣∣∣∣

2

L2(∂le)

+

(
1− 2(Ck

1(β1))
2

ε1β1

)
∑
e

∣∣∣∣∣

∣∣∣∣∣

√
Eh3β1

24hs Ju3,1K
∣∣∣∣∣

∣∣∣∣∣

2

L2(∂le)

+
1
2∑

e

∣∣∣∣∣

∣∣∣∣∣

√
β3Eh

4(1+ν)hs Ju3K
∣∣∣∣∣

∣∣∣∣∣

2

L2(∂le)

, (3.47)

Taking into account the bounds, the spatial stability of themethod is directly demonstrated
from relation (3.47). Indeed by definition of the energetic norm (3.43),

|||u|||2 = ∑
e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
2

L2(le)
+∑

e

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
u3,11

∣∣∣∣∣

∣∣∣∣∣

2

L2(le)

+
1
2∑

e

∣∣∣∣∣

∣∣∣∣∣

√
β1Eh3

12hs Ju3,1K
∣∣∣∣∣

∣∣∣∣∣

2

L2(∂le)

+
1
2∑

e

∣∣∣∣∣

∣∣∣∣∣

√
β2Eh

hs Ju1K
∣∣∣∣∣

∣∣∣∣∣

2

L2(∂le)

+
1
2∑

e

∣∣∣∣∣

∣∣∣∣∣

√
β3Eh

2(1+ν)hs Ju3K
∣∣∣∣∣

∣∣∣∣∣

2

L2(∂le)

. (3.48)

Comparing the right term of equation (3.48) to the right term of equation (3.47) leads to,

a(uh,uh)≥C(β1,β2) |||uh|||2 , (3.49)

where there existsC(β1,β2) > 0 as for given 0< ε1 < 1 and 0< ε2 < 1 there always exist

β1 >
2(Ck

1)
2

ε1
andβ2 >

2(Ck
2)

2

ε2
. This shows that the stability of the method is conditioned by

sufficiently large constantβ1 andβ2. Both depend only on the degree and type of element
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through respectivelyCk
1 andCk

2 which can be determined following the work of P. Hansboet
al. [116]. Note that Eq. (3.49) does not imply stability conditions on the parameterβ3 as long
asβ3 > 0. Furthermore, in this equation,a(uh,uh) corresponds to the work of internal forces
while C(β1,β2) |||uh|||2 is the internal energy of the system. Therefore, due to the DGterms,
the internal energy is not equal to the work of the external forces, however the difference is
negligible when the FEsolution has converged toward the solution.

Convergence rate in the energy norm

In the following the error between the FE solution and the polynomial interpolation of
the exact solution is calculated to establish the convergence rate in the energy norm of the
method. First some definitions and assumptions are given. Consideru the exact solution of
the problem anduk its FE interpolation defined by

∫ L
0 (u−uk) ·δuhdx= 0. Furthermore, the

errors on the exact solution and on its interpolation are respectively defined bye = uh−u

andek = uh−uk.
The demonstration follows the procedure described in Appendix A.3.3 so only the final

result is given here,
∣∣∣
∣∣∣
∣∣∣ek
∣∣∣
∣∣∣
∣∣∣ ≤ C(β1,β2,β3)∑

e
hsk−1 |u|Hk+1(le) . (3.50)

Thus, the order of convergence is one order lower than the degree of the polynomial ap-
proximation, which is consistent with the presence of high-order derivatives in the governing
equations (3.34).

Convergence rate in the L2-norm

The convergence of the solution in theL2-norm is demonstrated under the assumption of
a proper elliptic regularity of the problem.

As well as the convergence rate in the energy norm, the demonstration of the convergence
in theL2-norm is presented in Appendix A.3.4, so only the final resultis given here,

||e||L2(le) ≤





∑
e

Chsk+1 |u|Hk+1(le) if k> 2

∑
e

Chs2 |u|H3(le) if k= 2
. (3.51)

The relation (3.51) demonstrates that the method has an optimal convergence rate ink+1 for
at least cubic elements.

3.2.3 Implementation

This section describes the implementation, in a home-made FE software written in python,
of the Eq. (3.34). Although the shell element is implementedin a C++ code-based on Gmsh
software [105], which allows to investigate industrial problems, we implement separately the
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beam elements to facilitate its understanding. The elementary stiffness matrix and internal
forces are described as well as the Gauss quadrature rules used to integrate on elements.
Notice that in the case of beams the interface between two bulk elements is just a node and
there is no integration on this interface contrary to plate/shell elements for which a Gauss
integration on a line is required on the interface.

The discretization of the beam in elements is represented onFig. 3.3. To prove the inde-
pendence of the method to the elements order, we implement quadratic (3 nodes) and cubic (4
nodes) elements. It has to be mention that using linear elements is impossible with the devel-
oped approach as the second derivative of the shape functions is needed for the computation
of the bending contribution.

L
x

(a) Beam meshed with quadratic elements.

L
x

(b) Beam meshed with cubic elements.

−1 0 1
ξ × ×

(c) Isoparametric quadratic elements.

−1 0 1
ξ ×× ×

(d) Isoparametric cubic elements.

Figure 3.3: Beam meshed with quadratic and cubic elements. The circles represent the nodes,
the filled ones are at element boundaries while the others represent internal nodes. The Gauss
point used for the numerical integration are depicted by crosses.

Isoparametric elements are considered (see Figs. 3.3(c) and 3.3(d)) to perform the Gauss
integration. Therefore the displacement and virtual displacement are approximated on each
element respectively by,

uh = Nξuξ and, (3.52)

δuh = Nξδuξ , (3.53)

whereξ is a node of the element andN represents the traditional Lagrangian shape functions.
These functions of the curvilinear variableξ ∈ [−1; 1] are continuous on each element. The
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derivatives of the unknown and virtual fields are mandatory,

uh,1 =
∂ξ
∂x

Nξ

,ξu
ξ
h , (3.54)

uh,11 =

(
∂ξ
∂x

)2

Nξ

,ξξu
ξ
h , (3.55)

δuh,1 =
∂ξ
∂x

Nξ

,ξδuξ
h , (3.56)

δuh,11 =

(
∂ξ
∂x

)2

Nξ

,ξξδuξ
h , (3.57)

(3.58)

where ∂2ξ
∂x2 = 0 is taken into account for the computation of second derivative. Indeed, as a

element of lengthle is represented by an isoparametric element of length 2 described by,

ξ = 2
x−xle f t

le
−1, (3.59)

wherexle f t is the position of the left nodes of the element if the origin is taken at left of the

beam (see Figs. 3.3(a) and 3.3(b)). Therefore the Jacobian of the substitution∂ξ
∂x = 2

le
and the

derivative of this Jacobian is equal to zero.
In the following we give the expressions implemented for each term of Eq. (3.34) sep-

arately in terms of the general reduced stresses,nB
11 (3.12) and ˜mB

11 (3.5). The thickness
integration to obtain these terms can be computed analytically if a linear elastic material is
assumed, or can be evaluated numerically from a 3-point Simpson quadrature rule. Such a
rule (in place of a Gauss one) is generally applied [70,114,181] in thin bodies formulation as
it allows to have an integration points at lower and upper skin of the beam.

The three elementary bulk terms (inertial, membrane and bending terms) of Eq. (3.34)
can be easily computed using (3.52-3.57), and an integration on Gauss pointsg of weightwg

reads:

• Inertial term:

∑
e

∫
le

ρBü ·δudx = ∑
e

∫
le

ρBNξ(x)Nµ(x)üξdx·δuµ

= ∑
e

[∫ 1

−1
ρB

∂ξ
∂x

Nξ(ξ)Nµ(ξ)dξüξ

]
·δuµ

= ∑
e

(
Mbeµξüξ

)
·δuµ , (3.60)

where,

Mbeξµ = ∑
g

ρB
∂ξ
∂x

wg

[
Nξ(ξg)Nµ(ξg) 0 0

0 Nξ(ξg)Nµ(ξg) 0
0 0 Nξ(ξg)Nµ(ξg)

]
, (3.61)

is the elementary mass matrix per unit width.
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• Membrane term:

∑
e

∫
le

nB
11(x)δu1,1(x)dx = ∑

e

∫
le

nB
11(x)Nµ

,xdxδuµ1

= ∑
e

∫ 1

−1
n11

B (ξ)Nµ

,ξ(ξ)dξδuµ1

= ∑
e
F be

int n
µ ·δuµ , (3.62)

where,

F be
int n

µ
= ∑

g
wgn11

B (ξg)




Nµ

,ξ(ξg)

0
0


 , (3.63)

is the elementary membrane internal forces vector per unit width.

• Bending term:

∑
e

∫
le

m̃B
11(x)(−δu3,1),1dx = −∑

e

∫
le

m̃B
11(x)Nµ

,xx(x)dxδuµ3

= −∑
e

∫ 1

−1

∂ξ
∂x

m̃B
11(ξ)Nµ

,ξξ(ξ)dξδuµ3

= ∑
e
F be

int b
µ ·δuµ , (3.64)

where,

F be
int b

µ
= −∑

g
wg

∂ξ
∂x

m̃B
11(ξg)




0
0

Nµ

,ξξ(ξg)


 , (3.65)

is the elementary bending internal forces vector per unit width.

The implementation of the interface part of Eq. (3.34) requires the computation of mean and
jump values at interface. This computation is performed following the convention depicted
on Fig. 3.2 and the quantities are evaluated at interface thanks to an interpolation of the
displacement field inξ = −1 andξ = 1, respectively, for minus and plus elements (i.e. the
quantities are not extrapolated from their values at Gauss points of the elements). Defining
the interface virtual field as,

δus =

[
δu−

δu+

]
, (3.66)

the different interface contributions of (3.34) are computed as follows:
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• Consistent membrane term:

∑
s

〈
nB

11(x)
〉
Jδu1K = ∑

s

1
2

(
nB

11+(−1)+nB
11−(1)

)

(
Nµ+(−1)δuµ+1 −Nµ−(1)δuµ−1

)

= ∑
s
F bs

int consn
µ± ·δusµ± , (3.67)

where,

F bs
int consn

µ±
=

1
2

(
nB

11+(−1)+nB
11−(1)

)




−Nµ−(1)
0
0

Nµ+(−1)
0
0



, (3.68)

is the elementary membrane consistent internal forces vector per unit width.

• Compatibility membrane term:

∑
s

Ju1K〈Ehδu1,1〉 = ∑
s

Eh
2

(
Nξ+(−1)uξ+1 −Nξ−(1)uξ−1

)

(
∂ξ
∂x

+

Nµ+
,ξ (−1)δuµ+1 +

∂ξ
∂x

−
Nµ−
,ξ (1)δuµ−1

)

= ∑
s
F bs

int compn
µ± ·δusµ± , (3.69)

where,

F bs
int compn

µ±
=

Eh
2

(
Nξ+(−1)uξ+1 −Nξ−(1)uξ−1

)




∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

∂ξ
∂x

+
Nµ+
,ξ (−1)

0
0




, (3.70)

is the elementary membrane compatibility internal forces vector per unit width.

• Stability membrane term:

∑
s

Ju1K
〈

β2Eh
hs

〉
Jδu1K = ∑

s

β2Eh
hs

(
Nξ+(−1)uξ+1 −Nξ−(1)uξ−1

)

(
Nµ+(−1)δuµ+1 −Nµ−(1)δuµ−1

)

= ∑
s
F bs

int stabn
µ ·δusµ , (3.71)



3.2 Full-DG formulation of Euler-Bernoulli beams 65

where,

F bs
int stabn

µ±
=

β2Eh
hs

(
Nξ+(−1)uξ+1 −Nξ−(1)uξ−1

)




−Nµ−(1)
0
0

Nµ+(−1)
0
0



, (3.72)

is the elementary membrane stability internal force vectorper unit width.

• Consistent bending term:

∑
s

〈
m̃B

11(x)
〉
J−δu3,1K = −∑

s

1
2

(
m̃B

11+(−1)+ m̃B
11−(1)

)

(
∂ξ
∂x

+

Nµ+
,ξ (−1)δuµ+3 − ∂ξ

∂x

−
Nµ−
,ξ (1)δuµ−3

)

= ∑
s
F bs

int consm
µ± ·δusµ± , (3.73)

where,

F bs
int consm

µ±
=

1
2

(
m̃B

11+(−1)+ m̃B
11−(1)

)




0
0

∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

−∂ξ
∂x

+
Nµ+
,ξ (−1)




, (3.74)

is the elementary bending consistent internal force vectorper unit width.

• Compatibility bending term:

∑
s

s
−u3,1

〈
−Eh3

12
δu3,11

〉{
= ∑

s

Eh3

24

(
∂ξ
∂x

+

Nξ+
,ξ (−1)uξ+3 − ∂ξ

∂x

−
Nξ−
,ξ (1)uξ−3

)



(

∂ξ
∂x

+
)2

Nµ+
,ξξ (−1)δuµ+3 +

(
∂ξ
∂x

−)2

Nµ−
,ξξ (1)δuµ−3




= ∑
s
F bs

int compm
µ± ·δusµ± , (3.75)
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where,

F bs
int compm

µ±
=

Eh3

24

(
∂ξ
∂x

+

Nξ+
,ξ (−1)uξ+3 − ∂ξ

∂x

−
Nξ−
,ξ (1)uξ−3

)




0
0(

∂ξ
∂x

−)2
Nµ−
,ξξ (1)

0
0(

∂ξ
∂x

+)2
Nµ+
,ξξ (−1)




, (3.76)

is the elementary bending compatibility internal force vector per unit width.

• Stability bending term:

∑
s

J−u3,1K
〈

β1Eh3

12hs

〉
J−δu3,1K = ∑

s

β1Eh3

12hs

(
∂ξ
∂x

+

Nξ+
,ξ (−1)uξ+3 − ∂ξ

∂x

−
Nξ−
,ξ (1)uξ−3

)

(
∂ξ
∂x

+

Nµ+
,ξ (−1)δuµ+3 − ∂ξ

∂x

−
Nµ−
,ξ (1)δuµ−3

)

= ∑
s
F bs

int stabm
µ± ·δusµ± , (3.77)

where,

F bs
int stabm

µ±
=

β1Eh3

12hs

(
∂ξ
∂x

+

Nξ+
,ξ (−1)uξ+3 − ∂ξ

∂x

−
Nξ−
,ξ (1)uξ−3

)




0
0

−∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

∂ξ
∂x

+
Nµ+
,ξ (−1)




, (3.78)

is the elementary bending stability internal force vector per unit width.
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• Stability shearing term:

∑
s

Ju3K
〈

β3Eh
2(1+ν)hs

〉
Jδu3K = ∑

s

β3Eh
2(1+ν)hs

(
Nξ+(−1)uξ+3 −Nξ−(1)uξ−3

)

(
Nµ+(−1)δuµ+3 −Nµ−(1)δuµ−3

)

= ∑
s
F bs

int staba
µ± ·δusµ± , (3.79)

where,

F bs
int staba

µ±
=

β3Eh
2(1+ν)hs

(
Nξ+(−1)uξ+3 −Nξ−(1)uξ−3

)




0
0

−Nµ−(1)
0
0

Nµ+(−1)



,

(3.80)

is the elementary shearing stability internal force vectorper unit width.

The assembled form of Eq. (3.34) can be obtained using Eqs. (3.61-3.80),

0 = ∑
e
Mbeü+∑

e

(
F be

int n+F be
int b

)
+∑

s

(
F bs

int consn+F bs
int compn+F bs

int stabn

+ F bs
int consm+F bs

int compm+F bs
int stabm

+ F bs
int staba

)
. (3.81)

If the inertial forces are equal to zero (i.e. ü = 0 and the problem is static), the statement
(3.81) can be solved alternatively from the expression,

Kµξuξ = 0 (3.82)

with an appropriate application of boundary conditions, with Kµ theµth line of the matrix.
This last form considers the stiffness matrix of the problemthat can be computed in the general
case from internal forces by numerical perturbation or to save computational time determined
analytically from the material law. Therefore we present inthe following the expressions of
elementary stiffness matrices relying on the linear plane stress elastic behavior presented in
Section 3.1. To achieve this, we first formulate the value of the resultant stresses as,

nB
11(ξg) = Ehu1,1(ξg) = Eh

∂ξ
∂x




Nµ

,ξ (ξg)

0
0


 ·uµand, (3.83)

m̃B
11(ξg) = −Eh3

12
u3,11(ξg) =−Eh3

12

(
∂ξ
∂x

)2



0
0

Nµ

,ξξ (ξg)


 ·uµ . (3.84)
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Then the elementary bulk stiffness matrix can be computed from their respective internal
forces as,

• Membrane term from Eq. (3.63) (Kbe
int n is the elementary membrane stiffness matrix

per unit width):

Kbe
int n

µξ
=

∂F be
int n

µ

∂uξ
=

∂
∂uξ ∑

g


wgEh

∂ξ
∂x




Nν
,ξ(ξg)

0
0


 ·uν




Nµ

,ξ(ξg)

0
0






= ∑
g

wgEh
∂ξ
∂x




Nµ

,ξ(ξg)

0
0


⊗




Nξ

,ξ(ξg)

0
0


 . (3.85)

• Bending term from Eq. (3.65)(Kbe
int b is the elementary bending stiffness matrix):

Kbe
int b

µξ
=

∂F be
int b

µ

∂uξ
=

∂
∂uξ ∑

g


wg

Eh3

12

(
∂ξ
∂x

)3



0
0

Nν
,ξξ(ξg)


 ·uν




0
0

Nµ

,ξξ(ξg)






= ∑
g

wg
Eh3

12

(
∂ξ
∂x

)3



0
0

Nµ

,ξξ(ξg)


⊗




0
0

Nξ

,ξξ(ξg)


 . (3.86)

The implementation of the interface stiffness matrix is more complicated as we have to

compute∂F ξ±
∂x± . To perform this operation and definingus=

[
u−

u+

]
, we suggest to divide the

matrix in four blocks,

Ks =

[
Ksµ−ξ− Ksµ−ξ+

Ksµ+ξ− Ksµ+ξ+

]
. (3.87)

• Consistent membrane term from Eq. (3.68) (Kbs
int consn is the elementary membrane
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consistent stiffness matrix per unit width):

Kbs
int consn

µ±ξ±
=

∂F bs
int consn

µ±

∂uξ±

=
∂

∂uξ±


Eh

2







∂ξ
∂x

+
Nν+

,ξ (−1)
0
0


 ·uν++




∂ξ
∂x

−
Nν−
,ξ (1)
0
0


 ·uν−







−Nµ−(1)
0
0

Nµ+(−1)
0
0







=
Eh
2




−Nµ−
(1)

0
0
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(−1)
0
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

⊗




∂ξ
∂x

−
Nξ−

,ξ (1)

0
0

∂ξ
∂x

+
Nξ+

,ξ (−1)

0
0




. (3.88)

• Compatibility membrane term from Eq. (3.70) (Kbs
int compnis the elementary membrane

compatibility matrix per unit width):

Kbs
int compn

µ±ξ±
=

∂F bs
int compn

µ±

∂uξ±
=

∂
∂uξ±


Eh

2
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2



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∂x

−
Nµ−
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0
0

∂ξ
∂x

+
Nµ+
,ξ (−1)

0
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
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0
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

. (3.89)
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• Stability membrane term from Eq. (3.72) (Kbs
int stabnis the elementary membrane stabil-

ity matrix per unit width):

Kbs
int stabn

µ±ξ±
=

∂F bs
int stabn

µ±

∂uξ±
=

∂
∂uξ±


β2Eh

hs
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
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
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. (3.90)

• Consistency bending term from Eq. (3.74) (Kbs
int consmis the elementary bending con-

sistency matrix per unit width):

Kbs
int consm

µ±ξ±
=

∂F bs
int consm

µ±

∂uξ±
=

∂
∂uξ±


−Eh3

24







0
0(

∂ξ
∂x

+)2
Nν+

,ξξ (−1)


 ·uν+

+




0
0(

∂ξ
∂x

−)2
Nν−
,ξξ (1)


 ·uν−







0
0

∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

−∂ξ
∂x

+
Nµ+
,ξ (−1)






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. (3.91)

• Compatibility bending term from Eq. (3.76) (Kbs
int compm is the elementary bending
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compatibility matrix per unit width):
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. (3.92)

• Stability bending term from Eq. (3.78) (Kbs
int stabm is the elementary bending stability

matrix per unit width):
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int stabm
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. (3.93)
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L

Figure 3.4: To prescribe boundary conditions on rotation virtual elements (dotted line) are
used.

• Stability shearing term from Eq. (3.80) (Kbs
int staba is the elementary shearing stability

matrix per unit width)
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∂uξ±


 β3Eh

2(1+ν)hs






0
0

Nν+(−1)


 ·uν+−




0
0

Nν−(1)


uξ−







0
0

−Nµ−(1)
0
0

Nµ+(−1)







=
β3Eh

2(1+ν)hs




0
0

−Nµ−(1)
0
0

Nµ+(−1)



⊗




0
0

−Nξ−(1)
0
0

Nξ+(−1)



. (3.94)

To finish this part on the implementation of the full-DG formulation of beams we briefly
discuss the application of boundary conditions on rotationto simulate,e.g. a clamp. Indeed,
the one-field (displacement) formulation suggested hereindoes not allow to apply strongly
such a condition. Therefore, we prescribe the boundary conditions on rotation weakly using
an interface element. This interface element considers a virtual element situated in the con-
tinuation of the beam as shown on Fig. 3.4. The rotational boundary conditions can then be
applied by prescribing the displacement field of the virtualelement. For example a clamp can
be simulated by fixing all the displacements of the virtual element to zero. It has to be men-
tioned that for more efficiency this last case is implementedin the software by removing all
nodes of the virtual element (i.e. only the components of the interface element corresponding
to the ”not virtual” element are computed and assembled).

Finally in the vectorial and matricial equations presented, u2 is fixed to zero.
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3.2.4 Numerical benchmarks

Some simulations are performed with the weak formulation (3.34) to demonstrate its abil-
ity to simulate continuum mechanics. In particular we compare this full-DG formulation with
theC0/DG one presented by G. Engelet al. [91] and with analytical values. The results of
both formulations are in agreement with the analytical onesand the full-DG formulation is
as accurate as theC0/DG one. We study first a double clamped beam loaded uniformlyin
a quasi-static way. Then two dynamic examples focus on the stress wave propagation as it
is an issue of the recourse to intrinsic cohesive law. On the contrary, it is proved herein that
the full-DG formulation developed above does not affect thestress wave propagation and can
thus coupled to an ECL.

Double clamped beam with uniformly distributed loading

The numerical properties demonstrated in Section 3.2 are illustrated on this example. It
shows that the convergence rate of the solution with respectto the mesh size is in accordance
with the theory and that the results are as accurate as the ones obtained with theC0/DG for-
mulation previously developed by G. Engelet al. [91].

The example consists in a double clamped beam (DCB), whose material and geometrical
properties are given in Fig. 3.5 and Tab. 3.1 respectively, submitted to a distributed force
p= 4 [kN/m]. This force induces a displacement field described analytically by (see [153]),

u3(ξ1) = − pξ12
(L−ξ1)2

24EI
. (3.95)
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Figure 3.5: Geometry of the numerical benchmark used to demonstrate the numerical proper-
ties of the full-DG method.

This case is simulated with quadratic and cubic elements fordifferent mesh sizes (hs)
ranging from 1000/4 to 1000/256 [mm] and different stabilization parameter values ofβ1

ranging from 5 to 1e6

The choice ofβ3 results from a study of the convergence of the normalized deflection
with respect toβ3, which depends on geometry, as illustrated on Fig. 3.6 forhs = 1/64,
β1 = β2 = 10. On Fig. 3.6(a), the benchmark presented herein is also simulated with a
thickness of 100 [mm] (in place of 10 [mm]). It appears that both convergence curves are
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Property Value
Young modulus [GPa] 10
Poisson ratio [-] 0.21
Density[kg/m3] 10000

Table 3.1: Material properties of the numerical benchmark used to demonstrate the numerical
properties of the full-DG method.

10
−4

10
−2

10
0

10
2

10
4

10
0

10
1

10
2

10
3

β
3

38
4E

Iδ
/(

p
m

ax
L

4 ) 
[−

]

 

 

h=10 [mm]
h=100 [mm]
Analytic

(a) Effect of thickness.

10
−4

10
−2

10
0

10
2

10
4

10
0

10
1

10
2

β
3

38
4E

Iδ
/(

p
m

ax
L

4 ) 
[−

]

 

 

L=100 [mm]
L=1000 [mm]
Analytic

(b) Effect of length.

Figure 3.6: Convergence of the normalized deflection with respect toβ3 for different geomet-
rical parameters.

exactly the same but are scaled by a factor 100. Therefore, the convergence withβ3 depends
on the geometry. To remove this dependency,β3 has to be multiplied by a factor(h/L)2.
Indeed, when the height is divided by 10 the minimal value ofβ3 which gives a converged
solution is divided by 100. Furthermore, the same study can be realized by varying the beam
length, as presented on Fig. 3.6(b), which shows than whenL is divided by 10, the minimal
value ofβ3 which gives a converged solution is multiplied by 100. Theseresults show thatβ3

should be equal toβ1/(h/L)2 to produce results independent of the geometry. In this work,

unless specified otherwise, we chooseβ3=
β1
100

(
h
L

)2
which avoids ill conditioned matrix. Note

that as this test is in pure bending4, there is no displacement alongξ1 (i.e. u1 = 0) and the
value ofβ2 does not modify the results in this case.

For illustration, the normal deformation, obtained forβ1 = 100, is plotted on Fig. 3.7.
This figure contains four graphs depending on the type of elements: quadratic elements and a
C0/DG formulation, Fig. 3.7(a), quadratic elements and the full-DG formulation, Fig. 3.7(b),
cubic elements and aC0/DG formulation, Fig. 3.7(c), and cubic elements and the full-DG
formulation, Fig. 3.7(d). These graphs show that the convergence (less than 1% error) is
achieved for respectively 100, 192, 128 and 168 degrees of freedom for quadraticC0/DG ,

4As shearing is neglected in Euler Bernoulli beams



3.2 Full-DG formulation of Euler-Bernoulli beams 75

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

x/L

38
4E

Iδ
/P

m
ax

L
4  [−

]

 

 

h
s
/L=1/8

h
s
/L=1/16

h
s
/L=1/32

h
s
/L=1/64

Analytic

(a) QuadraticC0/DG .
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(b) Quadratic full-DG.
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(c) CubicC0/DG .
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Figure 3.7: Convergence of deformation is the same for bothC0/DG and full-DG formulation
no matter the element type.

quadratic full-DG, cubicC0/DG and cubic full-DG elements. Therefore, it demonstratesthat
the analytical solution is very well approximated for both degrees of elements and that the
full-DG formulation gives the same results as theC0/DG method.

The convergence of displacements with the mesh size is emphasized by Fig. 3.8, which
plots the normalized maximal deflection of the beam: for quadratic elements withC0/DG
formulation Fig., 3.8(a), quadratic elements with full-DGformulation Fig., 3.8(b), cubic ele-
ments withC0/DG formulation Fig., 3.8(c) and cubic elements with full-DG formulation, Fig.
3.8(d). Furthermore, this figure shows that for any order of interpolation and forβ1 ≥ 5, both
C0/DG and full-DG methods are stable. However for values ofβ1 > 1e6 (quadratic elements)
andβ1 > 1000 (cubic elements) both methods suffer from locking for the finer mesh, which
leads to low convergence rate in theL2-norms. From these graphs, it appears that as long as
the stabilization parameterβ1 remains in a rather wide range [5-1000], numerical accuracyof
the method is ensured. Same behavior was observed for different applications of discontinu-
ous Galerkin methods for solids [182,184] and for shells [181,185], which allows concluding
that this range is non-dependent from the problem under consideration.
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Figure 3.8: The accuracy of the method is ensured for a wide range [5-1000] of stability
parametersβ1 as illustrated by the convergence of the maximal deflection with respect to the
mesh size.

The convergence of results with the mesh size is demonstrated from previous figures and
the convergence rate is studied on Figs. 3.9 and 3.10 respectively for theL2 and the energetic
norms. Once again, this study is performed for different element types: quadratic elements
with a C0/DG formulation Figs. 3.9(a) and 3.10(a), quadratic elements with a full-DG for-
mulation, Figs. 3.9(b) and 3.10(b), cubic elements with aC0/DG formulation, Figs. 3.9(c)
and 3.10(c), and cubic elements with a full-DG formulation,Figs. 3.9(d) and 3.10(d). These
figures illustrate that both convergence rates correspond to those predicted by the theory, un-
less locking or numerical accuracy for low errors prevent reaching this convergence rate. In
particular, the convergence rate in theL2-norm is less than expected for the thinnest meshes
due to the smallest of the relative error (around 10−6), which is too small to continue to obtain
the same convergence rate. Moreover, the convergence rate in theL2-norm is ink+1 even for
quadratic elements, while the theory predicts a convergence rate only ink. This observation is
in agreement with what was shown by L. Noelset al. [185] and by G. Wells [257] forC0/DG
shells. One more time, the two figures show that the same results are obtained by theC0/DG
and full-DG methods.
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(d) Cubic full-DG.

Figure 3.9: The theoretical convergence rate in theL2-norm is observed for the DCB numeri-
cal benchmark.

Finally, Fig. 3.11 illustrates the condition number of the stiffness matrix with respect to
the number of elements and for different values of parameters βi (β2 = β1 andβ3 = 100β1).
The condition numbers depict on the figure are divided by the condition number of the el-
ementary bulk matrix to be independent of the material and geometry. Moreover, they are
reported for bothC0/DG , on Figs. 3.11(a) and 3.11(c), and full-DG, on Figs. 3.11(b) and
3.11(d), formulations, as well as for elements of degree 2, Figs. 3.11(a) and 3.11(b), and el-
ements of degree 3, Figs. 3.11(c) and 3.11(d). These graphs show that the condition number
is approximately the same for the two formulations and the two degrees of element. Further-
more, for all the cases, the condition number increases withthe fourth power of the number of
elements and increases linearly with the parameterβ1. So for large stabilization parametersβi ,
an ill-conditioned matrix is expected. However, in the practical range (β1 ≃ 10), the condition
numbers remain satisfactory, which justifies the use of stability parameters as low as possible
for quasi-static cases.
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(d) Cubic full-DG.

Figure 3.10: The theoretical convergence rate in the energetic norm is observed for the DCB
numerical benchmark.

Stress wave propagation

The main drawback of an intrinsic cohesive approach (see Section 2.2.1) is a perturbation
of the stress wave propagation through the elements due to the enforcement of continuity
thanks to a penalty parameter. Despite of DG methods are interior penalty methods, they
remain consistent and we illustrated in this section by two numerical examples that a correct
stress wave propagation is observed for our suggested DG method.

The stress wave propagation is obviously a dynamic phenomenon and therefore we use in
this section the explicit central difference algorithms [103] to solve the set of Eqs. (3.8) and
(3.14). Although another temporal integration can be used we select this one for its simplicity
of implementation. Nevertheless, this one is conditionally stable and a time step lower than
a critical value∆tcrit is required to solve the problem. The value of∆tcrit depends on the
higher natural (numerical) frequency of the model. As the DGmethod uses discontinuous
elements, it introduces extra numerical frequencies governed by the stability parameters. L.
Noelset al. [184] studied the variation of maximal natural frequency with respect toβ1 for
theirC0/DG method. They demonstrated that the∆tcrit should be divided by

√
β1 to ensure
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(d) Cubic full-DG.

Figure 3.11: Satisfactory condition number of stiffness matrix is observed for low values of
β1.

the stability of the algorithm. Such a study is performed herein on the stability parameters
to show the relation remains valid if we consider the maximalvalue ofβ1, β2 andβ3. We
focus on a beam depicted on Fig. 3.12, with the same dimensions and material values than the
one studied in Section 3.2.4 but with a different boundary condition as this time it is simply
clamped. We compute forβ1 = β2 = 0.1 and different values ofβ3 the natural frequencies
of the beam meshed by 20 quadratic and cubic elements and plotthe maximal frequency on
Fig. 3.13. Obviously as there is more degrees of freedom withthe cubic mesh, the maximal
frequency is higher but it remains constant untilβ3 = 1e4 and andβ3 = 1e5 respectively
for quadratic and cubic elements even if very small values are consider for other stability
parametersβ1 andβ2. Therefore, in the practical range ofβ3, this has no effect on the maximal
natural frequency (i.e. the additional frequencies governed byβ3 are lower than the maximal
value of theC0/DG method) and its influence can be omitted for the computation of the
critical time step. Nevertheless, for large values ofβ3 ≥ 1e5, the maximal frequency varies
with respect toβ3 with a factor close of

√
β3 and therefore the relation is the same as for

stability parametersβ1,β2. Indeed, the variations of the highest frequency with respect to β1
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Figure 3.12: Beam configuration to study stress wave propagation.
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Figure 3.13: The highest natural frequency is independent of β3 in the range of interesting
values.

andβ2 are respectively illustrated on 3.14(a) and 3.14(b). In each case, the values of other
stability parameters are fixed to 0.1. Therefore we suggest to adapt the criterion of L. Noels
et al. [184] by changing the factor 1√

β1
by 1√

maxβα
. This study confirms our assumption to

chooseβ1 = β2. In the following we useβ1 = β2 = 10 andβ3 =
β1
100

(
h
L

)2
.

With this criterion on∆tcrit , ensuring the stability of the explicit time integration algo-
rithms, we can simulate the impact of the beam, whose material properties are given in Tab.
3.1, with a rigid plane. To avoid the contact modeling, we canadvantageously perform the
simulation with the simply clamped beam depicted on Fig. 3.12. Indeed the rigid plane is
situated at the clamp (i.e. the last node is clamped) and we just give an initial velocityalong
the beam axis in direction of the clamp.

This setup generates a stress wave propagating from the clamp to the free extremity and
then reflecting to return toward the clamp where a new reflection occurs. The speed of the

dilatational wavecd =
√

E
ρ = 1000 [m/s] controls the velocity of the stress wave given by

ρcdV1, with V1 = 1 [m/s] the value of the prescribed initial velocity. Therefore the evolution
with time of the velocity the free extremity represented on Fig. 3.15 gives an image of the
stress wave propagation. As the beam’s length is 1 [m], the wave takes 1 [ms] to reach at the
free extremity where its reflection induces a change of the velocity sign. Then the wave comes
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Figure 3.14: Evolution of the highest natural frequency is the same forβ1 andβ2.
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Figure 3.15: The stress wave propagation is unaffected by the use of a DG formulation.

back after 2 [ms], and causes a new change of the velocity sign.
The theoretical behavior is well captured by the simulationwith height quadratic elements,

Fig. 3.15(a), and height cubic elements Fig. 3.15(b). Even if there are spurious numerical os-
cillations, the transition of the velocity occurs at times 1and 3 [ms] as expected. Furthermore,
as the problem is also simulated with aC0/DG method, we can conclude that the stress wave
is not modified due to the discontinuity between the elements.

Finally, we suggest a benchmark to study the stress wave propagation in a beam loaded in
bending. The beam has initially a displacement of 4 [mm] in directionE3 at the free extremity,
and equilibrium is computed by a quasi-static analysis. Then the prescribed displacement is
removed to have an initial unbalanced configuration at the beginning of an explicit simulation.
As the material is elastic, the beam starts to oscillate around the undeformed configuration
with a frequency corresponding to the first bending eigen mode. This value can be determined
by a spectral analysis and is equal to 16.23 [Hz] for the considered beam. The oscillations at
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Figure 3.16: The oscillation frequency (at free extremity)is not modified by the use of the
full-DG method.

the free extremity are studied on Fig. 3.16 for the beam meshed with height cubic elements.
Despite of a small error in the amplitude (due to explicit numerical integration), the frequency
of the oscillations is well captured by the full-DG method, which gives the same results as the
C0/DG formulation. Therefore once again the dynamic behavioris not modified by the use
of discontinuous elements.

3.3 Extrinsic cohesive law for Euler-Bernoulli beams

This section introduces an original extrinsic cohesive lawbased on the reduced stresses
(3.5) and (3.12) dedicated to the thin bodies. Afterward, westudy the accuracy of the method
on a benchmark. This one proves that with the DG/ECL combination we are able to simulate
the initiation and through-the-thickness propagation of acrack while respecting the energetic
balance (i.e. the dissipated energy is equal to the fracture energy of the material) for different
tension/bending mixed loadings.

3.3.1 Extrinsic cohesive law for thin bodies

We develop herein an extrinsic cohesive law based on the reduced stresses (3.5) and (3.12),
which can easily be coupled with the full-DG method presented in Section 3.2 as these reduced
stresses appear explicitly in the formulation (3.34).

As interface elements have already been introduced in the DGmethod, it is not necessary
to modify dynamically the mesh in order to introduce the cohesive elements, which is the
critical step of classical extrinsic cohesive approaches.The cohesive elements ”substitute”
simply the interface elements where the fracture criterionis reached. Mathematically the
equation (3.35) can be rewritten, as introduced first by J. Mergheimet al. [157], as

Structural terms+(1−αs) DG terms+αs cohesive term = 0, (3.96)
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whereαs is evaluated at each interface element and is equal to one if there is fracture and
is equal to zero if this is not the case. For Euler-Bernoulli beams, only the normal stress
component is different from zero and a fracture criterion intension can be considered,

max
ξ3

〈
σ11〉−σc > 0, (3.97)

where the operator〈•〉 represents the mean value on the interface element and whereσc, the
fracture strength, is a material parameter.

The cohesive zone concept, initially presented by G. Barenblatt [24], is based on the exis-
tence of a residual traction while crack faces are still in a close neighborhood. In this model
of perfectly brittle fracture, the traction represents thephysical inter-atomic attractive forces
which are exerted between atoms. After a given distance∆c this traction falls to zero and
there is no force exerted between crack faces. In more general cases, the traction-separation
law represents physical phenomena happening in the processzone. The application of the
J-integral concept introduced by J. Rice [215] leads to the general form of the cohesive term,

δJ =
∫

T ·δ(∆)dS, (3.98)

with T the traction forces exerted between crack faces and∆ the opening between them.
In this chapter the normal to the fracture surface is equal toE1 as the linear assumption is
made5. Therefore vectorsT and∆ have a non-zero component only along axis 1, which are
respectively notedt and∆ in the following. Moreover, as the cohesive term (3.98) is equal
to the J-integral the area under the TSL must be equal to the energy of ruptureGc, a material
parameter [109], if the crack grows straight ahead, which isthe case herein as the crack
growths through-the-thickness. So the two parameters of the TSL areσc andGc, the critical
opening value∆c being deduced from the traction-separation law shape, see Fig. 2.3(b).

As the focus is put on thin bodies where the thickness is implicitly modeled, it is not
straightforward to take into account a through-the-thickness fracture. A solution is suggested
by F. Ciraket al. [70], where the traction-separation-law is integrated at each Simpson points
describing the thickness. As the TSL makes sense only for traction, this solution is difficult to
implement in the general case when bending can occurs and an original approach considering
a traction-separation law based on the resultant stresses is suggested. The cohesive integral
(3.98) is replaced by the application of cohesive law on the resultant membrane

〈
nB

11
〉

and
bending

〈
m̃B

11
〉

stresses, which are denotedNcoh andMcoh respectively after fracture is initi-
ated, leading to,

T ·δ(∆)dS
b

→ Ncoh(∆⋆)δ(Ju1K)+Mcoh(∆⋆)δ(J−u3,1K) , (3.99)

where∆⋆ is an effective opening, and where we have stated the expression per unit width.

5The normal to the fracture surfaceνs in the current configuration of the interface element can be computed as
suggested by F. Ciraket al. [70] by, νs=

〈νs〉
||〈νs〉|| , with ν±s equal to,ν±s = τ±∧t± , wheret andτ are respectively

the normal of the neutral axis and the tangent vector at the interface element. For beam elements these quantities

are equal to,t=E3−u3,1E1and,τ =E2, which leads to,νs =
E1+〈u3,1〉E3√

1+〈u3,1〉2
≈E1 .
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Figure 3.17: Linearly decreasing monotonic cohesive law based on reduced stresses.

What remains to be defined is the shape of the new TSLsNcoh(∆⋆) andMcoh(∆⋆), as well
as the definition of the effective opening∆⋆. The conditions that should be satisfied are:

• Ncoh= Mcoh= 0 when∆⋆ ≥ ∆c;

• LawsN(∆⋆) andM(∆⋆) must be monotonically decreasing;

• Continuity in resultant stresses6 between unfractured and fractured stage at∆⋆ = 0
should be ensured. This is the case ifNcoh(0) = Ncoh0 andMcoh(0) = Mcoh0, where
Ncoh0 andMcoh0 are respectively the values of

〈
n11
〉

and
〈
m11
〉

at fracture initialization.

• At the end of the fracture process, the work induced by the TSLs
∫

Ncoh(∆⋆)d(Ju1K)+∫
Mcoh(∆⋆)d(J−u3,1K) should correspond tohGc;

• In case of unloading during the fracture process a linearly decreasing law is used to have
Ncoh= Mcoh= 0 when∆⋆ = 0 as suggested by G.T. Camachoet al. [63] (see Fig. 3.17).

The relationsNcoh(∆⋆) andMcoh(∆⋆) can be determined experimentally, but in the case of this

6It has been demonstrated by K.D. Papouliaet al. [196] that if the continuity is not ensured between unfrac-
tured and fractured stages, convergence problems can occur.
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work a monotonically linearly decreasing law is chosen to illustrate the idea,

Ncoh(∆⋆) =





Ncoh0

(
1− ∆⋆

∆c

)
if ∆⋆

max≤ ∆⋆ ≤ ∆c

Ncoh0

(
∆⋆

∆⋆
max

− ∆⋆

∆c

)
if ∆⋆ < ∆⋆

max< ∆c

0 if ∆⋆ > ∆c

and, (3.100)

Mcoh(∆⋆) =





Mcoh0

(
1− ∆⋆

∆c

)
if ∆⋆

max≤ ∆⋆ ≤ ∆c

Mcoh0

(
∆⋆

∆⋆
max

− ∆⋆

∆c

)
if ∆⋆ < ∆⋆

max< ∆c

0 if ∆⋆ > ∆c

. (3.101)

where∆⋆
max is the maximal effective opening reached during the simulation. These curves are

illustrated on Figs. 3.17(a) and 3.17(b).
In order to define the effective opening∆⋆ the simple pure membrane and pure bending

cases are studied. In these cases, the value∆⋆ can be determined easily as the energy released
must be equal tohGc whereGc =

∆cσc
2 . If the beam is in pure tension the energy released is

given by,

∫ ∆c

0
Ncoh(∆1)d∆1 =

Ncoh0∆c

2
=

2hσcGc

2σc
= hGc , (3.102)

with ∆1 the jump of displacement along x-axis (Ju1K) and whereNcoh0 = hσc as fracture
initiates when the tensile stressNB

h = Ncoh
h reachesσc. This shows that in pure tension∆⋆ = ∆1.

In the case of pure bending this energetic consideration leads to the following choice for
the opening,

∆⋆ =
h
6

∆r , (3.103)

with ∆r the opening in rotation given byJ−u3,1K if the fracture is initialized for positive
bending (Mcoh0 > 0) and byJu3,1K otherwise (Mcoh0 < 0). Indeed,

∫ ∆rc

0
Mcoh(∆⋆)dJ−u3,1K =

∫ ∆c

0
±6

h
Mcoh0

(
1− ∆⋆

∆c

)
d∆⋆

=
6
h

h2σc

6
∆c

2
= hGc , (3.104)

asMcoh0 = ±h2σc
6 if the fracture is initialized for positive or negative bending respectively.

Indeed, fracture initiates when the tensile stress at beam skin reachesσc. For elastic behavior,
this is obtained whenσ = ±6MB

h2 = σc. In the non linear case, ratioh/6 can be computed,
assuming that the bending stress is equivalent to a tensile stress applied on an equivalent
thickness defined by,

heq
I =

|Mcoh|
hσc−Ncoh

. (3.105)
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∆1

∆r

Figure 3.18: The two components of the opening. The neutral axis is drawn with a dotted line.

In elasticity, at fracture initiationσskin = 6|Mcoh|
h2 + Ncoh

h = σc. Thus, 6|Mcoh|
h = hσc−Ncoh =

|Mcoh|
heq

I
. This implies that in the elastic caseheq

I = h
6, which is the value used in Eq. (3.103).

For combined cases (see Fig. 3.18 for a view of the two openings), the application of the
superposition principle gives the value for∆⋆,

∆⋆ = (1−ηI )∆⋆
1+ηIh

eq
I ∆⋆

r , (3.106)

where the parameterηI has to be equal to zero if the loading is in tension only and equal
to one for a pure bending problem. This is ensured by choosingηI as the ratio at fracture
initialization between the bending part of stress and the fracture strengthσc,

ηI =
|Mcoh|/heq

I

hσc
= 1− Ncoh

hσc
. (3.107)

In case of bending rupture, for a beam under tension,ηI will be between zero and one, but in
case of a beam under compression, fracture can still happen for higher bending stress. In that
caseηI is larger than one. This definition of∆⋆ allows releasing an energy quantity equal to
hGc for any coupled loading.

Nevertheless, as the DG method ensures weakly the continuity, there is an initial jump
before fracture and so at fracture initialization∆0 6= 0. To guarantee the continuity between
pre-fracture and fracture stages, the initial jump at fracture initialization∆0 is subtracted from
∆,

∆⋆
1 = ∆1−∆10 and, (3.108)

∆⋆
r = ∆r −∆r0 , (3.109)

which is the values considered in Eq. (3.106) .
Finally, the use of relations (3.34) and (3.99) leads to the new weak formulation of the
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problem

0 = ∑
n

∫
le

[
ρBü ·δu+nB

11δu1,1+ m̃B
11δ(−u3,11)

]
dx

+∑
s

{
(1−αs)

(〈
nB

11〉Jδu1K+ 〈Ehδu1,1〉Ju1K+ Ju1K
〈

β2Eh
hs

〉
Jδu1K

+
〈
m̃B

11〉Jδ(−u3,1)K+
〈

Eh3

12
δ(−u3,11)

〉
J−u3,1K+ J−u3,1K

〈
β1Eh3

12hs

〉
J−δu3,1K

)

+ γsJδu3K
〈

β3Eh
2(1+ν)hs

〉
Jδu3K

}

+∑
s

αs(Ncoh(∆⋆
true)δJu1K+Mcoh(∆⋆

true)δJ−u3,1K) . (3.110)

In this relationαs is equal to zero before fracture initiation and is shifted toone when the
fracture criterion (3.97) is met. Alsoγs is equal to one during fracture process (i.e. while
∆⋆ < ∆c). This DG term has to be kept until the end of fracture as the shearing continuity has
to be constrained even during the fracture.

3.3.2 Implementation

The implementation of the full-DG method presented in Section 3.2.3 has to be slightly
adapted to integrate the cohesive law in the scheme. Indeed we can take advantage to the fact
that the membrane and bending cohesive terms (3.99) have a similar form than respectively
the membrane (3.31) and bending (3.32) consistency interface terms. For each time step the
fracture criterion (3.97) is evaluated on each interface (upper and lower skin). As long as
the fracture criterion is not verified nothing changes but when fracture is detected the initial
opening (∆⋆

0) is computed from Eq. (3.106) with,

∆1 = Nξ+(−1)uξ+1 −Nξ−(1)uξ−1 , (3.111)

∆r =

[
∂ξ
∂x

+

Nξ+
,ξ (−1)uξ+3 − ∂ξ

∂x

−
Nξ−
,ξ (1)uξ−3

]
, (3.112)

with the convention of Fig. 3.2. These initial values are stored to be used in the following
time steps. The initial effortsNcoh0 andMcoh0 can also be computed from Eqs. (3.5) and
(3.12), respectively, and stored. After initialization, the value of∆⋆ is still computed from Eqs.
(3.106) and (3.108) and the values ofNcoh andMcoh are directly obtained from the cohesive
law (3.100-3.101). These values are then integrated in a similar way as the consistency internal
forces expressions (3.68) and (3.74) where they replace themean value ofnB

11 and m̃B
11
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leading to the expressions,

F bs
int cohn

µ±
= Ncoh(∆⋆)




−Nµ−(1)
0
0

Nµ+(−1)
0
0



, (3.113)

F bs
int cohm

µ±
= Mcoh(∆⋆)




0
0

∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

−∂ξ
∂x

+
Nµ+
,ξ (−1)




, (3.114)

respectively the membrane and bending elementary internalcohesive force vectors per unit
width. Notice that the similitude between these terms and their consistency counterpart, Eqs.
(3.68) and (3.74) leads to a straightforward implementation. Using, Eqs. (3.113-3.114) in Eq.
(3.99) gives the implemented form of the cohesive term, which reads,

∑
s

(
F bs

int cohn
µ±

+F bs
int cohm

µ±) ·δusµ± . (3.115)

The values of other interface terms are not computed thanks to the Boolean valueαs except
in case of negative∆⋆

1. Indeed, a negative∆⋆
1 means an interpenetration and the compatibility

and stability components can advantageously be used as contact terms to ensure∆⋆
1 = 0.

For a static case, the stiffness matrix of the cohesive termshas to be defined. This one can
be computed analytically for the monotonically linearly decreasing law (Fig. (3.17)):

• Cohesive membrane term (Kbs
int cohn is the elementary membrane cohesive stiffness ma-
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trix per unit width):

Kbs
int cohn

µ±ξ±
=

∂F bs
int cohn

µ±

∂uξ±

=




kNN




−Nµ−(1)
0
0

Nµ+(−1)
0
0



⊗




−Nξ−(1)
0
0

+Nξ+(−1)
0
0



+sign(Mcoh0)

×kMN




−Nµ−(1)
0
0

Nµ+(−1)
0
0



⊗




∂ξ
∂x

−
Nξ−
,ξ (1)

0
0

−∂ξ
∂x

+
Nξ+
,ξ (−1)

0
0







(3.116)

with,

kNN =





(1−ηI )
Ncoh0

∆c
loading

(1−ηI )
−Ncoh0

∆⋆
max−∆c

unloading
(3.117)

kNM =





ηIh
eq
I

Ncoh0

∆c
loading

ηIh
eq
I

−Ncoh0

∆⋆
max−∆c

unloading
(3.118)

• Cohesive bending term (Kbs
int cohm is the elementary bending cohesive stiffness matrix
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per unit width):

Kbs
int cohm

µ±ξ±
=

∂F bs
int cohn

µ±

∂uξ±

= sign(Mcoh0)




kMN




0
0

−∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

∂ξ
∂x

+
Nµ+
,ξ (−1)




⊗




0
0

−Nξ−(1)
0
0

Nξ+(−1)




+kMM




0
0

−∂ξ
∂x

−
Nµ−
,ξ (1)

0
0

∂ξ
∂x

+
Nµ+
,ξ (−1)




⊗




0
0

∂ξ
∂x

−
Nξ−
,ξ (1)

0
0

−∂ξ
∂x

+
Nξ+
,ξ (−1)







(3.119)

with,

kMN =





(1−ηI )
Mcoh0

∆c
loading

(1−ηI )
−Mcoh0

∆⋆
max−∆c

unloading
(3.120)

kMM =





ηIh
eq
I

Mcoh0

∆c
loading

ηIh
eq
I

−Mcoh0

∆⋆
max−∆c

unloading
(3.121)

3.3.3 Numerical benchmark: Double Clamped Beam

To demonstrate the ability of the presented framework to model fracture phenomena, stud-
ies are performed on a double clamped beam, whose material properties are given in Tab. 3.2.
The beam is firstly loaded only in bending before the investigation of membrane-bending
coupled loadings. For all the following tests, the beam is meshed with 16 full-DG cubic ele-
ments, so there are 128 degrees of freedom in the model, and the parametersβ1, β2 andβ3 are

respectively fixed to 10, 10 andβ1
(

h
L

)2
.

Pure bending fracture test

This benchmark, presented in Fig. 3.19, consists in applying a downward vertical dis-
placement at the middle of the beam. This introduces a vertical displacement field symmetric
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Property Value
Young modulus [GPa] 71
Poisson ratio [-] 0.21
fracture strength [MPa] 400
energy strength [J/m2] 8800

Table 3.2: Material properties of the double clamped beam.
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Figure 3.19: Setup used to show the through-the-thickness crack initiation and propagation
by the suggested DG/ECL framework.

with respect to the center of the beam described by [153]

u3(ξ1) = 4
ξ12

(3L−4ξ1)

L3 u3(
L
2
) ξ1 ∈ [0; L/2] , (3.122)

whereu3(
L
2) is the applied vertical displacement. Stress is maximal at clamping (at upper skin

of the beam) and at the middle of the beam (at lower skin). Thismaximal value is given by,

σmax =
12Eh

L2 u3(
L
2
) . (3.123)

In this example, fracture at clamping is not allowed so it will be localized at the center of
the beam. After fracture, the double clamped beam (DCB) of length L becomes two simply
clamped beams (SCB) of lengthL/2. Note that in the simulation the vertical displacement is
applied on both nodes of beam’s center. Consequently, as the reported force is measured at
one of the two nodes, in the pre-fractured stage it is equal tohalf the force corresponding to
the prescribed displacement and the energies computed numerically will have to account for
this too.

The energy release rateG occurring during the transition can be computed by,

G∆a = Wext−Wint , (3.124)

where in this last equation∆a is the length of the crack at the end of the simulations (i.e. h),
whereWext is the work of external forces until complete fracture of thebeam, and whereWint

is the internal energy of the beam, see Fig. 3.20. In the following simulations the relation
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Figure 3.20: Different energetic quantities can be extracted from the forcevs. displacement
curve to compute the energetic balance.

force-displacement is archived and the different areas of Fig. 3.20 are computed numerically
at the end of simulation. Furthermore, the fracture energyhGc can be computed by,

hGc = Wextafter fracture−Wintafter fracture, (3.125)

Another useful quantity is the difference of internal energy (∆Wint) between the fractured
and unfractured cases. Indeed this quantity can be used to predict if there is a need of external
energy to achieve a complete fracture on the beam thickness.If ∆Wint > hGc, once the crack is
initiated, the unique solution of the problem is a complete rupture of the beam, while, on the
contrary if∆Wint < hGc, energy from the loading, and thus a further displacement increment, is
required in order to achieve complete rupture.∆Wint of the beam can be computed analytically
(see Appendix A.4)

∆Wintbending =
hLDCB

24E
σc

2
bending, (3.126)

whereσc bendingis the bending stress at the skin reached when fracture is initiated.
The simulation is first performed for a beams of 200 [mm] in length and 20 [mm] in height.

The ∆Wintbending of the beam computed thanks to equation (3.126) is equal to 375.58[J/m]
while the fracture energy is equal to 0.02Gc = 176[J/m]. As∆Wintbending is larger than the
fracture energy, the fracture happens in one increment of displacement as illustrated on Fig.
3.21.

Fig. 3.21(a) plots the maximal stress at the center of the beam in terms of the prescribed
displacement. The stress increases until it reaches the value of the fracture strength (400
[MPa]). It then falls down to zero as the center of the DCB becomes a free extremity of a
SCB. Fig. 3.21(b) gives the relation between the force and the prescribed displacement at the
middle of the DCB. This curve is in agreement with the picture (a) as the force follows the
analytical value of a DCB and a SCB respectively before and after the fracture. Moreover
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Figure 3.21: Unstable crack propagation for a DCB ofL = 200 [mm] andh= 20 [mm].

∆Wintbendingcan be computed by numerical integration of this curve. The calculation gives a
result of 381.47 [J/m], which is very close of the analyticalvalue. Figs. 3.21(c) and 3.21(d)
represent the deformation map respectively before and after fracture. Again before fracture
the deformation map is the one of a DCB and after fracture, it isthe one of two SCBs. Finally,
Fig. 3.21(e) depicts the relation between the angleu3,1 at the center of the DCB versus the
prescribed displacement. This picture shows that before fracture the angle is equal to zero and
it is equal to the analytical value of a SCB after fracture.

Another simulation is performed on a DCB of 50 [mm] in length and of 2.5 [mm] in
height. For this DCB the application of formula (3.126) yields ∆Wintbending= 11.737 [J/m].
As ∆Wintbending is lower than the fracture energy of 22 [J/m] there is a fracture process. This
process is illustrated on the pictures of Fig. 3.22. Picture3.22(a) depicts the maximal stress at
the middle of the beam. As for the previous case, there is fracture when the stress reaches the
fracture strength, but this time, the stress decreases linearly with the prescribed displacement
after fracture onset. The same conclusion is valid for the force-displacement relation plotted
on Fig. 3.22(b). This picture shows that after fracture the force decreases linearly with the
displacement until it reaches the force-displacement curve of a SCB. The numerical integra-
tion gives a value of 12.33 [J/m] for ∆Wintbendingwhich is in accordance with its analytical
value. Moreover, the use of equation (3.124) yields an energy released equal to 21.98 [J/m],
which is very close to its analytical value. Figs. 3.22(c) and 3.22(d) show, as for the previous
case, that the displacement field is equal, before and at the end of the fracture process, to the
displacement field of a DCB and of a SCB respectively. Finally, Fig. 3.22(e) depicts the value
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Figure 3.22: Stable crack propagation for a DCB ofL = 50 [mm] andh= 2.5 [mm].

of the angleu3,1 in function of the prescribed displacement. As for the stress and force fields,
the value ofu3,1 increases linearly after fracture initialization to reach, at the end of fracture
process, the analytical value of a SCB.

Combined tension-bending fracture test

In order to demonstrate that the model of fracture presentedreleases the right amount of
energy for any loading conditions, a test involving combined tension and bending is presented.
The benchmark is the same as for the pure bending test except that a constantE1-displacement
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Figure 3.23: Setup to illustrate a through-the-thickness crack initiation and propagation with
a coupled membrane-bending loading.

is added (see Fig. 3.23). The simulations are performed on a DCB of 50 [mm] in length and
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2.5 [mm] in height.
The characteristic quantity∆Wint has now to consider the internal energy in tension, which

gives the relation (see Appendix A.4),

∆Wint =
hLDCB

2E

(
13
12

η2
I −2ηI +1

)
σ2

c , (3.127)

whereηI is the coupling parameter (3.107). The force-displacementrelation depicted on Fig.
3.20 illustrates now the energy released in bending only (Wintbending). The total released energy
is obtained after adding toWintbending the energy released in tension (Wintmembrane). This last
contribution is given by,

Wintmembrane = ∆Wintmembrane=
Eh
2L

u2
1 prescribed, (3.128)

as there is no work of external forces in tension.

u1 prescribed ηI ∆Wint Wintbending Wintmembrane hG
[mm] [-] [J/m] [J/m] [J/m] [J/m]
−2e−2 1.0692 14.8043 21.26 0.71 21.98

0 1 12.33 21.98 0 21.98
2e−2 0.93 11.39 21.26 0.71 21.98
4e−2 0.86 11.99 19.14 2.84 21.98
6e−2 0.79 14.11 15.59 6.39 21.98
8e−2 0.72 17.76 10.63 11.36 21.99
10e−2 0.66 22.95 – – –

Table 3.3: Double Clamped Beam with combined loadings: Valuesof different energetic
quantities for different prescribedE1-displacement. For stable casehG≈ hGc.

The energies obtained for different loading conditions arecollected in Tab. 3.3. This table
shows that the total energy released (hG) at the end of the fracture process is equal to the
fracture energy for anyu1 prescribed, the small differences being due to the application of the
prescribed displacements by step increments. Foru1 prescribed= 10e−5, the difference of inter-
nal energy between unfractured and fractured case is largerthanhGc = 22 [J/m]. Therefore
for this prescribed displacement the fracture occurs in oneincrement of displacement and the
computation of the energies released in tension and in bending is meaningless. Furthermore
the simulation is performed for a negativeu1 prescribed= −2e−5 to show that the method re-
mains valid in the compression case. As no contact is taken into account during the simulation
an energy quantity equal toWintmembraneis released in compression and so the energetic bal-
ance is exactly the same as foru1 prescribed= 2e−5. The difference between the two cases is the
value of the prescribedu3 leading to fracture (see Fig. 3.24), which explains the difference of
∆Wint between both simulations.



96 DG/ECL framework for Euler-Bernoulli beams

−1.5 −1 −0.5 0
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 x 10
4

Prescribed z displacement [mm]

z 
F

or
ce

 [N
]

 

 

u
x, pres

=−2e−5

u
x, pres

=0

u
x, pres

=2e−5

u
x, pres

=4e−5

u
x, pres

=6e−5

u
x, pres

=8e−5

u
x, pres

=10e−5

(a) Lower skin stress at DCB center

−1.5 −1 −0.5 0
−100

0

100

200

300

400

500

Prescribed z displacement [mm]

M
ax

im
al

 s
tr

es
s 

[M
P

a]

 

 

u
x, pres

=−2e−5

u
x, pres

=0

u
x, pres

=2e−5

u
x, pres

=4e−5

u
x, pres

=6e−5

u
x, pres

=8e−5

u
x, pres

=10e−5

(b) Forcevs.displacement curve

0 0.05 0.1 0.15 0.2

0

100

200

300

400

500

∆
r
 [−]

M
 [N

m
]

 

 

u
x, pres

=−2e−5

u
x, pres

=0

u
x, pres

=2e−5

u
x, pres

=4e−5

u
x, pres

=6e−5

u
x, pres

=8e−5

u
x, pres

=10e−5

(c) Resultant bending cohesive stress

−0.02 0 0.02 0.04 0.06 0.08 0.1
−1

0

1

2

3

4 x 10
5

∆
x
 [mm]

N
 [N

]

 

 

u
x, pres

=−2e−5

u
x, pres

=0

u
x, pres

=2e−5

u
x, pres

=4e−5

u
x, pres

=6e−5

u
x, pres

=8e−5

u
x, pres

=10e−5

(d) Resultant membrane cohesive stress

Figure 3.24: Double Clamped Beam with combined loadings for different prescribedE1-
displacements.

Fig. 3.24 illustrates the results for the different prescribed displacements. Fig. 3.24(a)
depicts the maximal stress at the center of the DCB and shows that for every value of the
prescribed displacement, the fracture begins when the stress reaches the value ofσc. Fig.
3.24(b) represents the relation force-displacement in theE3-direction. It can be seen that as
u1 prescribedincreases the value of theE3-force decreases and the complete fracture happens
for a lower value ofu3. This result is consistent with the fact than whenu1 prescribedincreases
the bending part of the stress is lower at fracture initialization, which implies a lower resultant
bending stress at fracture initialization (see picture 3.24(c)) and therefore a lowerE3-force.
Finally, Figs. 3.24(c) and 3.24(d) represent respectivelythe relationsMcoh(∆⋆

r ) andNcoh(∆⋆
1).

These graphs show that, whenu1, prescribedincreases, both the resultant stress at fracture ini-
tializationNcoh and the value of∆1 reached at the end of the fracture process increase, which
is physically explained due to the fact that there is more energy to be released in tension.
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3.4 Conclusion on the full-DG/ECL framework for Euler-
Bernoulli beams

This chapter describes the two main concepts of this works (full-DG formulation for thin
structures and extrinsic cohesive law for thin bodies) in the particular case of Euler-Bernoulli
beams. It allows presenting both concepts in the most comprehensible way. Indeed in the next
chapter, the non linear shell formulation is tackled and in this case the integration on interface
is required with special care to formulate all quantities inthe basis of the interface.

First we developed a full-DG formulation of beams, which hasthe traditional properties
of a numerical method (consistency, stability, optimal convergence rate). The full-DG method
provides results in good agreement with theory and with theC0/DG method previously pre-
sented by G. Engelet al. [91]. Compared to this method our original method considers dis-
continuous test functions and so provides a discretizationwith discontinuous elements. This
discontinuity can be exploited at onset of fracture to insert a cohesive element without mesh
modification. Indeed, the terms ensuring weakly the continuity are just replaced by the cohe-
sive ones.

Secondly, we develop an original cohesive law based on reduced stresses to account for
the implicit thickness discretization of the beam. This lawhas been shown to respect the
energetic balance. This property of the framework is illustrated through a numerical example.

In the next chapters, we suggest an extension of this framework to the non linear Kirchhoff-
Love shell formulation.
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Chapter 4

Full discontinuous Galerkin formulation
of Kirchhoff-Love shells

The aim of this chapter1 is to extend the discontinuous Galerkin formulation of the Euler-
Bernoulli beams, presented in the previous chapter, to Kirchhoff-Love shells. The combina-
tion of this formulation with an extrinsic cohesive law willbe discussed in the next chapter.
In the following, we first introduce the J. Simoet al. [235,236,233,234,237,238] shell theory
to obtain a strong form of the problem. Nevertheless, compared to the previous chapter, we
remove several assumptions to keep only the hypothesis inherent to Kirchhoff-Love shells,

(i) The effect of the out-of-plane shearing on the deformation is negligible;

(ii) Plane stress state.

These assumptions are general as they are related to the aspect ratio of the structures that
present one dimension (the thickness) smaller than the two other ones2. Although the for-
mulation is established in the general case of finite deformations, it is then particularized to
small deformations and linear behavior as some benchmarks used to validate the framework
are computed under these assumptions. Although, during thethesis, we developed first the
linear formulation before its extension to the non-linear range, we introduce directly the most
general case leading to a more fluent presentation.

Once the strong form obtained from the J. Simoet al. theory, the original full discon-
tinuous Galerkin formulation of non-linear Kirchhoff-Love shells is presented. This one is a
generalization of the formulation presented in the previous chapter for Euler-Bernoulli beams
(see Section 3.2) and thus the out-of-plane shearing is again considered to weakly ensure the
continuity of normal displacement.

Then, we introduce the three constitutive behaviors that are used to perform the numerical
benchmarks. These examples come from the literature and areused to prove the ability of the

1The main results of this chapter are published inComputer Methods in Applied Mechanics and Engineering
[31] for the linear formulation. The non linear formulationis presented in a paper submitted for publication in
International Journal for Numerical Methods in Engineering [33].

2We will discuss later the validity of both assumptions in case of fracture at the begining of the Chapter 5.
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100 Full-DG formulation of Kirchhoff-Love shells

original discontinuous formulation developed herein to provide results as accurate as other
continuous shell formulations presented by other authors in the case of Galerkin methods.
Furthermore, the benchmarks cover different loading conditions and quasi-static as well as
dynamic cases.

Finally, although the full discontinuous Galerkin formulation seems prohibitive in con-
tinuum mechanics, as it considers more degrees of freedom than its continuous counterpart,
a mix between continuous and discontinuous formulations can be used to obtain an efficient
parallel implementation. Indeed, in a parallel computation, the mesh is partitioned between
different processors. On each partition a continuous formulation can be used and the continu-
ity between them can be ensured thanks to the discontinuous formulation. In the following,
we present an original implementation of the explicit Hulbert-Chung algorithm [123] using
this mix formulation to demonstrate its efficiency.

4.1 Continuum mechanics of thin bodies

The basic equations of the shell theory are the linear and angular momentum equilibrium
balance equations of the continuum mechanics. Both equations are developed in the particular
case of thin bodies. In fact, compared with the classical 3D theory the integration on the
thickness is treated separately. This is realized thanks tothe particular kinematics developed
below for thin bodies. This kinematics is then exploited to obtain the strong form of the
continuum mechanics of thin structures.

4.1.1 Kinematics of thin bodies

We base our thin bodies formulation on the one first introduced by J. Simoet al.[235,236,
233,234,237,238]. The particularity of this formulation is to formulate all the equations in the
metric of the shell description in place of the inertial orthonormal frame. So, three different
frames are introduced:

(i) The inertial orthonormal reference basis denotedEI ;

(ii) The convected frame denotedgI , which is linked to the shell (and thus moves with it);

(iii) The conjugated frame to this convected basis denotedgI , which verifies by definition
the relationgI · gJ = δIJ. This basis has to be introduced asgI is not an orthonormal
frame.

As the thickness is small compared to the other dimensions ofthe structure, by definition of
a thin body, it is generally differently covered in the derivation of the equations. Therefore
J. Simoet al. [233] suggested to represent the shell by its mid-surface, as a Cosserat plane
A , and by a third coordinate describing the thickness belonging to the interval[hmin;hmax].
As depicted on Fig. 4.1, the shell is therefore considered inthe reference frame as a plane,
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Figure 4.1: Description of the different configurations of the shell (courtesy of [185]).

included in the planeE1,E2. The thickness of the shell is described in this frame by the third
coordinate varying alongE3, which is mathematically formulated as,

ξ = ξIEI : A × [hmin;hmax]→ R3 , (4.1)

whereξI are the coordinates of the shell in the reference frame. Then, any configurationS of
the shell can be described in relation to the reference frameby the mapping,

Φ : A × [hmin; hmax] → S , (4.2)

which defines the manifold of positionsx of the shell,

x = Φ
(
ξI)=ϕϕϕ(ξα)+ξ3λht(ξα) . (4.3)

The last relation follows from the representation of the shell in the reference frame dividing
the mappingΦ as a mapping of the mid-surfaceϕϕϕ(ξ1,ξ2) : A → R3 and the value of the
director of this mid-surfacet : A → S2 =

{
t ∈ R3|‖t‖=1

}
, with S2 the unit sphere manifold.

Finally in this relation,λh describes a change of thickness due to the deformations.
As any configuration of the shell can be described byΦ, its initial configuration is formu-

lated by (λh0 = 1),

x0 =Φ0(ξI ) = ϕϕϕ0(ξα)+ξ3t0(ξα) . (4.4)

If j0 = det∇Φ0 we can define the mid-surfaceϕϕϕ0 to verify,
∫ hmax

hmin

ξ3 j0ρ0dξ3 = 0. (4.5)

Thus the mid-surface is not necessarily the geometric center of the cross-section.
Therefore, the transformation between the initial and current configuration (S0 → S ) is

described by the two-point deformation mapping,

χ = Φ ◦ Φ−1
0 . (4.6)
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This mapping is characterized by the two-point deformationgradientS0 → GL+(3,R),

F = ∇Φ◦ [∇Φ0]
−1 , (4.7)

whereGL+(3,R) is the invertible Lie group of dimension 3 with a positive JacobianJ= detF.
By definition of the gradient operator3

∇Φ = ϕϕϕ,1 ⊗ E1 + ϕϕϕ,2 ⊗ E2 + ξ3(λht),1 ⊗ E1 + ξ3(λht),2 ⊗ E2

(
λh+ξ3λh,3

)
t ⊗ E3 ,

= gI ⊗ EI , (4.8)

after neglectingξ3λh,3. As we considerλh equal to the value at mid-surface, the convected
framegI linked to the shell is defined by,

gα = ϕϕϕ,α +ξ3(λht),α and, (4.9)

g3 = λht(ξα) . (4.10)

Furthermore, callingj = det∇Φ, we can compute the Jacobian of the deformation as,

J = detF =
j
j0
, (4.11)

which is written on the mid-surface (ξ3 = 0) as,

J̄ =
j̄
j̄0
. (4.12)

Finally, as the shearing deformations are neglected by assumption in the particular case of
Kirchhoff-Love shells, the unit vectort remains perpendicular to the convected basis at the
mid-surface leading to,

t =
ϕϕϕ,1∧ϕϕϕ,2

‖ϕϕϕ,1∧ϕϕϕ,2‖
. (4.13)

Thus for Kirchhoff-Love shells,

j̄ = (ϕϕϕ,1∧ϕϕϕ,2) ·λht= λh‖ϕϕϕ,1∧ϕϕϕ,2‖ . (4.14)

The gradient of the unit vectort can be derived as [181],

t,α = λh
εβγ3

j̄
ϕϕϕ,βα ∧ϕϕϕ,γ −

λht

j̄
εβγ3

(
ϕϕϕ,βα ∧ϕϕϕ,γ

)
· t , (4.15)

with εi jk the Levi-Civita permutation tensor.

3for a n-order tensorx, ∇x = x,I ⊗EI
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4.1.2 Governing equations of thin bodies

The governing equations of thin bodies are established by integration on the shell volume
of the linear and angular momentum balance equations, respectively

∇ ·σT = ρΦ̈−B , (4.16)

Φ∧∇ ·σT = Φ∧
(
ρΦ̈
)
−Φ∧B , (4.17)

whereσ is the Cauchy stress tensor andB are the external applied forces per unit volume.
We first investigate the integration on the shellS of the linear momentum Eq. (4.16).

Applying the Gauss theorem for the term∇ ·σT , we have
∫

∂S
σ ·nd∂S =

∫
S

(
ρΦ̈−B

)
dS (4.18)

with n the outward unit normal to the body in the current configuration. This value can be
formulated in the reference inertial frame by using the Nanson formula,

d∂Sn = jdΓ∇Φ
−T ·niner , (4.19)

Thus Eq. (4.18) can be formulated in the reference frame,
∫

Γ
jσ (∇Φ)−T ·ninerdΓ =

∫
A×[hmin;hmax]

j
(
ρΦ̈−B

)
dV , (4.20)

whereΓ the external surface in the reference configuration, andniner its unit normal.
Then, the main idea of the thin bodies formulation is to separate the integration on the

inertial volume in an integration on the Cosserat plane representing the mid-surface and on
an integration over the thickness. Toward this end, the surfaceΓ = ∂(A × [hmin;hmax]) can be
divided into three terms (the top and bottom parts and the lateral surface), as depicted on Fig.
4.2 leading to,

∫
∂(A×[hmin;hmax])

jσ (∇Φ)−T ·ninerdΓ =
∫
A

∫ hmax

hmin

j
(

ρ
(

ϕ̈ϕϕ+ξ3
(

¨λht
))

−B
)

dξ3dA ,

(4.21)

or again,

∫ hmax

hmin

∫
∂A

jσ (∇Φ)−T ·νd∂A dξ3

+
∫
A

jσ (∇Φ)−T ·E3dA

]hmax

hmin

=
∫ hmax

hmin

∫
A

j (ρϕ̈ϕϕ−B)dA dξ3 , (4.22)

where identity (4.5) has been used and whereν is defined as the outward unit normal of the
shell in the inertial frame.
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Figure 4.2: The choice for the normal toΓ is illustrated on a 3D representation of the shell in
the inertial frame.

Furthermore, the value of∇Φ
−T can be determined by the definition of the conjugated

frame:gI ·gJ = δIJ, which givesgI = ∇Φ
−TEI . Indeed using (4.8),

gI ·gJ =
(
∇Φ

−TEI) · (∇Φ)EJ = ∇Φ
−1
ki E

I
k∇ΦipEJp =EI

pEJp = δIJ . (4.23)

Thus,

∇Φ
−T ·ν =

(
∇Φ

−TEI)(EI ·ν) = gανα , (4.24)

asν is in the plane4 E1, E2. Finally, Eq. (4.22) can be rewritten, by taking into account Eq.
(4.24) as,

∫
∂A

j̄nαναd∂A =
∫
A

(
j̄ρϕ̈ϕϕ− j̄nA

)
dA , (4.25)

4asν is in the middle plane,dl = j̄dLgανα and thereforen= gανα. Thus,νβ can be computed asn ·ϕϕϕ,β =
δαβνα = νβ
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with the following definitions,

nα =
1
j̄

∫ hmax

hmin

jσgαdξ3 , (4.26)

ρ =
1
j̄

∫ hmax

hmin

jρdξ3 and, (4.27)

nA =
1
j̄

[∫ hmax

hmin

B jdξ3+ jσg3]hmax

hmin

]
. (4.28)

Termnα is the resultant stress and represents the force per unit width on the shell section,ρ
is the density per unit surface of the shell, andnA represents the membrane external loading
per unit surface on the shell.

Applying the divergence theorem on Eq. (4.25) leads to,

∫
A

[
( j̄nα),α + j̄nA

]
dA =

∫
A

j̄ρϕ̈ϕϕdA , (4.29)

and due to the arbitrary choice of the part of the Cosserat plane where the integration has been
performed, the resultant strong form of the linear momentumequation reads,

1
j̄
( j̄nα),α +nA = ρϕ̈ϕϕ . (4.30)

The angular momentum equation can be obtained with the same argumentation. Integra-
tion of Eq. (4.17) on an arbitrary volume with application ofGauss theorem on∇ ·σT yields5,

∫
∂S
Φ∧ (σn)dS =

∫
S

d
dt

(
Φ∧ρΦ̇

)
dS −

∫
S

Φ∧BdS . (4.31)

5By definition of vectorial product,

(∫
S

Φ∧
(
∇ ·σT)dS

)

i
=

∫
S

εi jkΦ j∇l σkldS

This last relation can be integrated by parts,

(∫
S

Φ∧
(
∇ ·σT)dS

)

i
=

∫
S

εi jkΦ jσklnkdS −
∫
S

∇l Φ jεi jkσkldS ,

and, using the Gauss theorem for the first term, as∇l Φ j = δl j and due to the symmetry ofσ one has,

∫
S

Φ∧
(
∇ ·σT)dS =

∫
∂S
Φ∧ (σ ·n)d∂V .
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Then, Eq. (4.19) is used to formulate Eq. (4.31) in the reference inertial frame yielding,∫
∂(A×[hmin;hmax])

(
ϕϕϕ+ξ3λht

)
∧
[
σ j∇Φ

−Tniner
]
dΓ =

∫
A

∫ hmax

hmin

d
dt

[
jρ
(
ϕϕϕ+ξ3λht

)
∧
(

ϕ̇ϕϕ+ξ3
(

˙λht
))]

dξ3dA −
∫
A

∫ hmax

hmin

j
(
ϕϕϕ+ξ3λht

)
∧Bdξ3dA . (4.32)

Furthermore, dividing the integral of the first member according to Fig. 4.2 and taking into
account the identity (4.24) this first term can be written,

∫
∂A

ϕϕϕ∧
[∫ hmax

hmin

jσgαdξ3
]

ναd∂A +
∫

∂A
λht∧

[∫ hmax

hmin

ξ3 jσgαdξ3
]

ναd∂A

+
∫
A

ϕϕϕ∧
[

jσg3]hmax

hmin
+ λht∧

(
ξ3 jσg3)]hmax

hmin

]
dA . (4.33)

Moreover, the inertial term of Eq. (4.32) can be rewritten after distributing the vectorial
product as,

∫
A

∫ hmax

hmin

d
dt

[
jρ(ϕϕϕ∧ ϕ̇ϕϕ)+ jρξ3

(
ϕϕϕ∧

(
˙λht
)
+λht∧ ϕ̇ϕϕ

)
+

jρ(ξ3)2
(

λht∧
(

˙λht
))]

dξ3dA . (4.34)

Then, taking into account Eq. (4.5) and the fundamental properties of vectorial product,
∫
A

∫ hmax

hmin

jρdξ3ϕϕϕ∧ ϕ̈ϕϕdA +
∫
A

∫ hmax

hmin

(ξ3)2 jρdξ3λht∧
(

¨λht
)

dA . (4.35)

Then terms (4.33) and (4.35) can then be substitued in Eq. (4.32) yielding,∫
∂A

[ϕϕϕ∧nα +λht∧m̃α]ναd∂A +
∫
A

ϕϕϕ∧
(

jσg3)]hmax

hmin
dA +

∫
A

λht∧m̃A dA =

∫
A

∫ hmax

hmin

ϕϕϕ∧ ( jρϕ̈ϕϕ)dξ3dA +
∫
A

j̄I pẇtdA −
∫
A

ϕϕϕ∧
∫ hmax

hmin

jBdξ3dA , (4.36)

with the definitions,

m̃α =
1
j̄

∫ hmax

hmin

jξ3σgαdξ3 , (4.37)

m̃A =
1
j̄

[
ξ3 jσg3]hmax

hmin
+

∫ hmax

hmin

ξ3 jBdξ3
]
, (4.38)

Ip =
1
j̄

∫ hmax

hmin

jρξ32
dξ3and, (4.39)

ẇt = λht∧
(

¨λht
)
. (4.40)
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Termm̃α is the resultant torque and represents the moment per unit width on the shell sec-
tion, m̃A represents the bending external loading per unit surface onthe shell,Ip is the polar
moment of mass inertia and ˙wt is the rotational inertia of the shell.

Finally, using the divergence theorem, the definitions (4.26-4.28) and taking into account
the linear momentum equation (4.29), we obtain the expression of the angular momentum
equilibrium,

1
j̄
(λht∧ j̄m̃α),α +ϕϕϕ,α ∧nα +λht∧m̃A = Ipẇt . (4.41)

as an arbitrary part of the Cosserat plane was considered. In this equation the inertial term
Ipẇt can be neglected. Indeed, thin bodies have by definition a thickness small compared
with the other dimensions and thus the inertia of eccentricity is generally negligible. This
assumption is used herein. Moreover, Eq. (4.41) can be written under another form with
regard to the symmetric nature of the stress tensorσ. This tensor can be formulated in the
convected basis as,

σ = σIJ (gI ⊗gJ) . (4.42)

Multiplying both terms bygk one has,

σ ·gK = σIJ (gI ⊗gJ) ·gK = σIJgI
(
gJ ·gK)= σIJgI δJK = σIKgI . (4.43)

This last relation can be vectorially premultiplied bygk leading to,

gK ∧
(
σgK) = σIKgK ∧gI =

1
2

σIK (gK ∧gI +gI ∧gK) = 0, (4.44)

asσIK = σKI . Then, using the definition of the convected basis Eqs. (4.9-4.10) the Eq. (4.43)
reads,

(
ϕϕϕ,α +ξ3(λht),α

)
∧ (σgα)+λht∧

(
σg3) = 0. (4.45)

Afterward, this equation is multiplied byj and integrated on the thickness,

∫ hmax

hmin

j
(

ϕϕϕ,α +ξ3(λht),α

)
∧ (σgα)dξ3+

∫ hmax

hmin

jλht∧
(
σg3)dξ3 = 0. (4.46)

Finally, using definitions (4.26) and (4.37) and the invariance ofϕϕϕ,α andt with the thickness
one has,

ϕϕϕ,α ∧ j̄nα +(λht),α ∧ j̄m̃α +λht∧ j̄l = 0, (4.47)

with the following definition of the resultant out-of-planestress,

l =
1
j̄

∫ hmax

hmin

jσg3dξ3 . (4.48)
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Finally, Eq. (4.47) can be incorporated in Eq. (4.41), whichbecomes,

λht∧ ( j̄m̃α),α −λht∧ j̄l+λht∧ j̄m̃A = 0, (4.49)

or again, ifλ is an undefined pressure,

( j̄m̃α),α − j̄l+ j̄m̃A + j̄λt = 0. (4.50)

The set of Eqs. (4.30) and (4.50) constitutes the strong formulation of the problem, which
is the starting point to derive the full-DG weak form presented in Section 4.2. This set of
equations has to be completed by appropriate boundary conditions. Toward this end, the
boundary of the mid-plane∂A , where the boundary conditions are applied, is decomposed
into four parts verifying,

∂TA ∩∂MA = 0 and ∂TA ∪∂MA = ∂A , (4.51)

∂UA ∩∂NA = 0 and ∂UA ∪∂NA = ∂A . (4.52)

These four parts are,

(i) ∂MA , the part of∂A where the applied torque is constrained to¯̃m:

m̃ανα = ¯̃m ∀
(
ξ1, ξ2) ∈ ∂MA , (4.53)

(ii) ∂NA , the part of∂A where the tractions are constrained to ¯n:

nανα = n̄ ∀
(
ξ1, ξ2) ∈ ∂NA , (4.54)

(iii) ∂TA , the part of∂A where the direction of the mid-surfacet is constrained tōt :

t= t̄ ∀
(
ξ1, ξ2) ∈ ∂TA , (4.55)

(iv) ∂UA , the part of∂A where the positions are constrained toϕ̄ϕϕ:

ϕϕϕ = ϕ̄ϕϕ ∀
(
ξ1, ξ2) ∈ ∂UA . (4.56)

4.2 Full-DG formulation of Kirchhoff-Love shells

In this section, a framework for the numerical approximation of the shell equations de-
scribed in Section 4.1.2 based on a discontinuous polynomial approximation of the unknown
fieldϕϕϕ is suggested. In this formulation, the resulting discontinuities in the surface mappingϕϕϕ
and in the surface directort are accounted for using a new full discontinuous Galerkin formu-
lation. Let us remind that ast= t(ϕϕϕ) through Eq. (4.13) the developments leads to a one-field
formulation.
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The mid-surfaceA is approximated by a discretizationAh into finite-elementsAe. Given
Āe as the union of the open domainAe with its boundary∂Ae, we haveA ≃ Ah =

⋃
eĀe.

Furthermore, the boundary∂Ae of an elementAe can be either common with the boundary of
Ah

∂UAe = ∂Ae∩∂UAh , ∂TAe = ∂Ae∩∂TAh ,

∂MAe = ∂Ae∩∂MAh , and∂NAe = ∂Ae∩∂NAh , (4.57)

or shared with another finite element and is then part of the interior boundary∂IAh,

∂IAe = ∂Ae\∂Ah
= ∂Ae∩∂IAh , with ∂IAh =

⋃
e

∂Ae\∂Ah
. (4.58)

Then, instead of seeking the exact solutionϕϕϕ, a polynomial approximationϕϕϕh constitutes
the solution to the finite element problem. In this work, a discontinuous polynomial approx-
imation is considered, leading to a discretization with discontinuous elements. Therefore the
continuity of the FE solution has to be ensured weakly.

The purpose of this section is to establish a weak form of the problem stated in the strong
form by the set of equations (4.30) and (4.50) for an approximation ϕϕϕh. Multiplying Eq.
(4.30) by a test functionδϕϕϕ and equation (4.50) by the corresponding variation of unit vector
λhδt= λht(δϕϕϕ), adding both equations and integrating onAh state the problem as findingϕϕϕh

such that,

∑
e

∫
Āe

ρ̄ϕ̈ϕϕh ·δϕϕϕdA = ∑
e

∫
Āe

( j̄nα (ϕϕϕh)),α ·δϕϕϕdA +

∑
e

∫
Āe

[
( j̄m̃α (ϕϕϕh)),α − j̄l

]
·δtλhdA

+
∫
Ah

nA ·δϕϕϕ j̄dA +
∫
Ah

m̃A ·δtλh j̄dA . (4.59)

The kinematically admissible virtual fieldsδϕϕϕ andδt are belonging to the same manifolds as
ϕϕϕh andt respectively, but they satisfy the essential boundary conditions δϕϕϕ = 0 on∂UAh and
δt= 0 on∂TAh.

Notice that the chosen variation of the unit vector omits thevariation ofλh. This equation,
governing the change of the thickness, is replaced by the enforcement of the plane stress state
when solving the material behavior as described in Section 4.3.

Integration by parts of these integrals, followed by the application of the Gauss theorem
in the Cosserat plane, leads to

∑
e

ae
d(ϕϕϕh,δϕϕϕ) = −∑

e
ae

n(ϕϕϕh,δϕϕϕ)+∑
e

∫
∂Ae

j̄nα (ϕϕϕh) ·δϕϕϕναdA −

∑
e

ae
m(ϕϕϕh,δϕϕϕ)+∑

e

∫
∂Ae

j̄m̃α (ϕϕϕh) ·δtλhναdA +

∑
e

ae
s(ϕϕϕh,δϕϕϕ)−∑

e

∫
∂Ae

j̄l ·
∫

α
δtλhdα

′
ναdA + (4.60)

bext(ϕϕϕh,δϕϕϕ) .
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with the following forms,

bext(ϕϕϕh,δϕϕϕ) =
∫
Ah

nA ·δϕϕϕ j̄dA +
∫
Ah

m̃A ·δtλh j̄dA , (4.61)

ae
d(ϕϕϕh,δϕϕϕ) =

∫
Ae

ρ̄ϕ̈ϕϕh ·δϕϕϕdA , (4.62)

ae
n(ϕϕϕh,δϕϕϕ) =

∫
Āe

j̄nα (ϕϕϕh) ·δϕϕϕ,αdA , (4.63)

ae
m(ϕϕϕh,δϕϕϕ) =

∫
Āe

j̄m̃α (ϕϕϕh) · (δtλh),α dA ,and (4.64)

ae
s(ϕϕϕh,δϕϕϕ) =

∫
Āe

( j̄l),α ·
∫

α
δtλhdα

′
dA ≈ 0. (4.65)

In the last Eq. (4.65), the integration by parts of the resultant out-of-plane stress is written
in an unusual manner. Indeed, it is performed onδtλh in place of( j̄l),α to ensure weakly
the out-of plane continuity at the interfaces as discussed in what follows. Also, the notations
a(ϕϕϕh,δϕϕϕ) reduce to bilinear forms on the case of small deformations and linear behavior as it
will be shown in Section 4.4.2. Finallybext(ϕϕϕh,δϕϕϕ) depends onϕϕϕh throughλh. In the linear
case, this term reduces tobext(δu) as shown in Section 4.4.2. For the time being they are
non-linear expressions.

As continuity is not ensured across the internal boundary, jumpJ•K and mean〈•〉 operators
are defined, as

J•K = •+−•− , and 〈•〉= 1
2

(
•++•−

)
. (4.66)

In these relations the bullets represent generic vector fields formulated in the inertial frame as,

•± = lim
ε→0+

•
(
ξ1± εζ1,ξ2± εζ2) , (4.67)

whereζα are the components of the outer unit normalζ of Ae in the basis(E1,E2). If
definition (4.66) of the jump operator is not independent of the choice of the+ and− sides
of an element edge, when this jump is used in combination withthe outward unit normal of
the− elementν−, the formulation becomes consistent and independent on this choice. The
extension of these definitions to the boundary∂NAe is straightforward,

JϕϕϕK = ϕ̄ϕϕ−ϕϕϕ, JδϕϕϕK =−δϕϕϕ and 〈nα〉= nα on ∂UA , (4.68)

JtK = t̄− t, JδtK =−δt and 〈m̃α〉= m̃α on ∂TA . (4.69)

From these definitions and asδϕϕϕ = 0 on∂UAh andδt= 0 on∂TAh, the boundary terms of
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equation (4.60) are rewritten

∑
e

∫
∂Ae

j̄nα (ϕϕϕh) ·δϕϕϕναdA =

∫
∂NAh

j̄nα (ϕϕϕh) ·δϕϕϕναdA −
∫

∂IAh

J j̄nα (ϕϕϕh) ·δϕϕϕKν−α dA , (4.70)

∑
e

∫
∂Ae

j̄m̃α (ϕϕϕh) ·δtλhναdA =

∫
∂MAh

j̄m̃α (ϕϕϕh) ·δtλhναdA −
∫

∂IAh

J j̄m̃α (ϕϕϕh) ·δtλhKν−α dA , and (4.71)

−∑
e

∫
∂Ae

j̄l ·
∫

α
δtλhdα

′
ναdA =

−
∫

∂MAh

j̄l ·
∫

α
δtλhdα

′
ναdA +

∫
∂IAh

s
j̄l ·

∫
α

δtλhdα
′
{

ν−α dA . (4.72)

At this stage, the main idea of DG methods, which consists in the substitution of the jumps
by consistent numerical fluxesh, can be applied. Following the same argumentation as for
the beam case, see Section 3.2, as the stress tensor is continuous between two elements for
the exact solution,J j̄nα (ϕϕϕh) ·δϕϕϕKν−α can be replaced byhJδϕϕϕK, and similarly for the other
terms. The traditional average fluxes are considered herein,

h
(
( j̄nα)

+
, ( j̄nα)

−
, ν−α

)
= 〈 j̄nα〉ν−α , (4.73)

h
(
( j̄λhm̃

α)
+
, ( j̄λhm̃

α)
−
, ν−α

)
= 〈 j̄λhm̃

α〉ν−α , and (4.74)

h
(
( j̄l)+ , ( j̄l)− , ν−α

)
= 〈 j̄l〉ν−α . (4.75)

These ones can be injected in equations (4.70 - 4.72) and using (4.53-4.54), Eq. (4.60) be-
comes,

∑
e

ae
d(ϕϕϕh,δϕϕϕ) = −∑

e
ae

n(ϕϕϕh,δϕϕϕ)−∑
e

ae
m(ϕϕϕh,δϕϕϕ)+∑

e
ae

s(ϕϕϕh,δϕϕϕ)−

∑
s

as
nI1(ϕϕϕh,δϕϕϕ)−∑

s
as

mI1(ϕϕϕh,δϕϕϕ)+∑
s

as
sI1(ϕϕϕh,δϕϕϕ)+

bext(ϕϕϕh,δϕϕϕ)+bbound(ϕϕϕh,δϕϕϕ) . (4.76)

with,

as
nI1(ϕϕϕh,δϕϕϕ) =

∫
s
〈 j̄nα〉 · JδϕϕϕKν−α d∂Ae, (4.77)

as
mI1(ϕϕϕh,δϕϕϕ) =

∫
s
〈 j̄λhm̃

α〉 · JδtKν−α d∂Ae, (4.78)

as
sI1(ϕϕϕh,δϕϕϕ) =

∫
s
〈 j̄l〉 ·

s∫
α

δtλhdα
′
{

ν−α d∂Ae ≈ 0, and (4.79)

bbound(ϕϕϕh,δϕϕϕ) =
∫

∂NAh

j̄n̄ ·δϕϕϕdA +
∫

∂MAh

j̄ ¯̃m ·δtλhdA . (4.80)
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The identity (4.79) results from the Kirchhoff-Love and isotropic behavior assumptions lead-
ing to l≈ 0.

Equation (4.76) describes a consistent weak form of the problem but as a discontinuous
polynomial approximation is considered, the continuity isnot ensured at element boundaries,
and the solution is not unique. The weak continuities (C0 andC1) enforcement can be achieved
with the same argumentation as for beams see Section 3.2, which results into a compatibility
equation,

0 =
∫

∂IAh∪∂UAh

JϕϕϕK ·h
(

δ( j̄nα)
+
, δ( j̄nα)

−
, ν−α

)
dA

+
∫

∂IAh∪∂TAh

Jt(ϕϕϕh)K ·h
(

δ( j̄λhm̃
α)

+
, δ( j̄λhm̃

α)
−
, ν−α

)
dA

+
∫

∂IAh

s∫
α

λhtdα
′
{
·h
(

δ( j̄l)+ , δ( j̄l)− , ν−α
)

dA . (4.81)

In this last expression,δ( j̄nα), δ( j̄λhm̃
α) and δ( j̄l) have to be defined. As it has been

demonstrated in previous works for non-linear solid mechanics [181,182,183,184], these ex-
pressions would actually depend on the tangent moduli of theconstitutive models asδx =
∂x
∂ϕϕϕ · δϕϕϕ. But, since the purpose of this term is to enforce continuity while being energetically
consistent with (4.76), another form of the flux can be chosen, as long as the consistency
condition remains satisfied. Ideally these terms should, when linearized, lead to a symmetric
formulation as suggested by L. Noels [181] for theC0/DG formulation. Thus, the compat-
ibility fluxes are obtained by linearization ofδ( j̄nα) andδ( j̄λhm̃

α) (see Appendix B.1 for
details),

δ( j̄nα) =
j̄0
2
H

αβγδ
n

(
δϕϕϕ,γ ·ϕϕϕh,δ +ϕϕϕh,γ ·δϕϕϕ,δ

)
ϕϕϕh,β + j̄nα ·ϕϕϕh

,βδϕϕϕ,β

+
j̄0
λh

λβ
µH

αµγδ
m

(
δϕϕϕ,γ · t,δ +ϕϕϕh,γ ·δt,δ

)
ϕϕϕh,β

+ j̄λhm̃αµ

(
δt,µ ·ϕϕϕh

,β − λζ
µ

λh
ϕϕϕh

,β ·δϕϕϕ,ζ

)
ϕϕϕh,β , (4.82)

δ( j̄λhm̃
α) = j̄0H

αβγδ
m

(
δϕϕϕ,γ · t,δ +ϕϕϕh,γ ·δt,δ

)
ϕϕϕh,β + j̄λhm̃

α ·ϕϕϕh
,βδϕϕϕ,β , (4.83)

where6 m̃αµ = m̃α ·ϕϕϕ,µ is the component of ˜mα in the convected basis,λβ
µ = λht,µ ·ϕϕϕ,β

characterizes the curvature of the shell and where the linearized membraneH n and bending

6Notice thatϕϕϕ,µ is the conjugated basis toϕϕϕ,µ with an abuse of notation andϕϕϕ,µ = gµ.
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Hm stiffness result from an isotropic assumption,

H
αβγδ

n =
E (hmax−hmin)

1−ν2

[
νϕϕϕ,α

0 ·ϕϕϕ,β
0 ϕϕϕ,γ

0 ·ϕϕϕ,δ
0 +

1
2
(1−ν)ϕϕϕ,α

0 ·ϕϕϕ,γ
0 ϕϕϕ,δ

0 ·ϕϕϕ,β
0 +

1
2
(1−ν)ϕϕϕ,α

0 ·ϕϕϕ,δ
0 ϕϕϕ,γ

0 ·ϕϕϕ,β
0

]
, (4.84)

H
αβγδ

m =
E (hmax−hmin)

3

12(1−ν2)

[
νϕϕϕ,α

0 ·ϕϕϕ,β
0 ϕϕϕ,γ

0 ·ϕϕϕ,δ
0 +

1
2
(1−ν)ϕϕϕ,α

0 ·ϕϕϕ,γ
0 ϕϕϕ,δ

0 ·ϕϕϕ,β
0 +

1
2
(1−ν)ϕϕϕ,α

0 ·ϕϕϕ,δ
0 ϕϕϕ,γ

0 ·ϕϕϕ,β
0

]
. (4.85)

Finally, as by assumptionl ≈ 0, we can takeδ( j̄λhl) = 0 in order to keep a linearized sym-
metric formulation. However, doing so remove the constraint on the continuity ofϕϕϕh ·t, which
will be enforced using the quadrature stabilizing terms.

Introduction of equations (4.82) and (4.83) in equation (4.76) leads to

ae
d(ϕϕϕh,δϕϕϕ) = −∑

e
ae

n(ϕϕϕh,δϕϕϕ)−∑
e

ae
m(ϕϕϕh,δϕϕϕ)+∑

e
ae

s(ϕϕϕh,δϕϕϕ)

−∑
s

as
nI1(ϕϕϕh,δϕϕϕ)−∑

s
as

mI1(ϕϕϕh,δϕϕϕ)+∑
s

as
sI1(ϕϕϕh,δϕϕϕ)

−∑
s

as
nI2(ϕϕϕh,δϕϕϕ)−∑

s
as

mI2(ϕϕϕh,δϕϕϕ)+∑
s

as
sI2(ϕϕϕh,δϕϕϕ)

+bext(ϕϕϕh,δϕϕϕ)+bbound(ϕϕϕh,δϕϕϕ) , (4.86)

with the forms,

as
nI2(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK · 〈δ( j̄nα)〉ν−α d∂Ae, (4.87)

as
mI2(ϕϕϕh,δϕϕϕ) =

∫
s
Jt(ϕϕϕh)K · 〈δ( j̄λhm̃

α)〉ν−α d∂Ae, and (4.88)

as
sI2(ϕϕϕh,δϕϕϕ) =

∫
s

s∫
α

λhtdα′
{
· 〈δ( j̄l)〉ν−α d∂Ae ≈ 0. (4.89)

Although this formulation is consistent (consistency results from the introduction of con-
sistent fluxes) andϕϕϕh ·ϕϕϕ,α as well ast ·ϕϕϕ,α continuity are weakly ensured, the stability and
continuity inϕϕϕh ·t are not ensured. Moreover, for elliptic problem DG formulations are unsta-
ble without the introduction of stabilization term. Thus, we stabilize the formulation thanks
to extra quadratic terms as it is suggested in [181, 185] and as presented in Chapter 3 for
Euler-Bernoulli beams. Such an introduction of interior penalty terms is usual for the DG
method applied to solid mechanics (see [16, 97, 139, 140, 182, 183] among others). Although
the DG method is now slightly dissipative, this does not impact on the numerical accuracy
as the method remains consistent and converges toward the solution with an optimal rate.
These terms depend on dimensionless stabilization parametersβi , which are sufficiently large
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constants, and which are independent of the mesh and material properties. The mesh indepen-
dence is ensured by the introduction of the characteristic element sizehs in the stability terms.
By inspection of Eqs. (4.77-4.79) and (4.81) the quadratic terms can be deduced as,

as
nI3(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK ·ϕϕϕh,γν

−
δ

〈
β2H

αβγδ
n j̄0
hs

〉
JδϕϕϕK ·ϕϕϕh,βν−α d∂Ae+

∫
s
JϕϕϕhK ·ϕϕϕh,γν

−
δ

〈
λβ

µ
β2H

αµγδ
m j̄0
hs

〉
JδtK ·ϕϕϕh,βν−α d∂Ae+

∫
s
JtK ·ϕϕϕh,γν

−
δ

〈
λβ

µ
β2H

αµγδ
m j̄0
hs

〉
JδϕϕϕK ·ϕϕϕh,βν−α d∂Ae, (4.90)

as
mI3(ϕϕϕh,δϕϕϕ) =

∫
s
Jt(ϕϕϕh)K ·ϕϕϕh,γν

−
δ

〈
β1H

αβγδ
m j̄0
hs

〉
Jδt(ϕϕϕh)K ·ϕϕϕh,βν−α d∂Ae, (4.91)

as
sI3(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK · t(ϕϕϕh)ν−β

〈
β3H

αβ
s j̄0

hs

〉
JδϕϕϕK · t(ϕϕϕh)ν−α d∂Ae, (4.92)

with the shearing stiffness,

H
αβ

s = µ(hmax−hmin)
A′

A
ϕϕϕ,α

0 ·ϕϕϕ,β
0 . (4.93)

In this last expressionA′/A characterizes the reduced shear area. The expressions of two
first terms (4.90-4.91) result from (4.82-4.83). Note that (4.90) remains symmetric. The
third stability termas

sI3(ϕϕϕh,δϕϕϕ) (4.92) is obtained by considering a quadratic form coming
from expression ofas

sI1(ϕϕϕh,δϕϕϕ) (4.79) andas
sI2(ϕϕϕh,δϕϕϕ) (4.89) before assuming Kirchhoff-

Love state, yielding

as
sI3(ϕϕϕh,δϕϕϕ)′ =

∫
s

{s∫
µ

λhtIg
I
hdµ′

{
·ϕϕϕh,αν−µ

〈
β3H

αβ
s j̄0

hs

〉

ϕϕϕh,β ·
s∫

ν
λhδtJg

J
hdν′

{
ν−ν

}
d∂Ae. (4.94)

In this expression we use the notationt= tIgI . However the presence of a primitive
∫

µ in this
expression leads to an implementation issue. This term has to (weakly) ensure the compati-
bility of the deflection normal to the mid-surface and therefore a consistent approximation of
this term can be assumed as long as this enforcement remains satisfied. Toward this end, we
suggest to neglect curvature effect, leading to equation (4.92) as presented in Appendix B.2.
Note that under this hypothesis the two last terms ofas

nI3(ϕϕϕh,δϕϕϕ) (4.90) can and are also be
neglected. Finally in Eqs. (4.90-4.92), expressionJϕϕϕhK ·ϕϕϕ,γ means the scalar product of the
jump ofϕϕϕh at interface with the vectorϕϕϕh,γ defined at the interface element which is typically
the average ofϕϕϕh

−
,γ andϕϕϕh

+
,γ , see Section 4.5.
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These three quadratic terms depend on dimensionless stabilization parametersβi that have
to be chosen large enough to stabilize the weak statement of the problem. They are indepen-
dent of the geometry and of material properties by construction. Therefore, after adding such
contributions, the final weak statement of the problem is finding ϕϕϕh such that,

a(ϕϕϕh,δϕϕϕ) = bext(ϕϕϕh,δϕϕϕ)+bbound(ϕϕϕh,δϕϕϕ) , (4.95)

for all δϕϕϕ kinematically admissible and with,

a(ϕϕϕh,δϕϕϕ) = ∑
e
(ae

d(ϕϕϕh,δϕϕϕ)+ae
n(ϕϕϕh,δϕϕϕ)+ae

m(ϕϕϕh,δϕϕϕ))+

∑
s
(as

nI(ϕϕϕh,δϕϕϕ)+as
mI(ϕϕϕh,δϕϕϕ)−as

sI(ϕϕϕh,δϕϕϕ)) , (4.96)

as
nI(ϕϕϕh,δϕϕϕ) = as

nI1(ϕϕϕh,δϕϕϕ)+as
nI2(ϕϕϕh,δϕϕϕ)+as

nI3(ϕϕϕh,δϕϕϕ) , (4.97)

as
mI(ϕϕϕh,δϕϕϕ) = as

mI1(ϕϕϕh,δϕϕϕ)+as
mI2(ϕϕϕh,δϕϕϕ)+as

mI3(ϕϕϕh,δϕϕϕ) , and (4.98)

as
sI(ϕϕϕh,δϕϕϕ) = as

sI3(ϕϕϕh,δϕϕϕ) . (4.99)

Furthermore, if continuous test and trial functions are used, JϕϕϕhK = JδϕϕϕK = 0 and for a
quasi-static problem (i.e. ae

d(ϕϕϕh,δϕϕϕ) = 0), equation (4.95) simplifies into

a(ϕϕϕh,δϕϕϕ) = ∑
e
(ae

n(ϕϕϕh,δϕϕϕ)+ae
m(ϕϕϕh,δϕϕϕ))+∑

s
as

mI(ϕϕϕh,δϕϕϕ)

= bext(ϕϕϕh,δϕϕϕ)+bbound(ϕϕϕh,δϕϕϕ) , (4.100)

which is identical to the non-linearC0/DG formulation presented by L. Noels [181].
The final resulting forma(ϕϕϕh,δϕϕϕ) (4.96) of the problem contains the classical terms of

shells theory,ae
n(ϕϕϕh,δϕϕϕ) andae

m(ϕϕϕh,δϕϕϕ), while the sum ons is a collection of boundary inte-
grals resulting from the inter-element discontinuities. They enforce respectively

(i) the consistency of the formulation for the termsas
nI1(ϕϕϕh,δϕϕϕ) andas

mI1(ϕϕϕh,δϕϕϕ),

(ii) the compatibility and the symmetric nature of the Jacobian for the termsas
nI2(ϕϕϕh,δϕϕϕ)

andas
mI2(ϕϕϕh,δϕϕϕ), and,

(iii) the the compatibility and the stability for the termsas
nI3(ϕϕϕh,δϕϕϕ), as

mI3(ϕϕϕh,δϕϕϕ) and for
the termas

sI(ϕϕϕh,δϕϕϕ).

Although termsas
nI2(ϕϕϕh,δϕϕϕ) andas

mI2(ϕϕϕh,δϕϕϕ) can be omitted without compromising the sta-
bility, these terms are mandatory to get an optimal convergence rate in theL2-norm, see
Section 4.4.

The weak form (4.95) is a general large deformations formulation which can be used
whatever the constitutive behavior. This weak form is completed by the equation describing
the constitutive behavior.
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4.3 Constitutive behavior

This work considers three different constitutive behaviors. Two assume a pure elastic
response of the material and are used to validate the method on some numerical benchmarks.
The first one is the Hooke law linking stresses to deformations under a linear small strain
assumption. This law can be generalized to non-linear largedeformations and is then called
Neo-Hookean law. Finally, aJ2-flow elasto-plastic law can be considered to take into account
the plasticity effects for finite deformations.

4.3.1 Hooke law

The Hooke law assumes a linear elastic response between the deformation and stress ten-
sors. Furthermore, this law considers a small displacementfieldu, leading to,

ϕϕϕ = ϕϕϕ0+u and, (4.101)

t(u) = t0+∆t . (4.102)

with,

∆t = εαβ3

[ϕϕϕ0,α ∧uβ

j̄0
+ t0u,α ·

t0∧ϕϕϕ0,β

j̄0

]
, (4.103)

whose the gradient is formulated as,

∆t,γ =
εαβ3t0,γ

j̄0
u,α ·

(
t0∧ϕϕϕ0,β

)
−

εαβ3t0

j̄0
u,αγ ·

(
t0∧ϕϕϕ0,β

)
+

εαβ3t0

j̄0
u,α ·

[
t0∧ϕϕϕ0,βγ + t0,γ ∧ϕϕϕ0,β

]
−

εαβ3t0

j̄0
u,α ·

(
t0∧ϕϕϕ0,β

) εηµ3

j̄0
t0 ·
(
ϕϕϕ0,ηγ ∧ϕϕϕ0,µ

)
+

εαβ3

j̄0

[
ϕϕϕ0,αγ ∧u,β +ϕϕϕ0,α ∧u,βγ

]
−

εαβ3

j̄0

[
ϕϕϕ0,α ∧u,β

εηµ3

j̄0
t0 ·
(
ϕϕϕ0,ηγ ∧ϕϕϕ0,µ

)]
. (4.104)

The last relation is a first order approximation of the director unit vector, under Kirchhoff-
Love assumption Eq. (4.13), where the symbolεαβ3 is the Levi-Civita permutation tensor.
Such an approximation can be used as the second and higher order terms are negligible in the
linear range.

The resultant stresses Eqs. (4.26), (4.37) and (4.48) can been decomposed into membrane,
shearing and bending stresses in the mid-surface convectedbasis, following [233],

nα = nαβϕϕϕ,β +qαλht=
(

ñαβ +λβ
µm̃αµ

)
ϕϕϕ,β +λhqαt , (4.105)

m̃α = m̃αβϕϕϕ,β + m̃3αλht , and (4.106)

l = lαϕϕϕ,α + l3λht=
(
l̃α +λα

µm̃3µ)ϕϕϕ,α + l3λht . (4.107)
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Under small deformation assumption, these equations read,

nα = nαβϕϕϕ0,β +qαt=
(

ñαβ +λβ
µm̃αµ

)
ϕϕϕ0,β +λhqαt , (4.108)

m̃α = m̃αβϕϕϕ0,β + m̃3αt , and (4.109)

l = lαϕϕϕ0,α + l3t=
(
l̃α +λα

µm̃3µ)ϕϕϕ0,α + l3t . (4.110)

In these expressions, ˜nαβ is the membrane stress resultant (defined in Appendix B.3), ˜mαβ

is the stress couple resultant,lα is the out-of-plane stress resultant, ˜mα3 is the out-of-plane
stress couple,qα is the transverse shear stress andλβ

µ = λht,µ ·ϕϕϕ,β ≈ t0,µ ·ϕϕϕ0,β characterizes
the curvature of the shell. Due to the symmetry of the Cauchy stress tensor and asλh,α is
neglected, one hasqα = lα −λα

µm̃3µ = l̃α, see Appendix B.3 for details. Also,l̃α ≃ lα, asm̃3µ

vanishes for thin plates.
Similarly, the deformations are also decomposed into membraneε, shearingδ and torque

ρ strain components,

εαβ =
1
2

ϕϕϕ,α ·ϕϕϕ,β −
1
2

ϕϕϕ0,α ·ϕϕϕ0,β ≈ 1
2

ϕϕϕ0,α ·u,β +
1
2
u,α ·ϕϕϕ0,β , (4.111)

δα =
u,α · t0+∆t ·ϕϕϕ0,α

2
≈ 0 and, (4.112)

ραβ = ϕϕϕ,α · t,β −ϕϕϕ0,α · t0,β

≈ ϕϕϕ0,αβ · t0
εµη3

j̄0
u,µ · (ϕϕϕ0,η ∧ t0)

+
εµη3

j̄0
u,µ ·

(
ϕϕϕ0,αβ ∧ϕϕϕ0,η

)
−u,αβ · t0 . (4.113)

Then, for thin bodies this law can be written in the plane-stress state by prescribing the
value ofε33 in the mid-surface (in place of an iterative procedure on theintegration points of
the thickness, see Section 4.3.2),

λh = 1+ ε33 = 1− ν
1−ν

ϕϕϕ,α
0 ·ϕϕϕ,β

0

(
1
2

ϕϕϕ,α ·ϕϕϕ,β −
1
2

ϕϕϕ0,α ·ϕϕϕ0,β

)

≈ 1− ν
2(1−ν)

ϕϕϕ,α
0 ·ϕϕϕ,β

0

(
u,α ·ϕϕϕ0,β +u,β ·ϕϕϕ0,α

)
. (4.114)

Then, usingεεε = εαβϕϕϕ,α
0 ⊗ϕϕϕ,β

0 + ε33ϕϕϕ,α
0 ⊗ϕϕϕ,β

0 + δα
[
ϕϕϕ,α

0 ⊗ t0+ t0⊗ϕϕϕ,α
0

]
+ ραβξ3ϕϕϕ,α

0 ⊗ϕϕϕ,β
0

and usingσ = H : εεε with H the usual Hooke tensor, the elastic constitutive relationsbetween
the effective (linearized) stresses and strains read, [233]

ñαβ = H αβγδ
n εγδ , (4.115)

m̃αβ = H αβγδ
m ργδ , and (4.116)

l̃α = H
αβ

s γβ ≈ 0, (4.117)

whereγ = 2δ and whereH n, Hm andH αβ
s are respectively, the linearized membrane, bending

and shearing stiffness given by Eqs. (4.84), (4.85) and (4.93).
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4.3.2 Hyperelastic based constitutive behaviors

A hyperelastic approach can be used to link the stresses to the finite deformations. Such
an approach assumes that the linear part of the material derives from an internal potentialW,
which depends only on the right Cauchy tensor defined by,

C = FTF = gi ·g jg
i
0⊗g

j
0 . (4.118)

Thus, depending on the potential, the material response will be different. In this work two
different potentials will be considered regarding the application (either elastic Neo-Hookean
or elasto-plastic). For both laws, the Kirchhoff stress tensor τ = Jσ can be related to the
deformation gradient thanks to,

τ = ∂W
∂F FT = PFT . (4.119)

Furthermore, as plane stress state is assumed in the shell convected basis, it is convenient to
formulate Eq. (4.119) in this basis,

τ = τi jgi ⊗g j = 2
∂W
∂gi j

gi ⊗g j . (4.120)

As λh,α is neglected, ast ·t,α = 0 (t ·t= 1) and ast ·ϕϕϕ,α (Kirchhoff-Love assumption),g3 ·
gα = 0 with regard to the definitions (4.9-4.10). From the definition (4.118), for an isotropic
behavior, this implies,

τα3 = τ3α = 0, (4.121)

for elasticity as well as for J2-plasticity. Therefore the plane stress state can be ensured by
enforcing only,

τ33 = 2
∂W
∂g33

= 0, (4.122)

all across the shell thickness. This requirement is numerically achieved by a discretization of
the thickness with 11 integration points following a Simpson integration rule. Then, the local
λp

h stretch is determined at each point using Newton-Raphson iterations satisfying locally the
plane stress requirementτ33 = 0. Finally, the global thickness stretchλh is determined by the
Simpson integration on the 11 local valuesλp

h. Note that formally, because of the bending
effect,λh has a dependence alongξ3 but we assume it constant in the previous development
and equal to the value at mid-surface.

Onceτ known, the reduced stress and torque are respectively computed from (4.26) and
(4.37), asσ = τ

J andl= 0.



4.3 Constitutive behavior 119

Neo-Hookean law

The neo-Hookean constitutive model considers an elastic response with the internal po-
tential,

W =

(
K0

2
− µ0

3

)
log2J−µ0 logJ+

µ0

2
(trC−3) , (4.123)

whereK0 andµ0 are respectively the equivalent bulk and shear moduli of thematerial. Using
this potential in Eq. (4.119) the Kirchhoff stress tensor reads,

τ i j =

(
K0−

2
3

µ0

)
logJgi ·g j −µ0

(
gi ·g j −gi

0 ·g
j
0

)
. (4.124)

Finally, the tangent modulus in the convected basis reads,

C
i jkl =

(
K0−

2
3

µ0

)
gi ·g j gk ·gl −

[(
K0−

2
3

µ0

)
logJ−µ0

](
gi ·gk g j ·gl +gi ·gl g j ·gk

)
. (4.125)

J2-flow elasto-plastic law

In theJ2-flow elasto-plastic model, lengthy described in [74, 76], the plastic behavior of
the material is taken into account through theJ2-flow theory. In this work we restrict the
model to isotropic linear hardening. The model is based on a hyperelastic formulation, which
implies the assumption of a multiplicative decomposition of the deformation gradientF into
an elastic partFe and a plastic partFp i.e. ,

F = Fe ·Fp . (4.126)

As W should only depend on the elastic deformation, the elastic right Cauchy strain tensor
is considered in the internal energy, defined byCe = FeTFe. Using these definitions the first
Piola-Kirchhoff stress tensor can be written

P =
∂W
∂F

= 2F ·
[
(Fp)−1 ∂W (Ce)

∂Ce (Fp)−T
]
. (4.127)

Thus, the internal energy depends only on the elastic Cauchy tensor and a bi-logarithmic
potential,e.g., reads,

W (Ce) =
K0

2
log2J+

µ0

4
[logCe]dev: [logCe]dev (4.128)

whereK0 andµ0 are respectively the bulk and shear moduli of material and with [logCe]dev

the deviatoric part of logCe.
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In order to obtain the elastic and plastic parts of the deformation gradient in equation
(4.126), theJ2-flow theory, expressed in terms of the von Mises stress, is used herein. Toward
this end, the Cauchy stress tensor is computed as,

σ = p′I +J−1Fe
[
2µ0Ce−1 · (log

√
Ce)dev

]
FeT (4.129)

where p′ = (K logJ)/J is the pressure, and where the second term on the right hand side
of equation (4.129) is the deviatoric part of the Cauchy stress, which allows computing the

equivalent von Mises stressσeq=
√

3
2σ

dev : σdev. According toJ2 elastic-plasticity, the von
Mises stress criterion reads

f = σeq−R(p)−σ0
Y 6 0, (4.130)

where f is the yield surface,σ0
Y is the initial yield stress,R(p) > 0 is the isotropic harden-

ing stress, and wherep is an internal variable characterizing the irreversible behavior, as the
equivalent plastic strain in small deformations. Practically the yield criterion can also be writ-
ten in terms of the Kirchhoff tensorτ = Jσ. In case off = 0, Equation (4.130) is completed
by the normal plastic flow, which gives the increment of plastic deformation gradient between
time step “n” to “ n+1”, and reads

{
Fp

n+1 = exp(△pNp)Fp
n

Np = ∂ f
∂σ = 3

2
σdev

σeq

. (4.131)

Practically, the normal of the yield surfaceNp is calculated from the elastic predictor. Details
can be found in reference [74].

4.4 Numerical properties

In this section, the numerical properties of consistency, stability and convergence rate of
the full discontinuous Galerkin formulation of Kirchhoff-Love shells Eq. (4.95) are demon-
strated. In particular it is proved that the suggested method has an optimal convergence rate
in the energy norm as well as in theL2-norm. The properties of stability and convergence are
proved after linearization for the bilinear form as it is usually done in the non-linear range.

4.4.1 Consistency

The proof of consistency follows from the recourse to consistent numerical fluxes in the
formulation. Indeedϕϕϕ, the exact solution of the physical problem, isC 2(Ah). Thus, the jumps
of displacements and of normal unit vectors are identicallyequal to 0 on∂IA . Nevertheless, as
discontinuous shape functions have been considered, the virtual fieldsJδϕϕϕK andJδtK remain
discontinuous. On the external boundary, following Eqs. (4.68-4.69) we haveJϕϕϕK= ϕ̄ϕϕ−ϕϕϕ= 0
on ∂UAh and JtK = t̄− t = 0 on ∂TAh. Similarly, the virtual fields read on this boundary
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JδϕϕϕK = −δϕϕϕ = 0 andJδtK = −δt = 0. Furthermore, the resultant stressnα and torquem̃α

vectors, as well as the thickness ratioλh of the exact solution are continuous across inter-
element boundaries, which allows rewriting the weak form7 (4.95) as,

∫
Ah

ρϕ̈ϕϕ ·δϕϕϕdA +
∫
Ah

j̄nα ·δϕϕϕ,αdA +
∫
Ah

j̄m̃α · (δtλh),α dA +
∫
Ah

j̄l ·δtλhdA +
∫

∂IAh∪∂UAh

JδϕϕϕK · j̄nαν−α d∂A +
∫

∂IAh∪∂TAh

JδtK · j̄λhm̃
αν−α d∂A =

∫
∂NAh

j̄n̄ ·δϕϕϕdA +
∫

∂MAh

j̄ ¯̃m ·δtλhdA +
∫
Ah

nA ·δϕϕϕ j̄dA +
∫
Ah

m̃A ·δtλh j̄dA .

(4.132)

After integration by parts, on each elementAe, of the terms innα andm̃α, this expression
reads,

∫
Ah

ρϕ̈ϕϕ ·δϕϕϕdA +
∫

∂NAh

j̄nα ·δϕϕϕναd∂A −
∫

∂IAh∪∂UAh

j̄nα · JδϕϕϕKν−α d∂A −
∫
Ah

( j̄nα),α ·δϕϕϕdA +
∫

∂MAh

j̄m̃α ·δtλhναd∂A −
∫

∂IAh∪∂TAh

j̄m̃α · JδtKλhν−α d∂A −
∫
Ah

( j̄m̃α),α ·δtλhdA +
∫
Ah

j̄l ·δtλhdA +
∫

∂IAh∪∂UAh

JδϕϕϕK · j̄nαν−α d∂A +
∫

∂IAh∪∂TAh

JδtK · j̄λhm̃
αν−α d∂A =

∫
∂NAh

j̄n̄ ·δϕϕϕdA +
∫

∂MAh

j̄ ¯̃m ·δtλhdA +
∫
Ah

nA ·δϕϕϕ j̄dA +
∫
Ah

m̃A ·δtλh j̄dA . (4.133)

The arbitrary nature of the virtual fieldsδϕϕϕ andδt reduces the weak form to the set of equa-
tions

( j̄nα),α + j̄nA = ρϕ̈ϕϕ in Ah , (4.134)

( j̄m̃α),α − j̄l+ j̄m̃A = λ1t in Ah , (4.135)
¯̃m=mανα +λ2t on ∂MAh , (4.136)

n̄= nανα on ∂NAh , (4.137)

which correspond respectively to the governing equations (4.30), (4.50), (4.53) and (4.54),
up to undefined valuesλi . Consistency of the weak formulation (4.95) is thus ensured in the
non-linear range.

Derivation of the numerical properties of stability and convergence rate requires a lin-
earization of the equations that we present here below. In fact, it is usual done for FE, to
postulate that if the linear form is stable its non-linear extension is stable too, although this is
not always true.

7For completeness we do not neglectas(ϕϕϕh,δϕϕϕ) in this form althoughl≈ 0
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4.4.2 Linearization of the weak form

The linearization of the weak form (4.95) is performed underthe assumption of a small dis-
placements field and with Hooke constitutive behavior assumption (see Section 4.3.1). Thus,
the displacements field is expressed by Eq. (4.101) and the first order approximation of the
unit normal Eq. (4.102) is considered. Furthermore, using the linear forms of the membrane
(4.115) and bending (4.116) stresses and the definitionλα

µ = λht,µ ·ϕϕϕ,α implying for small
displacementsλα

µ ·ϕϕϕ0,α = t0,µ, the first order approximations of the terms of Eq. (4.95) read,

ae
ld(uh,δu) =

∫
Ae

ρüh ·δudA , (4.138)

ae
ln(uh,δu) =

∫
Ae

j̄0
1
4

(
ϕϕϕ0,γ ·uh,δ +ϕϕϕ0,δ ·uh,γ

)
H

αβγδ
n

(
ϕϕϕ0,βδu,α +ϕϕϕ0,αδu,β

)
dA

+
∫
Ae

j̄0
(
uh,γ · t0,δ +ϕϕϕ0,γ ·∆t,δ

)
H

αβγδ
m t0,β ·δu,αdA , (4.139)

ae
lm(uh,δu) =

∫
Ae

j̄0
(
uh,γ · t0,δ +ϕϕϕ0,γ ·∆t,δ

)
H

αβγδ
m ϕϕϕ0,β ·δ∆t,αdA , (4.140)

as
lnI1(uh,δu) =

∫
s

1
2

〈
j̄0H

αβγδ
n

(
ϕϕϕ0,γ ·uh,δ +ϕϕϕ0,δ ·uh,γ

)

+ λβ
µ j̄0H

αµγδ
m

(
ϕϕϕ0,γ ·∆t,δ +uh,γ · t0,δ

)〉
ϕϕϕ0,β · JδuKν−α d∂Ae, (4.141)

as
lmI1(uh,δu) =

∫
s
Jδ∆tK ·

〈
j̄0H

αβγδ
m

(
uh,γ · t0,δ +ϕϕϕ0,γ ·∆t,δ

)
ϕϕϕ0,β

〉
ν−α d∂Ae, (4.142)

as
lnI2(uh,δu) =

∫
s
JuhK ·

〈
j̄0ϕϕϕ0,β

[
1
2
H

αβγδ
n

(
δu,γ ·ϕϕϕ0,δ +ϕϕϕ0,γ ·δu,δ

)

+λβ
µH

αµγδ
m

(
δu,γ · t0,δ +ϕϕϕ0,γ ·δ∆t,δ

)]〉
ν−α d∂Ae, (4.143)

as
lmI2(uh,δu) =

∫
s
J∆tK ·

〈
j̄0ϕϕϕ0,βH

αβγδ
m

(
δu,γ · t0,δ +ϕϕϕ0,γ ·δ∆t,δ

)〉
ν−α d∂Ae,

(4.144)

as
lnI3(uh,δu) =

∫
s
JuhK ·ϕϕϕ0,γν−δ

〈
β2H

αβγδ
n j̄0
hs

〉
JδuK ·ϕϕϕ0,βν−α d∂Ae, (4.145)

as
lmI3(uh,δu) =

∫
s
J∆tK ·ϕϕϕ0,β

〈
β1 j̄0H

αβγδ
m

hs

〉
Jδ∆tK ·ϕϕϕ0,γν−α ν−δ d∂Ae, (4.146)

as
lsI3(uh,δu) =

∫
s
JuhK · t0ν−β

〈
β3H

αβ
q j̄0

hs

〉
JδuK · t0ν−α d∂Ae. (4.147)

In the stability expressions (4.145-4.147), the effect of curvatureλβ
µ has been neglected with-

out compromising the stability as earlier presented and theexpression ofas
lsI3(uh,δu) is ob-

tained as presented in Appendix B.2. These developments allow writing the weak form (4.95)
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as findinguh such that,

∑
e

ae
ld(uh,δu)+∑

e
ae

ln(uh,δu)+∑
e

ae
lm(uh,δu)+∑

s
as

lnI (uh,δu)

+∑
s

as
lmI(uh,δu)+∑

s
as

lsI(uh,δu) = bext(δu)+bbound(δu) , (4.148)

for all δu kinematically admissible and with the bilinear forms,

as
lnI (uh,δu) = as

lnI1(uh,δu)+as
lnI2(uh,δu)+as

lnI3(uh,δu) , (4.149)

as
lmI(uh,δu) = as

lmI1(uh,δu)+as
lmI2(uh,δu)+as

lmI3(uh,δu) , (4.150)

as
lsI(uh,δu) = as

lsI3(uh,δu) , (4.151)

and where it has been accounted for thatbext(δu) andbbound(δu) become linear forms at the
first order (λh ≈ 1).

Finally, as the consistency of the formulation is proved, itimplies that the exact solution
u satisfies (4.148), which provides the orthogonality relation,

al (uh−u,δu) = al (uh,δu)−al (u,δu) = 0. (4.152)

whereuh is the FE solution.

4.4.3 Stability

The stability of the weak form (4.148) is established following the same argumentation as
for Euler-Bernoulli beams. For simplicity, the prescribed displacement ¯u and direction∆̄t

are taken to be 0 and that there is no inertial forces. Thus thefollowing energetic norm can be
suggested,

|‖u‖|2 = ∑
e

∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

2

L2(Ae)

+

∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

2

L2(Ae)

+

∑
s

∥∥∥∥∥∥

√
β1Hm j̄0

hs

αβ

ϕϕϕ0,α · J∆tKν−β

∥∥∥∥∥∥

2

L2(s)

+

∑
s

∥∥∥∥∥∥

√
β2H n j̄0

hs

αβ

ϕϕϕ0,α · JuKν−β

∥∥∥∥∥∥

2

L2(s)

+

∑
s

∥∥∥∥∥∥

√
β3H s j̄0

hs

β

t0 · JuKν−β

∥∥∥∥∥∥

2

L2(s)

, (4.153)
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with the abuses of notation,

∥∥∥∥
√
H

αβ
aαβ

∥∥∥∥
2

L2(Ae)

=
∫
Ae

aαβH
αβγδaγδdA and, (4.154)

∑
s

∥∥∥∥
√
H

αβ
JaαKν−β

∥∥∥∥
2

L2(s)
= ∑

e

1
2

∫
∂Ae

H
αβγδ JaαK ν−β

q
aγ

y
ν−δ d∂Ae. (4.155)

In Eq. (4.155), integration on all sidess is equivalent to one half of the integration on all the
element boundaries. Indeed, the sum on all the element boundaries accounts twice for a side
s8.

Expression (4.153) is a norm,i.e. its value is equal to zero only foru= 0 onAh. Indeed,
if |‖u‖| is equal to zero, then all the contributions are also equal tozero but, if this is the case,
the only solution isu= 0 onAh, as it is shown in the following lines. If the membrane energy
(first term of Eq. (4.153)) is equal to zero, then the solutionof the problem isu,α parallel to
t0 on everyAe. If the bending term (second term of Eq. (4.153)) is equal to zero, it means
thatραβ = 0 onAe. Using Eq. (4.113), and sinceu,α is parallel tot0, the solutionραβ = 0
impliesC = u,α · t0 is constant on eachAe. Since the jump in the variation∆t (∆t depends
on u,α see Eq. (4.103)) is equal to zero between two elements (thirdterm of Eq. (4.153)
equal to zero), this product is constant on the whole domain,as∆t cannot be perpendicular
to ϕϕϕ0,α by definition (see [185]). So the solution of the problem would beu,α · t0 = 0 on the
whole domain as∆̄t = 0 on ∂TAh. As u,α · t0 = 0 everywhere and asu is continuous on
Uh this meansu is constant onAh. Because of the constrained displacement ¯u = 0, the only
remaining solution isu= 0 onAh.

With the aim of demonstrating the stability of the method an upper and a lower bound
of the bi-linear form (4.148) are given. These bounds can be obtained as in [185] with the
addition of the supplementary interface terms related to the full-DG formulation. After some
developments given in Appendix B.4, an upper bound of the bilinear form is,

|al (uh,δu)|2 ≤Ck (βα) |‖u‖|2 |‖δu‖|2 , (4.156)

for all u andδu satisfying the essential boundary conditions and whereCk(βα) is a value
larger than max(4,(C′k

α )
2/βα), whereC′k

α > 0 are constants depending only on the polynomial
degreek of u andδu. In case of the FE approximationuh is considered, thenk is the degree
of the polynomial approximation.

8Except on the domain boundary∂TAh∪∂UAh, where the correction is omitted here for clarity.
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Furthermore, a lower bound of the bi-linear form can be written as,

a(u, u) ≥ (1− εn)∑
e

∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

2

L2(Ae)

+

(1− εm)∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

2

L2(Ae)

+

(
1−2

Ck
n

2

εnβ2

)
∑
e

∥∥∥∥∥∥

√
β2H n j̄0

2hs

γδ

ϕϕϕ0,γ · JuKν−δ

∥∥∥∥∥∥

2

L2(∂Ae)

+

(
1−2

Ck
m

2

εmβ1

)
∑
e

∥∥∥∥∥∥

√
β1Hm j̄0

2hs

γδ

ϕϕϕ0,γ · J∆t(u)Kν−δ

∥∥∥∥∥∥

2

L2(∂Ae)

+

∑
e

∥∥∥∥∥

√
β3H s j̄0

2hs

γ

t0 · JuKν−γ

∥∥∥∥∥

2

L2(∂Ae)

, (4.157)

for all u satisfying the boundary conditions and whereεn andεm are constants larger than zero
coming from the so-calledε-inequality9.

The stability of the method can be proved directly from this last relation. Indeed the
comparison of the right hand terms of (4.153) and (4.157) leads to,

b(uh) = a(uh, uh) ≥ C(βα) |‖uh‖|2 , (4.158)

whereC(βα) > 0 as for given 0< εn < 1 and 0< εm < 1 there always existβ1 >
2(Ck

n)
2

εn
and

β2 >
2(Ck

m)
2

εm
. This shows that the stability of the method is conditioned by the constantβ1 and

β2 which must be large enough as the energy norm is bounded by thework of the external
forces. Note that Eq. (4.158) does not imply stability conditions on the parameterβ3 as long
asβ3 > 0.

4.4.4 Convergence rate in the energy norm

The convergence rate in the energy norm of the bilinear form (4.148) can be demonstrated
in the same way as presented in Appendix B.4 and only the main results are reported herein.
In the following, the error between the FE solutionuh and the polynomial interpolationukof
the exact solution is calculated to establish the convergence rate in the energy norm of the
method. First some definitions and hypotheses are given. Ifu is the exact solution of the
problem and satisfies the essential boundary conditions, its interpolantuk, satisfying also the
essential boundary conditions, is defined by,∫

Ah

(
u−uk

)
·δu j̄0dA = 0. (4.159)

9∀ε > 0 : |ab| ≤ ε
2a2+ 1

2ε b2 or ∀ε > 0 : |ab| ≤ εa2+ 1
4ε b2
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The error is defined as,

e= uh−u , (4.160)

whereas the error on the exact solution interpolant is defined as,

ek = uh−uk . (4.161)

Both errors satisfy the essential boundary conditions. After some developments presented in
Appendix B.4 and written for Euler-Bernoulli beams in Appendix A.3, it can be found that,

∣∣∣
∥∥∥ek
∥∥∥
∣∣∣ ≤ C(β1,β2,β3)∑

e
hs k−1 |u|Hk+1(le) . (4.162)

The order of convergence is one order lower than the degree ofthe polynomial approximation,
which is consistent with the presence of high-order derivatives in the governing equations
(4.50).

4.4.5 Convergence rate in the L2-norm

The convergence rate in theL2-norm of the solution of the bilinear form (4.148) is demon-
strated under the two assumptions:

1. Proper elliptic regularity of the problem;

2. Pure Dirichlet boundary conditions (i.e. u= t= 0 on∂Ah ).

As well as the convergence rate in the energy norm, the demonstration of the convergence
in theL2-norm is performed in Appendix B.4, so only the final result is reported here,

||e||L2(le) ≤





∑
e

Chs k+1 |u|Hk+1(le) if k> 2

∑
e

Chs2 |u|H3(le) if k= 2
, (4.163)

where the casek = 2 is obtained by following the work of G. Wellset al. [257]. The rela-
tion (4.163) demonstrates that the method has an optimal convergence rate for at least cubic
elements.

4.5 Implementation

This section discusses the implementation of the formulations (4.95) and (4.148). The
structure discretization (mesh) is performed via Gmsh [105], which is a 3D finite element
grid generator with a build-in CAD engine and post-processor. Its design goal is to provide
a fast, light and user-friendly meshing tool with parametric input and advanced visualization
capabilities. As Gmsh possesses also utility tools (solver, mathematics, geometry ...) we
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decided to use it as a base for a C++ library. Furthermore, Gmshis a open source software
that is used industrially (Cenaero, EDF,...) for pre-post operations.

Furthermore, Gmsh has the particularity to create the dofs through a dof manager mak-
ing these ones independent of the nodes. We exploit this particularity to allow importing a
conventional mesh without interface element. Then from this mesh the interface elements are
created before the association of dofs to each elements individually which thus do not share
dofs each others.

Then, we separate the implementation in two parts. On one hand, a non-linear solver li-
brary is implemented, which uses all C++ classes defined in Gmsh to describe the geometry
and the mesh, facilitating the management of the mesh and thepost processing, as all results
are stored directly via Gmsh. As we focus on various researchprojects, this non-linear library
performs only the basic tools, with parallel feature: material library, integration point man-
ager, Newton-Raphson iterations and explicit resolution schemes ... As part of this thesis we
developed this parallel feature.

On the other hand, the specific feature of the dg-shell approach as functional spaces, man-
agement of elements, integration of material laws... are implemented in a separate project
which includes the non-linear solver library and communicates with the solver mainly through
an interface class calledpartDomainwhich is common to all projects. ThepartDomainclass
is purely virtual and has to be derived by the conceptor of theproject. By this approach, dif-
ferent projects can use the same tools while being developedin (almost) independent codes,
allowing research in different fields to be performed simultaneously. Both parts are developed
in the following.

4.5.1 Dg-shell project

We describe in this section the implementation of the internal force vector and stiffness
matrix which are specific to our formulation and which are therefore implemented in a sepa-
rate projects. Their implementation is a generalization ofthe Euler-Bernoulli full Discontin-
uous Galerkin formulation presented in Section 3.2.3. Furthermore, the linear Eq. (4.148) as
well as the non-linear Eq. (4.95) are implemented separately. For the first one the stiffness
matrix can be obtained analytically. On the contrary, for the non-linear case, an analytical
tangent stiffness matrix is not obvious since the iterativeprocedure ensuring the plane stress
state (see Section 4.3.2). Therefore in this case the tangent stiffness matrix will be evaluated
numerically by differentiation of the internal forces vector. This one can be divided into two
parts: the bulk terms and the interface terms leading toFint = Fbulk+Finter. The implemen-
tation of bothFbulk andFinter is discussed below.

Bulk internal forces vector

The bulk terms are computed in the reference frameEα where the shell is represented
by an isoparametric element with coordinates

(
ξ1,ξ2

)
∈ [−1,1]× [−1,1] as depicted on Fig.

4.3(a). Then the unknown fieldϕϕϕh, as well as the virtual fieldδϕϕϕ, are decomposed in terms of
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E1

E2

E3
Φ0

Ae

ξ1
ξ2

Se

(a) Isoparametric element. (b) Integration of the interface term on the side
s common to elementA −e andA +e .

Figure 4.3: The numerical integration is performed (a) on tothe isoparametric element for
bulk terms and (b) with the convention of picture for interface integration. Courtesy of [185].

the nodal displacements using traditional Lagrangian shape functions,

ϕϕϕh = Nξϕϕϕξ and, (4.164)

δϕϕϕ = Nξδϕϕϕξ . (4.165)

Then, the coordinates in the reference basisx are used to compute the convected basis of
the mid-surface and its derivative as,

ϕϕϕh,α =
∂Nξ

∂ξα xξ and, (4.166)

ϕϕϕh,αβ =
∂2Nξ

∂ξα∂ξβx
ξ . (4.167)

From these definitions, the computation of the initial convected basis of the mid-surface is
straightforwardly obtained using the initial positionXξ in the reference frame,

ϕϕϕ0,α =
∂Nξ

∂ξα Xξ and, (4.168)

ϕϕϕ0,αβ =
∂2Nξ

∂ξα∂ξβX
ξ . (4.169)

Note that as the shell formulation is written in the inertialreference frame, the determination
of (4.168-4.169) does not involve a Jacobian of a transformation see Fig. 4.3(a).

Once the convected basis of the mid-surface is known, the computations of the unit vector
t, and of the convected basisgI follow respectively from (4.13) and (4.9-4.10). Moreover,the
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development ofj = ∇Φ allows computing the Jacobian as,

j = g3 · (g1∧g2) and, (4.170)

j̄ = λh
∣∣∣∣ϕϕϕh,1∧ϕϕϕh,2

∣∣∣∣ . (4.171)

In the non-linear case, the thickness ratioλh is determined following Section 4.3.2 and a
Simpson integration rule (discretizing the thickness) is used to evaluated the reduced stresses
nα (4.26) and torque ˜mα (4.37). In the linear case, the reduced stressesnα (4.26) and torque
m̃α (4.37) follow from Section 4.3.1.

At this point everything is known to compute the bulk internal forces vector (4.172) of non
linear formulation (4.95) as well as those of the linear formulation (4.148). This vector reads,

Fbulk = ∑
e
(F e

int n+F e
int b) , (4.172)

whereF e
int n is the elementary internal membrane forces vector corresponding toae

n(ϕϕϕh,δϕϕϕ)
(4.63) and whereF e

int b is the elementary internal bending forces vector corresponding to
ae

m(ϕϕϕh,δϕϕϕ) (4.64). The detailed expressions in the non-linear range ofboth elementary vectors
are given in Appendix B.5.

Interface internal forces vector

For the interface terms the integration on interface elements has to be specified. Unfor-
tunately, as illustrated on Fig. 4.3(b), the basis vectors of the neighboring elementsϕϕϕ−

,α and
ϕϕϕ+
,α differ in general, requiring special care. The interface isa curve that is represented in

the reference frameE1 like a 1D isoparametric element with the coordinateξs1 ∈ [−1; 1]. A
Gauss quadrature rule is used to perform the integration on the interface element. It has to be
mentioned that a Gauss-Lobatto quadrature rule had also be implemented but no benefit due
to the presence of quadrature points at the extremities of the element was observed. As a finite
element is created at interface, 1D Lagrangian shape functionsNξ

s are associated to each of
its nodesξ. Using these nodes the convected basis of the interface is computed as,

ϕϕϕ0,1 =
∂Nξ

s

∂ξs1X
ξ and, (4.173)

ϕϕϕh,1 =
∂Nξ

s

∂ξs1x
ξ . (4.174)

The unit normal vector at interface is set to the mean value ofminus and plus elements10

evaluated at the common element edge,

t0 =
t+0 + t−0∣∣∣∣t+0 + t−0

∣∣∣∣ and, (4.175)

t =
t++ t−

||t++ t−|| . (4.176)

10A test is performed to ensure that the two normals are defined in the same direction, which is the case if all
elements are defined in the same manner (clockwise or anti-clockwise).
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The in-plane normal to the interface (ν−) is then equal toϕϕϕ,2 (orϕϕϕ0,2 in the linear formulation)
which can be determined by, see Fig. 4.3(b),

ϕϕϕ0,2 =
t0∧ϕϕϕ0,1

||t0∧ϕϕϕ0,1||
and, (4.177)

ϕϕϕh,2 =
t∧ϕϕϕh,1∣∣∣∣t∧ϕϕϕh,1

∣∣∣∣ . (4.178)

With these definitions the Jacobian of the interface is stillcomputed by,

j̄0 = ||ϕϕϕ0,1∧ϕϕϕ0,2|| and, (4.179)

j̄ = λh
∣∣∣∣ϕϕϕh,1∧ϕϕϕh,2

∣∣∣∣ (4.180)

Then, at each quadrature point of the interface the different quantitiesnα±
,m̃α±

, H ±
n ,H ±

m
andH ±

q are first evaluated on the common edge of the plus and minus elements. However
the basis of the plus and minus elements do not match with the basis of the interface element
requiring the use of push-forward tensors, defined as,

Tα
β± = ϕϕϕh

,α ·ϕϕϕh,β± and, (4.181)

Tα
0β± = ϕϕϕ0,α ·ϕϕϕ0,β± . (4.182)

Using these tensors and calling•̂ the quantities formulated in the interface convected basis, it
successively yields,

n̂α±
= Tα

β±n
β±

, (4.183)

̂̃mα±
= Tα

β±m̃
β±

, (4.184)

Ĥ n
αβγδ±

= Tα
µ±Tβ

ν±H
µνζo±

n Tγ
ζ±Tδ

o± , (4.185)

Ĥm
αβγδ±

= Tα
µ±Tβ

ν±H
µνζo±

m Tγ
ζ±Tδ

o± and, (4.186)

Ĥ q
αβ±

= Tα
µ±H

µν±
q Tβ

ν± . (4.187)

Then, the•̂ quantities are used to evaluate the jump and mean values at each Gauss inte-
gration point of the interface. Therefore everything is known to compute the different in-
terface termsas

nI(ϕϕϕh,δϕϕϕ) (4.97),as
mI(ϕϕϕh,δϕϕϕ) (4.98) andas

sI(ϕϕϕh,δϕϕϕ) (4.99) of the non-linear
weak form (4.95) as well as the different termsas

lnI (uh,δu) (4.149),as
lmI(uh,δu) (4.150) and

as
lsI(uh,δu) (4.151) of the linear formulation (4.148). Then the interface internal forces vector

is formulated as,

Finter = ∑
s

(
F s

int consn+F s
int compn+F s

int stabn+F s
int consm+F s

int compm

+ F s
int stabm+F s

int staba) (4.188)

where the terms of the right members are the elementary interface force vectors computed
from either the weak form (4.95) or the weak form (4.148). Thedetailed expressions in the
non-linear range of these different vectors are given in Appendix B.5.
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Elements library

The recourse to DG leads to a thickness-locking free method,when considering under-
integrated quadratic elements or fully integrated cubic elements. The implementation de-
scribed above is employed to build a library of four elements, having three (displacement)
dofs per node,

(i) 6-node quadratic triangles with 3 Gauss points for bulk integration and 3 Gauss points
on each edge for interface integration (T6);

(ii) 8 or 9-node quadratic quadrangles with 4 Gauss points for bulk integration and 3 Gauss
points on each edge for interface integration (Q8RI and Q9RI);

(iii) 10-node cubic triangles with 6 Gauss points for bulk integration and 4 Gauss points on
each edge for interface integration (T10);

(iv) 16-node quadratic quadrangles with 16 Gauss points forbulk integration and 4 Gauss
points on each edge for interface integration (Q16).

Note that linear elements cannot be used as the second derivative of shape functions have to
be computed.

4.5.2 Non-linear solver

The non-linear solver implemented as a project of Gmsh includes three computational
schemes: explicit Hulbert-Chung [123], dynamic relaxation[195] and quasi-static [122]. The
implementation of these three schemes is discussed here below.

Explicit Hulbert-Chung dynamic scheme

A dynamic explicit solver based on theα-generalized method introduced by G. Hulbert
et al. [123] is implemented, which allows introducing numerical damping in the problem.
Once again we use the same approach than in Gmsh and we developthis explicit solver as
an interface to a powerful library, which can perform vectoroperations (there is no matrix-
vector operations in this resolution scheme). The interface is implemented for two libraries:
PETSc [21, 22, 23] and BLAS [52, 83, 134]. Notice that this lastinterface is written in such
a way that a (less efficient) default implementation is provided if the code is not linked to
BLAS.

In the Hulbert-Chung time integration algorithm [123], the evaluation of the nodal un-
knowns vectorx at time stepn+1 is realized from the nodal internalFint and externalFext
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forces vectors at timen,

[
ẍn+1]ξ =

1
1−αM

[
M−1]ξµ [F n

ext−F n
int ]

µ− αM

1−αM
[ẍn]ξ , (4.189)

[
ẋn+1]ξ = [ẋn]ξ+∆t [1− γ] [ẍn]ξ+∆tγ

[
ẍn+1]ξ , and (4.190)

[
xn+1]ξ = [xn]ξ+∆t [ẋn]ξ+∆t2

[
1
2
−βN

]
[ẍn]ξ+∆t2βN

[
ẍn+1]ξ , (4.191)

for the unknown at nodeξ and whereFext andFint are evaluated from Section 4.5.1 in the
case of the full-DG formulation.

An original parallel partitioning of this scheme, based on ghost elements, is suggested
herein. Compared with previous parallel implementations [184] this one allows communicat-
ing the nodal unknowns between the different processors instead of the material law resultant
nα, m̃α, H n, Hm, H q,... Thus, the main advantages of the suggested implementation are, on
one hand, to be independent of the material law, and on the other hand, to decrease the num-
ber of communications. Furthermore, this approach leads toan extra memory cost on each
processor as the ghost elements have to be stored. Nevertheless, this extra cost is relatively
limited if we assume that the number of elements by partitionremains large compared with
the number of duplicated elements (only one layer of elements is duplicated as illustrated on
Fig. 4.4(c)). This assumption is generally verified as tens of processor are used with meshes
containing thounsands of elements.

The set of Eqs. (4.189-4.191) shows that if the mass matrix isdiagonalized the evalua-
tion can be done unknown by unknown, leading to an easy resolution on different processors.
Therefore the coupling of the unknowns only results from theevaluation of the force vectors.
Then, METIS [127] is used through Gmsh to partition the mesh between the different pro-
cessors, see Fig. 4.4(a). So each processor owns a partitionof the mesh, see Fig. 4.4(b),
but also the ghost boundary elements, which are elements of the other processors having a
common interface, see Fig. 4.4(c). Thus, using the ghost elements, each processor can create
the interface elements in its own partition and at partitioninterfaces. Finally the interface
termsas

nI1(ϕϕϕh,δϕϕϕ), as
mI1(ϕϕϕh,δϕϕϕ), as

nI2(ϕϕϕh,δϕϕϕ), as
mI2(ϕϕϕh,δϕϕϕ), as

nI3(ϕϕϕh,δϕϕϕ), as
mI3(ϕϕϕh,δϕϕϕ), and

as
sI3(ϕϕϕh,δϕϕϕ) are integrated on all the interface elements11. As partitions are discontinuous,

they do not share common degrees of freedom (dofs), and the Gmsh dof manager creates new
dofs on each partition, independently on the node number (inGmsh the dof is not directly
linked to the node), leading to a straightforward computation ofFbulk andFinter in each par-
tition. However, this statement is not true for the ghost elements, which nodal values have
to be communicated through the network via MPI when evaluating the interface terms as de-
picted on Fig. 4.4(d). Also, as interface terms at the interface of ghost elements, are actually
computed on two partitions, only the part related to the degrees of freedom really belonging
to the partition is assembled into the localFinter in order to avoid duplication. At the end of

11On interfaces internal to the partition, if theC0/DG method is used instead of the full-DG method, only
as

mI1(ϕϕϕh,δϕϕϕ), as
mI2(ϕϕϕh,δϕϕϕ) and as

mI3(ϕϕϕh,δϕϕϕ) are integrated as the displacement field is continuous from one
element to another
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(a) Mesh of the structure. (b) Partitioning of the mesh (METIS).

(c) The ghost elements in dashed lines al-
low performing the interface integration
on both partitions.

(d) Nodal unknowns are exchanged
through MPI communications.

Figure 4.4: Different stages of a parallel computation. Thesteps a) to c) are performed once
during initiation of the computation. The last one is performed before each assembling step
of the internal forces vector (and of the stiffness matrix inthe quasi-static case).

the assembly process, the set of equations (4.189 - 4.191) issolved locally in each partition.
So the time integration from timetn to timetn+1 follows the chart flow:

• Knowing values at timetn, determine the critical time step and compute successively
the accelerations (4.189), velocities (4.190) and displacements (4.191);

• Send nodal values to ghost elements, see Fig. 4.4(d);

• Following Section 4.3, compute the stress field in each bulk and interface elements be-
longing to the processor, including the ghost elements and processor boundary interface
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elements;

• ComputeFint of the bulk elements from (4.172) and the interface forces ofthe interface
elementsFinter from (4.188) belonging to the processor, including the ghost elements
and processor boundary interface elements;

• Assemble the elementary force vectors in each processor, but at the interface of ghost
elements consider only the part on the boundary belonging tothe processor.

Dynamic relaxation

As convergence problems occur when studying crack propagation and as it can be useful to
neglect the inertia forces for some problems, we suggest an original adaptation of the dynamic
relaxation concept first presented by M. Papadrakakis [195]. In fact, this technique can be used
to prescribe a quasi-static loading with an explicit dynamic scheme. The main idea of dynamic
relaxation is to annihilate the dynamic effects by the introduction of damping on the velocity
field in such a way that the static solution is reached after a minimum number of time steps.
This principle is commonly applied with the explicit central difference method [186,195,272],
among others, and is adapted herein to the explicit scheme ofHulbert-Chung [123] in an
original manner. From the developments of M. Papadrakakis [195], the dynamic relaxation
can be generalized to Hulbert-Chung algorithm by introducing a damping factor in equation
(4.190) which becomes,

[
ẋn+1]ξ = c n+1

{
[ẋn]ξ+∆t [1− γ] [ẍn]ξ+∆tγ

[
ẍn+1]ξ} , (4.192)

wherec is the damping factor to be determined. The modification introduced in equation
(4.192) is the only one in the algorithm, which allows an easyimplementation and facilitates
the switch between the two schemes (i.e. switch from dynamic relaxation to Hulbert-Chung
or conversely). The computation of the damping factor is based on the work of Z. Zhang
et al. [272], which avoids the computation of the stiffness matrix, except that we compute a
global damping factor and not a local damping factor by nodesas suggested in [272]. The
reason of using a global damping factor is related to our implementation. Indeed as we use a
dof manager to create dofs independently of nodes, it is verytime consuming to identify the
three displacements related to a node. Keeping these considerations in mind the value chosen
for damping factor is,

c n+1 =
1

1+2ξn+1∆t
with ξn+1 =

xn ·F n
int

xn ·M ·xn , (4.193)

wherexn andF n
int are respectively the nodal positions and internal forces attimen, and where

M is the diagonalized mass matrix. In this work∆t is lower or equal to the value of the critical
time step for the explicit Hulbert-Chung scheme.

For the application of an external effort, the convergence depends on the fundamental
period of the problem. Therefore increase of density has no influence on the convergence as
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an augmentation of the time step involves the same increase of the fundamental period (i.e.
the number of time steps needed to achieve convergence is thesame no matter the time step
value). The external effort is applied at the beginning of the simulation and is kept constant
until convergence, which is based on the criterion (at iteration n+1),

‖Fext−F n+1
int ‖

‖Fext+F n+1
int ‖

≤ etol , (4.194)

whereFext is the vector of external forces prescribed and whereetol is a convergence param-
eter, which is independant of the problem as we use a relativevalue. A value of 10−3 seems
to give accurate results with a minimal computational effort as presented through a numerical
example in Appendix B.6. Notice that this scheme can be easilyused for parallel computa-
tion by computing the scalar vector product on each processor before summing the different
values.

Quasi-static solver

Gmsh includes a linear static solver, which resolvesKx=Fext, with K the stiffness matrix,
x the unknowns vector andFext the external force vector. This solver provides in fact inter-
faces with powerful and widely used libraries for matrix vector operations as, Taucs [244,245]
or PETSc [21,22,23]. We extended this solver by derivation of classes. Indeed, we implement
a non linear quasi-static solver based on Newton-Raphson iterations to solveFint = Fext with
Fint andFext are computed from Section 4.5.1 in the case of the full-DG formulation. Yet,
at each iteration, we have to solve a problemK∆x = Fext, which is performed by the solver
included in Gmsh.

Furthermore, the parallel implementation described before can be used for the non linear
quasi-static solver. In fact, the PETSc library is able to solve the (linear) systemKx = Fext

in parallel, once it is assembled. We implemented this parallel scheme using the algorithm
described above for explicit scheme. Moreover PETSc used aniterative solver to solve the
problem simultaneously on several processors a good preconditioner is required. We tried
the different standard ones provided by PETSc but they seem inefficient for large systems. A
study will have to be performed on this point to use the quasi-static scheme in parallel but this
is out of the scope of this thesis. Notice that for serial computation, PETSc solves the problem
thanks to a direct solver without any difficulty.

4.6 Numerical benchmarks

This section regroups the results of benchmarks simulated to validate the developed full-
DG shell formulations (linear and non linear). Furthermore, the results of theC0/DG formula-
tion (4.100) are compared with those of the full-DG formulations (4.95) on several examples.
In particular, the comparison of both formulations proves the ability of the full-DG method
developed in this thesis to provide results as accurate as a method using continuous elements.
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Results are also compared to analytical solutions when available and to results from the litera-
ture using mixed shell formulations. The drawback of the full-DG method is to consider more
dofs, but it can be advantageously used to solve fracture mechanic problems by combination
with a cohesive law, see Chapter 5, or to perform parallel simulations in which case the full-
DG can be limited to processor interfaces. Unless specified otherwise, the stability parameters

are set toβ1 = β2 =
(Lc

h

)2β3 = 10, withh the initial shell thickness andLc, the largest length
of the problem. This choice of a low value forβ1 is motivated by the conclusions arising
from the Euler-Bernoulli beam case in Chapter 3. These conclusions are confirmed by the
first numerical example of this section, which studies the effect ofβi and where it is explained
that for thin meshes, stable results are obtained for this low value ofβi . Also as for explicit
problems the critical time step is proportional to 1

max
√

βi
low βi values allow simulating the

processes in a reasonable time.

4.6.1 Quasi-static benchmarks

We first present several quasi-static benchmarks: a hemisphere with different constitutive
behaviors and a cut plate ring. These simulations regroup several benchmarks commonly used
in the literature to validate a numerical model of shells. Due to the good correlation between
our new formulation and the literature we can prove the validity of our approach.

Elastic pinched open hemisphere with small strains

This first example is used to illustrate the numerical properties of the full-DG method
presented in Section 4.4. It considers a pinched open hemisphere, with radiusR, thicknesst

Property Value
RadiusR [m] 10
Thicknessh [m] 0.04
Openingθ[o] 18
Young modulus [MPa] 68.25
Poisson’s ratio [-] 0.3
Applied forceP [N] 40

Table 4.1: Material and geometrical properties for the pinched open hemisphere test.

and an opening of a spherical sector angleθ (see values given in Tab. 4.1). It is subjected to
radial loadsP applied on two diametrical directions, see Fig. 4.5(a). Theload is compressive
in the y-direction and tensile in the x-direction. One quarter of the structure is modeled by
exploiting the symmetries of the problem. The maximal deflection along x or y is|δx|=

∣∣δy
∣∣=

0.093(mN−1)P
2 (see [234]) and is used as the reference value. This problem is simulated with

9-node bi-quadratic elements with reduced integration (Q9RI) for several meshes 2×2, 4×4,
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(a) One fourth of the open hemisphere is
meshed.

(b) Magnified deformation of the complete
hemisphere for a regular mesh of thirty-two
quadratic-quadrangular elements on each side.

Figure 4.5: Study of the pinched open hemisphere. Problem dimensions: radiusR, thickness
h, openingθ, concentrated loadingP.

8×8,..., 32×32 elements and for different values of stability parametersβ1 = β2 = β3
(

R
h

)2
=

10,1e3,1e6.
Results obtained by the presented full-DG formulation are compared with theC0/DG for-

mulation previously presented in [185]. As it can be seen on the Fig. 4.6, there is no noticeable
difference for reduced mesh sizes. The displacements (Figs. 4.6(a) and 4.6(c)) and conver-
gence orders (Figs. 4.6(b) and 4.6(d)), are the same for bothmethods12. Note that for the
lowest value of stability parameters, the convergence is not monotonic as it appears on the
Figs. 4.6(c) and 4.6(d). This is due to the fact thatβ1 = 10 is close to the stability limit, and
thus stability is only ensured for fine-enough meshes.

Elastic pinched open hemisphere with finite deformations

The previous example was also performed for finite deformations in the literature by sev-
eral authors [9, 50, 152, 181] with the Neo-Hookean constitutive behavior given in Tab. 4.1.
They used this benchmark with the aim of demonstrating the ability of their respective method
to remain locking free even when the mesh is distorted. To avoid locking phenomena M.
Bischoffet al.[50] had recourse to a mixed enhanced assumed strains formulation with 6 dofs
per nodes (3 displacements, 2 rotations and the thickness).For their part, P. Areiaset al. [9]
use a mixed formulation based on mid-side rotations and L. Noels [181] suggested theC0/DG
method from which we extended our full discontinuous formulation.

12Note that even if the formula (4.163) predicts a convergencein k for k = 2 it is numerically observed that
the convergence is ink+1 (see [91,185]).
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Figure 4.6: Influence of mesh size and stabilization parameters on the deflection for the
pinched open hemisphere.

We compare the results obtained for different loadsP ∈ [0; 800] [N] by studying the re-
sponses at both points A and B. It is obvious from pictures of Fig. 4.7 that all methods provide
similar results and therefore that our suggested new full-DG method is as accurate as a con-
tinuous method even in case of large deformations.

Elasto-plastic pinched hemisphere with finite deformations

The example of a (not open) hemisphere, with a radius of 10 [m]and a thickness of 0.5 [m],
depicted on Fig. 4.8, is also presented in the literature [48, 236] with theJ2-flow constitutive
behavior reported in Tab. 4.2.

As in previous benchmarks, the hemisphere is loaded on two opposite diameters (one in
tension, the other one in compression). Once again this example is performed with the full-
DG method for quadratic and cubic triangles as well as for quadratic and cubic quadrangles.
The structured quadrangular mesh is formed by 27 elements (six elements along each edge)
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(a) Deflection of point A.
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(b) Deflection of point B.

Figure 4.7: Results of the full-DG formulation for elast pinched open hemisphere finite defor-
mations are in agreement with literature [9,181].

(a) One fourth of the open
hemisphere is meshed.

(b) Deformation of the complete hemisphere for a reg-
ular mesh of height quadratic-quadrangular elements
on each side.

Figure 4.8: Pinched elasto-plastic hemisphere benchmark.

and the unstructured triangular mesh contains approximately 70 elements. The deflectionvs.
force curves at loaded points are plotted on Fig. 4.9 for triangular elements and 4.10 (quad-
rangular elerments). These curves are compared to J. Simoet al. [236] and to P. Betschet
al. [48] results. These pictures give rise to the avoidance of the locking that could be present
for triangular quadratic elements. With the full-DG formulation this locking is avoided. Fur-
thermore, except for quadratic triangles with theC0/DG formulation which strongly suffers
from locking, the other simulations give results in agreement with P. Betsch shell formulation.
In their paper, P. Betschet al. explained the difference with J. Simo formulation [236], bythe
difference of constitutive model. Indeed, the stress-resultant plasticity model used in [236]
leads to less hardening than theJ2-flow theory used in [48] and in this work. This example
proves that the full-DG framework provides accurate results no matter the type and order (at
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Property Value
Young modulus [Pa] 10
Poisson ratio [-] 0.2
Yield stress [Pa] 0.2
Hardening modulus [Pa] 9

Table 4.2: Material properties of the pinched elasto-plastic hemisphere benchmark.
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(c) C0/DG cubic.
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(d) Full-DG cubic.

Figure 4.9: Pinched elasto-plastic hemisphere benchmark results for triangular elements. The
locking is avoided with the full-DG method, which is in agreement with the literature [236,48].

least quadratic) of the element.

Elastic plate ring with finite deformations

This last quasi-static benchmark was first performed in [26]and consists into a thin plate
ring, with inner radiusRi = 6 [m], outer radiusRe= 10 [m] and thicknesst = 3 [cm], with the
geometry depicted in Fig. 4.11 and the properties reported in Tab. 4.3. This ring is cut along
a radius AB, and, on one side of this cutting, the plate is clamped, while a uniform vertical
loadingq = 12000 [N/m] is applied on the other side, see Fig. 4.11. This test has widely
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(b) Full-DG quadratic.
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(c) C0/DG cubic.
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(d) Full-DG cubic.

Figure 4.10: Pinched elasto-plastic hemisphere benchmarkresults for quadrangular elements
there is no locking and results are in agreement with the iterature [236,48].
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Figure 4.11: Elastic non-linear plate ring benchmark. Courtesy of [181].

been used in the literature, seee.g.[9,60,223,224] to compare shell formulations when large
deformations and rotations arise.

This simulation is computed using the suggested discontinuous Galerkin formulations
(C0/DG and full-DG) with 8-nodes bi-quadratic elements and a neo-Hookean model. The
final deformed configuration is illustrated in Fig. 4.12(b),and the displacement evolutions of
nodes A and B located at the cutting are shown in Fig. 4.12(a).Although the mesh experi-
ences large distortions during the deformation process, the solutions are in good agreement
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Property Value
Young modulus [GPa] 210
Poisson ratio [-] 0

Table 4.3: Material properties of the elastic non-linear plate ring benchmark.
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Figure 4.12: Elastic plate ring results forC0/DG and full-DG methods are in agreement with
literature [9,224].

with the ones obtained in the literature, and in particular with:

• The hybrid stress formulation proposed by C. Sansouret al. [224], whose results are
displayed forq<3000 [N/m] (which is the maximum loading considered in this refer-
ence).

• The mixed formulation based on mid-side rotations proposedby P. Areiaset al. [9],
which converges for an applied linear force reaching 12000 [N/m].

This proves once again that the use of the full-DG framework gives results similar to the
existing formulations.

4.6.2 Dynamic benchmarks

We present two dynamic benchmarks with finite deformations to demonstrate the abil-
ity of our formulation to model correctly a structure submitted to a dynamic loading. Both
benchmarks use aJ2-flow constitutive model and are reported in the literature.In particular,
the second example contains experimental data that are usedto validate our new method.

Simply supported perfectly plastic square plate subjectedto uniform loading

This example studies the central deflection history of the square plate, depicted on Fig.
4.13 which is suddenly submitted to a uniform pressurep0 = 20.7 [bars]. This plate has sides
of 254 [mm], a thickness of 12.7 [mm] and its material properties are reported in Tab. 4.4.
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Figure 4.13: Simply supported elasto-plastic plate subjected to uniform loading benchmark.

Property Value
Density [kg/m3] 2768
Young modulus [MPa] 69000
Poisson ratio [-] 0.3
Yield stress [MPa] 207
Hardening modulus [MPa] 0

Table 4.4: Material properties of the simply supported elasto-plastic plate subjected to uniform
loading benchmark.

This benchmark has first been presented by T. Belytschkoet al. [39] and performed again
some years later by S. Swaddiwudhiponget al. [243]. The central deflection is computed
using the explicit algorithm of Hulbert-Chung [123] withoutnumerical dissipation, for both
C0/DG and full-DG formulations and for successively 8× 8 quadratic and cubic quadrangles.
Results are reported on Fig. 4.14 showing the good correlation with the literature for all the
studied elements. This benchmark demonstrates the abilityof the full-DG formulation to
capture accurately the solution in case of a dynamic loading.

Perfectly plastic cylindrical panel

This second dynamic benchmark, presented by T. Belytschkoet al. [39, 45], focuses on a
cylindrical panel loaded impulsively as depicted on Fig. 4.15. The perfectly plastic material
properties are reported in Tab. 4.5. As for the square plate example, this example is simulated

Property Value
Density [kg/m3] 2675
Young modulus [MPa] 72400
Poisson ratio [-] 0.33
Yield stress [MPa] 303
Hardening modulus [MPa] 0

Table 4.5: Material properties of the perfectly plastic cylindrical panel benchmark.
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(b) Full-DG quadratic.
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(c) C0/DG cubic.
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(d) Full-DGcubic.

Figure 4.14: Results of the simply supported elasto-plasticplate subjected to uniform loading
are in agreement with literature [39,243].

Figure 4.15: Perfectly plastic cylindrical panel benchmark. The Grey part is the zone where a
normal initial velocity of 143.51[m/s] is prescribed.

using the explicit Hulbert-Chung time-integration algorithm without numerical dissipation,
and using both theC0/DG and the full-DG formulations. The results obtained witha 4×11
cubic quadrangles are displayed on Fig. 4.16 and are compared with the experimental data
of T. Belytschkoet al. [39, 45]. This Fig. shows that the developed method fits well the
experimental data. Furthermore, snapshots of the deformation process are shown on Fig. 4.17
in the case of the full-DG formulations.
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(b) Full-DG.
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(c) Final symmetry plane outline for the full-
DG.
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(d) Final radial section passing by point A for
the full-DG.

Figure 4.16: Perfectly plastic cylindrical panel results for C0/DG and full-DG formulations
compared with T. Belytschko experiments [39].

MPI benchmarks

The efficiency of the parallel implementation is discussed on two previous examples by
evaluating the speed-up. This number compares the timet1 needed to perform the simulation
on one processor with the timetn needed to solve the simulation onn processors. Ideally, the
speed-up has to be equal to,

speed-uptheoretical =
tn
t1

=
1
n
. (4.195)

Nevertheless in practice, some data have to be exchanged during parallel computations and
these MPI communications require time leading to a lower speed-up. However if the scheme
is well implemented and if the cost of MPI communications is negligible, a value near the
theoretical one is expected.

If the number of interface elements introduced between the mesh partitions is low com-
pared with the number of elements in each partition, then theMPI communications are neg-
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Figure 4.17: Snapshots of the deformations process with thefull-DG formulation for the
perfectly plastic cylindrical panel.

ligible. In practice a finite element mesh includes thousands or millions of elements and is
performed on tens or hundreds of processors and therefore acceptable speed-up can be ob-
tained. To illustrate this, the two explicit benchmarks presented here-above are computed
with thinner meshes on the supercomputer of our University called ”nic3”, which has height
processors per node. For the square plate example a 60× 60 and a 120× 120 elements
meshes are considered, and for the cylinder, a 24× 76 as well as a 48× 152 elements meshes
are used. As these meshes represent a large computational cost on one processor and as we are
interested only by the speed-up measure, only 1% of simulations are computed from one to
sixteen processors with coarser mesh and the thinner meshesare used to perform simulation
from sixteen to ninety-six processors. The speed-up ratiosobtained in all cases are reported on
Figure 4.18. For the plate example, a very good speed-up is obtained until height processors
with the coarser mesh. After, the cost of MPI communicationsis not negligible and therefore
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(b) Cylindrical panel.

Figure 4.18: Speed-up measures are near the theoretical value while the number of elements
by partitions remains large compared with the number of interface elements between parti-
tions.

the speed-up is lower than the theoretical one but it remainsacceptable until 16 processors.
For the cylinder example, an excellent speed-up is founded until height processors. Then for
sixteen processors the reduced number of elements by partition (around one hundred) com-
pared to the number of interface elements (around thirty) explains the lack of efficiency. This
point is highlighted by the simulation with the thinner meshes showing a speed-up near the
theoretical value until ninety-six processors as the number of elements by partition remains
large compared to the number of ghost elements. This condition is generally met for classical
problems where the speed-up of the suggested method will be near the theoretical value. Prac-
tically we will study larger problems, see Section 5.2 with more than one hundred thousand
elements (i.e. problems with more than one million of dofs) with a high speed-up.

4.7 Conclusions

In this chapter, we present an original full-DG formulationof non-linear Kirchhoff-Love
shells. The main difference of this method compared with other shell formulations is to con-
sider discontinuous polynomial approximation between elements. TheC 0 andC 1 continuity
between elements are then ensured weakly by boundary interface terms. These ones are ob-
tained similarly to other DG methods reported in the literature. Furthermore, although the
out-of-plane shearing is negligible in Kirchhoff-Love theory, the stability term related to this
shearing is used to guaranty the continuity of the normal displacement. This results in a one-
field (displacement) formulation contrarily to usual shellimplementations which use mixed
formulation.

As it considers more degrees of freedom, the full-DG formulation is time consuming com-
pared to theC0/DG formulation where onlyC 1 continuity is weakly ensured, whileC 0 con-
tinuity arises from continuous polynomial approximations. Nevertheless, on one hand, this
formulation provides a powerful tool to perform parallel computation. Indeed, as it is demon-
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strated in this chapter, the parallel implementation of theexplicit Hulbert-Chung algorithm
is mandatory with the recourse to DG. Indeed, we suggested anoriginal parallel implemen-
tation, based on ghost elements between partitions to obtain a parallel scheme independent
of the constitutive behavior. On the other hand, as it will bediscussed in the next chapter
the full-DG method developed herein can easily be combined with an extrinsic law to obtain
a powerful and versatile tool to perform fracture mechanicssimulations. In such a frame-
work, the full-DG method has to model the continuum part of the deformation. Therefore,
several numerical benchmarks are presented in this chapterto prove the ability of the full-DG
formulation to be as accurate as other (continuous) shell formulations to model a continuum
mechanics problem.



Chapter 5

Full-DG/ ECL framework for fracture
mechanics of thin bodies

This chapter1 extends the full-DG/ECL framework developed for Euler-Bernoulli beams
in Chapter 3 to Kirchhoff-Love shells. The full-DG formulation was presented in Chapter
4 where it was demonstrated that this method is able to simulate a continuum mechanics
problem with discontinuous elements. In particular, it wasproved that the full-DG method
provides in this case results as accurate as other methods presented in the literature. The ad-
vantage to have recourse to the discontinuous Galerkin method appears clearly in this chapter
when simulating fracture mechanics problem. Indeed it allows inserting an extrinsic cohesive
element during the computation without any change in the topology of the mesh. In fact, the
interface elements naturally present in such a formulationcan be easily replaced by a cohesive
one at the onset of fracture.

Furthermore, as well as for the Euler-Bernoulli beams case, see Chapter 3, we suggest
applying the cohesive principle directly on the reduced stresses to avoid the requirement of
moving the neutral axis during the through-the-thickness crack propagation. Therefore the
model presented in Section 3.3 is originally extended to theshells. As we neglect the out-of-
plane shearing by assumption, the fracture mode III cannot be modeled and we also assumed,
as in Chapter 4, a plane stress state. Therefore it limits the applicability of the suggested
framework to cases where the 3D behavior of the crack is negligible. If it is not the case, we
think that the recourse to a 3D FEmodel or at least a 3D crack model is needed to capture
accurately the crack path. Such a 3D crack model can be combined to a shell formulation
by having recourse to a multiscale approach as suggested by E. Wyartet al. [260]. Therefore
in the following we focus on problems involving mode I or a combination of mode I and
II. This modes combination is realized using the work of G. Camachoet al. [63], which
consider a unique effective opening combining the contributions of the different modes. In
fact, the recourse to an effective opening is an assumption widely admitted in the literature
[73,142,168,194,196,268,274].

1The main applications presented in this chapter are submitted for publication inInternational Journal of
Fracture[34].

149



150 Full-DG/ ECL framework for fracture mechanics of thin bodies

Then, we perform several benchmarks to prove that our model is a powerful and versatile
tool to simulate dynamic fracture mechanics. Indeed, we apply our framework to crack prop-
agation as well as to fragmentation that are two very different fracture phenomena. Moreover,
the loading conditions include concentrate force, pressure, blast and (rigid) impact demon-
strating that the method can be used for different loading conditions. Furthermore, as we
solve the constitutive behavior in the bulk and interface elements before fracture, the frame-
work is suitable in linear small elastic strains as well as elasto-plastic finite deformations
cases, as long as the fracture involves small scale yieldingor brittle materials.

5.1 Combined full-DG/ECL

The idea of combining a full-DG method with an extrinsic cohesive law was pioneered by
J. Mergheimet al.[157] and by R. Radovitzkyet al.[211,228] in order to avoid the difficulties
inherent to the classical cohesive approaches (as lengthy described in the Chapter 2). The main
idea of this method can be summarized by substituting the full-DG weak formulation of shell
(4.95) by,

∑
e

ae
bulk(ϕϕϕh,δϕϕϕ)+∑

s
[(1−αs)as

inter(ϕϕϕh,δϕϕϕ)+αsa
s
cohesive(JϕϕϕhK ,JδϕϕϕK)]

= bext(ϕϕϕh,δϕϕϕ)+bbound(ϕϕϕh,δϕϕϕ) , (5.1)

with,

ae
bulk(ϕϕϕh,δϕϕϕ) = ae

d(ϕϕϕh,δϕϕϕ)+ae
n(ϕϕϕh,δϕϕϕ)+ae

m(ϕϕϕh,δϕϕϕ) , (5.2)

as
inter(ϕϕϕh,δϕϕϕ) = as

nI1(ϕϕϕh,δϕϕϕ)+as
nI2(ϕϕϕh,δϕϕϕ)+as

nI3(ϕϕϕh,δϕϕϕ)+
as

mI1(ϕϕϕh,δϕϕϕ)+as
mI2(ϕϕϕh,δϕϕϕ)+as

mI3(ϕϕϕh,δϕϕϕ)−
as

sI3(ϕϕϕh,δϕϕϕ) , and (5.3)

as
cohesive(JϕϕϕhK ,JδϕϕϕK) the bi-(non)-linear form of the cohesive terms that has to bedefined.

Furthermore, the different bulk termsae
d(ϕϕϕh,δϕϕϕ) (4.62),ae

n(ϕϕϕh,δϕϕϕ) (4.63),ae
m(ϕϕϕh,δϕϕϕ) (4.64),

as well as the interface termsas
nI1(ϕϕϕh,δϕϕϕ) (4.77), as

nI2(ϕϕϕh,δϕϕϕ) (4.87), as
nI3(ϕϕϕh,δϕϕϕ) (4.90),

as
mI1(ϕϕϕh,δϕϕϕ) (4.78),as

mI2(ϕϕϕh,δϕϕϕ) (4.88),as
mI3(ϕϕϕh,δϕϕϕ) (4.91) andas

sI3(ϕϕϕh,δϕϕϕ) (4.92) can be
replaced by their linear counterparts in case of small deformations (see Section 4.4.2). Notice
that compared with the Euler-Bernoulli beams case Eq. (3.110) there is no parameterγs in
front of the termas

sI3(ϕϕϕh,δϕϕϕ). In fact, this parameter is introduced for the beams to ensure
the continuity of the normal displacement until the end of the fracture process, but in the case
of shells this continuity is ensured implicitly thanks to the adjacent Gauss points making the
recourse to the parameterγs useless.

In Eq. (5.1),αs is a Boolean value, which switches from ”false” to ”true” whena fracture
criterion is met. Indeed, before onset of fracture, Eq. (5.1) corresponds to the weak form of the
shell problem (4.95) or (4.148), and thus inherits from its numerical properties of consistency
and stability. Upon onset of fracture, the interface terms related to the DG framework are
replaced by an extrinsic cohesive law, which has still to be defined. Note that in practice the
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Booleanαs is evaluated at each Gauss points of interface elements and therefore all Gauss
points of an element are not necessarily fractured.

As it is discussed in Chapter 3 for beams, when considering thetheory of thin structures, it
is very difficult to separate the thickness part under tension from the part under compression,
during a through-the-thickness crack propagation. So it was suggested, with success for Euler-
Bernoulli beams, to apply the cohesive principle to the resultant stressesnα andm̃α, which
appear in thin bodies equations. The same concept is extended herein to take into account a
mode I or II fracture, or a combination of modes I and II simultaneously.

Toward this end, an effective opening is defined herein for each mode and the combina-
tion of both modes is performed by following the idea suggested by G. Camachoet al. [63].
Note that in Kirchhoff-Love theory the out-of-plane shearing is neglected, which implies the
impossibility to take into account a fracture in mode III.

− +
ϕϕϕ(0),2

ϕϕϕ(0),1

Figure 5.1: Local basis vectors on the interface element tangential to the shell surface. The
interface is drawn with dotted line. By convention,ϕϕϕ(0),1 is parallel andϕϕϕ(0),2 is normal to the
interface.

Before developing the cohesive law, we assume that the convected basis, tangential to the
shell, at the interface element obeys the following rules: vectorϕϕϕ(0),1 is parallel to the interface
element andϕϕϕ(0),2 is perpendicular to the interface element, as it is illustrated on Fig. 5.1. In
the linear range (4.148), everything can be computed in the reference convected basisϕϕϕ0,α.
On the contrary, in the non linear range (4.95) the differentquantities have to be evaluated in
the current convected basisϕϕϕ,α. Thus we unify both cases by using the notationϕϕϕ(0),α.

5.1.1 Mode I

Let us first discuss the case of the mode I opening, see Fig. 5.2. Considering the basis
of the interface element as shown on Fig. 5.1, the resulting efforts are related to an effective
opening whose aim is to consider the two parts (tension and bending) of the normal opening
represented on Fig. 5.2.

Similarly to what has been suggested for Euler-Bernoulli beams (see Section 3.3), an
original normal effective opening, corresponding to the mode I, is deduced from the tension
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JuK⋆·ϕϕϕ(0),2

||ϕϕϕ(0),2||

JtK⋆·ϕϕϕ(0),2

||ϕϕϕ(0),2||

Figure 5.2: The two components of the normal opening∆⋆
n, view perpendicular to the shell.

The neutral axis is drawn with a dotted line.

and bending openings

∆⋆
n = (1−ηI )

JuK⋆ ·ϕϕϕ(0),2∣∣∣∣ϕϕϕ(0),2

∣∣∣∣ ±ηIh
eq
I

JtK⋆ ·ϕϕϕ(0),2∣∣∣∣ϕϕϕ(0),2

∣∣∣∣ . (5.4)

N

N0

∆⋆∆c

Etension

(a) Resultant membrane stress.

M

M0

∆⋆∆c

Ebending

(b) Resultant bending stress.

Figure 5.3: Linearly decreasing monotonic law.

In this expressionJuK⋆ andJtK⋆ are respectively the effective openings in displacement
and in rotation, resulting from the use of a DG method before fracture activation. Indeed at
fracture initiation the opening in displacementJuK andJtK are not exactly equal to zero due to
the weak enforcement of compatibility. In order to have nullopenings at fracture initialization
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these initial valuesJuK0 andJtK0 are subtracted fromJuK andJtK, yielding

JuK⋆ = JuK− JuK0 , (5.5)

JtK⋆ = JtK− JtK0 . (5.6)

Moreover, the parameterηI ensures that the coupling between the resulting tensile stress and
the resulting bending stress respects the energetic balance (i.e. that the fracture process re-
leases the correct amount of energy), which is obtained for

ηI =

1
heq

I

∣∣m̃22
0

∣∣

n22
0 + 1

heq
I

∣∣m̃22
0

∣∣ , (5.7)

wheren22
0 andm̃22

0 are respectively the traction effort and the bending coupleat fracture ini-
tialization. The factorheq

I in Eqs. (5.4) and (5.7) ensures the respect of energetic balance, as
it is shown below for a pure bending case. Considering the linearly decreasing cohesive law
as on Fig. 5.32,

〈
m̃22〉

coh= m̃22
0

(
1− ∆⋆

n

∆c

)
, (5.8)

assuming that the bending leading to fracture is equivalentto a tensile stress, the critical
bending stress writes,

m̃22
0

heq
I

= hσc , (5.9)

and using the definition of the resulting normal opening (5.4),

∫ ∆rc

0

〈
m̃22〉

cohd

[
JtK⋆ ·ϕϕϕ(0),2∣∣∣∣ϕϕϕ(0),2

∣∣∣∣

]
=

∫ ∆c

0
± 1

heq
I

〈
m̃22

0

〉(
1− ∆⋆

n

∆c

)
d∆⋆

n

=
1

heq
I

heq
I hσc

∆c

2
= hGc , (5.10)

where∆rc =
JtK⋆c·ϕϕϕ(0),2

||ϕϕϕ(0),2|| = 1
heq

I
∆′

c is the critical opening in rotation, for which the fracture process

is completed, whereGc andσc are respectively the fracture energy and a spall stress depending
on the material only, where∆c =

2Gc
σc

is critical opening for a linear cohesive law (see Fig. 5.3),
and where± sign depends on the direction of bending. Let us remark that in relation (5.4),
sign+ is used ifm̃22

0 < 0, while sign− is used otherwise. The assumption (5.9) provides
a relation to compute the value ofheq

I . For a pure bending problem in linear elasticity the
fracture at skin occurs for,

m̃22
0 =

h2σc

6
, (5.11)

2The demonstration remains valid with another cohesive law.
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and thus, using Eq. (5.9)heq
I = h

6.
Nevertheless, in the case of a tension/bending coupled problem, the equivalent thickness

has to be computed considering the bending part of the stressleading to,

heq
I =

m̃22
0

hσc−n22
0

, (5.12)

which under linear elasticity hypothesis, as fracture occurs when6m̃22
0

h2 +
n22

0
h = σc becomes,

heq
I =

h
6
, (5.13)

as presented for Euler-Bernoulli beam in Chapter 3.

5.1.2 Mode II

Figure 5.4: The two components of the tangential opening∆⋆
t . Before opening, the element

axes are the same and the two crack lips are in the same plane.

Following exactly the same argumentation for the tangential effective opening in mode II
as drawn on Fig. 5.4 reads,

∆⋆
t = (1−ηII )

JuK⋆ ·ϕϕϕ(0),1∣∣∣∣ϕϕϕ(0),1

∣∣∣∣ ±ηII h
eq
II

JtK⋆ ·ϕϕϕ(0),1∣∣∣∣ϕϕϕ(0),1

∣∣∣∣ . (5.14)

In this expression, the parameterηII ensures that the coupling between the resulting shear
stress and the resulting torsion respects the energetic balance, which is obtained for

ηII =

1
heq

II

∣∣〈m̃21
0

〉∣∣
〈
n21

0

〉
+ 1

heq
II

∣∣〈m̃21
0

〉∣∣ , (5.15)
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wheren21
0 andm̃21

0 are respectively the shearing effort and the torsion torqueat fracture initial-
ization and where the equivalent thickness of mode II ensuring the energetic balance is given
by,

heq
II =

m̃21
0

hτc−n21
0

=
m̃21

0

hβσc−n21
0

, (5.16)

whereτc = βσc is the shearing critical strength and whereβ = KIIc
KIc

is the fracture mode cou-

pling parameter. Finally, sign+ is used in Eq. (5.14) when ˜m21
0 < 0, and otherwise the sign

− is used, following the same convention given for ˜m22
0 in mode I.

5.1.3 Modes Combination

Now the combination between modes I and II is realized in a similar way as achieved by
several authors [73, 142, 168, 194, 196, 268, 274] when considering Cauchy stress tensors for
3D TSL. This method, which was first suggested by G. Camachoet al. [63], and extended
a few years later by M. Ortizet al. [191], considers an effective stressσeff to detect fracture
initialization, with the criteria:σeff > σc, and allows fracture in compression happening if the
shearing stress is sufficiently large,

σeff =

{ √
σ2+β−2τ2 if σ ≥ 0

1
β ≪ |τ|−µc |σ| ≫ if σ < 0

. (5.17)

In this criterion,σ andτ are respectively the normal and tangential Cauchy stress at the in-
tegration point where fracture is evaluated andµc is the friction parameter, depending on the
material only. The operator≪ •≫ is equal to• if • ≥ 0 and 0 otherwise. The initiation cri-
terion (5.17) can still be considered in the present work. Indeed, from the resulting stresses of
the shell formulation, the Cauchy stress tensor can be directly evaluated through-the-thickness
of the body, either analytically for linear elasticity or atSimpson points on the thickness for
non-linear shells.

Furthermore, in the coupled case, the equivalent thicknessof modes I and II are determined
respectively with the values ofσ= σI andτ= τII reached in Eq. (5.17) whenσeff = σc leading
to,

heq
I =

m̃22
0

hσI −n22
0

and, (5.18)

heq
II =

m̃21
0

hτII −n21
0

. (5.19)

However, in this new formulation for thin structures the cohesive law should be written in
terms of resulting values instead of Cauchy stress, and some quantities and notations have to
be first introduced:
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• The effective opening∆⋆ is a combination of the two effective openings∆⋆
n (5.4) and∆⋆

t
(5.14). So∆⋆ allows taking into account a coupling between the two fracture modes. Its
value is an extension of the formulation, presented by M. Ortiz et al. in [191], to thin
structures:

∆⋆ =

√
≪ ∆⋆

n ≫2 +β2∆⋆
t

2 . (5.20)

The use of the operator≪ •≫ is mandatory. Indeed if the rupture occurs in compres-
sion, the normal opening has to be equal to zero, as in compression the normal opening
is negative, which means that there is a penetration betweenelements. Obviously this
latter case has no physical meaning and forces have to be introduced between elements.
In place of contact forces, the DG termsas

nI2(ϕϕϕh,δϕϕϕ) andas
nI3(ϕϕϕh,δϕϕϕ) (see equations

(4.87) and (4.90)) can also be used to weakly enforce a zero penetration.

• The critical opening∆c is the opening for which the fracture process is completed,
meaning no remaining forces exist between the fractured sides. Therefore, for this
value, the energy released has to be equal toGc, and for linear decreasing monotonic
cohesive laws,∆c =

2Gc
σc

.

• The maximal effective opening reached during the simulation ∆⋆
max, is an internal vari-

able tracking the maximum opening history.

Now the cohesive law can be formulated in terms of these new definitions. As it is well
known that for brittle materials the shape of the cohesive law has little influence on numerical
results, as long as the law is monotonically decreasing, a simple linear decreasing law is
considered in this work. In case of unloading the effort decreases linearly to zero (see Fig.
5.3). By application of cohesive principle on stress resultant vectors, the following cohesive
model reads,

1. Tensile case (σ ≥ 0 at mid-surface)3,

• if ∆⋆ ≥ ∆⋆
max (loading case),

〈
m̃22〉

coh = m̃22
0

(
1− ∆⋆

∆c

)
∆⋆

n

∆⋆
(5.21)

〈
n22〉

coh = n22
0

(
1− ∆⋆

∆c

)
∆⋆

n

∆⋆
(5.22)

〈
m̃21〉

coh = m̃21
0 β
(

1− ∆⋆

∆c

) |∆⋆
t |

∆⋆
(5.23)

〈
n21〉

coh = n21
0 β
(

1− ∆⋆

∆c

) |∆⋆
t |

∆⋆
(5.24)

3Note that the cohesive zone is in term of the traction componentsnαβ and notñαβ even in the linear range.
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• if ∆⋆ < ∆⋆
max (unloading case),

〈
m̃22〉

coh = m̃22
0

(
∆⋆

∆⋆
max

− ∆⋆

∆c

)
∆⋆

n

∆⋆
(5.25)

〈
n22〉

coh = n22
0

(
∆⋆

∆⋆
max

− ∆⋆

∆c

)
∆⋆

n

∆⋆
(5.26)

〈
m̃21〉

coh = m̃21
0 β
(

∆⋆

∆⋆
max

− ∆⋆

∆c

) |∆⋆
t |

∆⋆
(5.27)

〈
n21〉

coh = n21
0 β
(

∆⋆

∆⋆
max

− ∆⋆

∆c

) |∆⋆
t |

∆⋆
(5.28)

2. Compression case (σ < 0 at mid-surface),

• if ∆⋆ ≥ ∆⋆
max (loading case),

〈
m̃21〉

coh = m̃21
0

(
1− ∆⋆

∆c

)
(5.29)

〈
n21〉

coh = n21
0

(
1− ∆⋆

∆c

)
(5.30)

• if ∆⋆ < ∆⋆
max (unloading case),

〈
m̃21〉

coh = m̃21
0

(
∆⋆

∆⋆
max

− ∆⋆

∆c

)
(5.31)

〈
n21〉

coh = n21
0

(
∆⋆

∆⋆
max

− ∆⋆

∆c

)
(5.32)

where in this last case the condition|∆
⋆
t |

∆⋆ = 1
β (cf. equation (5.20)) is taken into account.

The use ofn22
0 , m̃22

0 , n21
0 , m̃21

0 allows guarantying the continuity of stresses at fracture
initialization. If this continuity is not ensured, K. Papoulia et al. [196] have demonstrated
that there are some convergence problems. Furthermore, as at fracture initialization the ratios
∆⋆

n
∆⋆ and |∆⋆

t |
∆⋆ are undetermined, their initial values are chosen respectively equal to one and1β

in order to ensure the continuity of efforts. It must be noticed that the choice of tensile or
compressive case is performed at fracture initialization.Therefore, although unloading and/or
compression/tension shifts can be accounted for during thefracture process, as shown on Fig.
5.3, this model is not able to shift from a fracture process intension to a fracture process in
compression (e.g.start the fracture in compression and end up the fracture in tension). Finally,
with these definitions, the cohesive termsas

cohesive(JϕϕϕhK ,JδϕϕϕK) of equation (5.1) can be written

as
cohesive(JϕϕϕhK ,JδϕϕϕK) =

∫

s

〈 j̄n〉coh· JδϕϕϕKν−α d∂Ae

+
∫

s

〈 j̄λhm̃〉coh· JδtKν−α d∂Ae, (5.33)
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where the components of〈n〉coh and〈m̃〉coh are computed thanks to the set of equations (5.21
- 5.32), with others components of the resultant stresses equal to zero. Note that all these
definitions depend on the choice of manifold used on the interface. As mentioned earlier, this
paper follows this convention:ϕϕϕ(0),1 is parallel to the interface andϕϕϕ(0),2 is perpendicular to
the interface, as it is illustrated on Fig. 5.1.

5.2 Full-DG/ECL framework applications

The full-DG formulation presented in Chapter 4 and the extrinsic cohesive model devel-
oped above are combined in this section to solve several fracture mechanics problems. As
previously discussed our suggested framework is suitable to dynamic fracture mechanics and
we restrict the application to this field as it is the topic of this thesis. Nevertheless we try to
cover a large variety of phenomena in the dynamic range. In particular, it is proved herein that
our framework can be applied to crack propagation as well as fragmentation which are two
very different fracture phenomena. The first one is investigated in linear and non-linear range
and the second one is restricted to linear range. We validateour method by comparing results
with numerical and experimental data coming from the literature.

5.2.1 Dynamic crack propagations

We present in this section several benchmarks which study the dynamic crack propagation
in initially notched specimen.

Mode I dynamic crack propagation: spall test of a notched specimen

This example, performed by P. Zavattieri [269], considers the dynamic crack propagation
of the single-edge notched specimen represented on Fig. 5.5. The different material properties
are summarized in Tab. 5.1. Contrarily to [269], where cohesive elements are only inserted
along a predefined crack path, with this full-DG framework, the crack cana priori follows
any direction. As the crack should propagate straightforwardly, for symmetry reasons, the test
is numerically performed using structured and unstructured meshes, successively, in order
to show the convergence of the method for both mesh configurations. Results on a structured
mesh of 3200= 40×80 (width× length) bi-cubic quadrangles are considered as the reference
solution.

The test is performed using an explicit time integration algorithm without numerical dis-
sipation (spectral radius equal to one). The forcevs. displacement curve at the top edge of
the plate is illustrated on Fig. 5.6(a), where some characteristic points obtained by P. Zavat-
tieri [269] are also reported, showing an excellent correlation between the results. This force
vs. displacement curve shows the effect of a wave propagation inthe bar, reflecting on the
symmetry axis before propagating the crack. Fig. 5.6(b) plots the energy released during the
simulation with the structured mesh:

G=
Wext−Wint

h∆a
, (5.34)
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a0 = 26 [mm]

w= 127 [mm]

thickness
h= 6 [mm]

v= 1 [m/s]
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L
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30
0

[m
m

]

Figure 5.5: Single-edge notched specimen.

Property Value
Young modulus [GPa] 200
Poisson ratio [-] 0.3
Density [kg/m3] 7850
Fracture energy [J/m2] 12250
Fracture stress [MPa] 700
Coupling parameter [-] 1
Frictional coefficient [-] 0.

Table 5.1: Material properties for the single-edge notchedtest.

whereWext is the work of external forces,Wint is the work of internal forces,h is the thickness
and∆a is the total increment of crack length (101 [mm] in this case). The graphs shows thatG
increases (linearly) only during crack propagation and stabilizes itself at 12.021 [kJ/m2] which
is close to the material fracture energy of 12.250 [kJ/m2] within a 1.8% relative gap. This test
demonstrates the ability of the presented fracture model todissipate the correct amount of
energy during the fracture process.

Furthermore, this example is also simulated with two unsymmetric unstructured meshes.
These two meshes are built with quadratic 6-node triangles,which are generated by prescrib-
ing a distance between two nodes at the crack tip of 2.5 and 5 [mm] successively. Further from
the crack, the element size is twice larger. These specifications produce a coarse mesh of ap-
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(a) Forcevs.displacement.
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(b) Released energy.

Figure 5.6: Results of single-edge notched specimen for a structured mesh are in agreement
with [269].

proximately 900 elements and a fine mesh of 2600 elements. Twosimulations are performed
with the coarse mesh, one without numerical dissipation andthe other one with a low numer-
ical damping (spectral radius of 0.9). Crack paths obtained with these unstructured meshes
are illustrated on Fig. 5.7. It can be seen, that for the coarse mesh, a crack bifurcation appears
if numerical damping is not introduced Fig. 5.7(a), while the use of numerical damping pre-
vents this behavior, Fig. 5.7(b). The crack path obtained with the finer mesh and a spectral
radius of 0.9 is illustrated on Fig. 5.7(c). In the three cases some elements blew up during
the simulation. This phenomenon is purely numerical and occurs due to the combination of
the fracture criterion and of the Gauss integration performed on the interface. The fracture is
introduced at a Gauss point when a effective stress is largerthan the characteristic material
strength (cfr. Eq. (5.17)). Thus, the criterion can be satisfied at two Gausspoints of adjacent
edges at the same time step (see Fig. 5.9 for quadratic triangles). This is particularly true for
small elements as the integration points on two different edges can be close. This eventually
can lead to the blow up of an element. One way of avoiding this is to reduce the time step, or
to give a statistical distribution of critical stress for the interface elements [276].

When analyzing the curve forcevs.displacement illustrated on Fig. 5.8 it is observed that
the results for the different meshes are in agreement. All curves are similar, which demon-
strates that the unstructured meshes predict an excellent global result even if they don’t repro-
duce the exact crack path. In particular, the finer mesh, shows a relative error of 2.7 % on
maximal force, and of 4.3 % on the time where the force vanishes to zero.

Three-point bending impacted plate

This benchmark focuses on the simply supported notched plate presented above which is
dynamically impacted in its center by a rigid cylinder with aprescribed velocity of 1 [m/s].
The setup of this benchmark, including the dimensions, is depicted on Fig. 5.10(a) and the
material values are reported in Tab. 5.2. In fact, the crack propagation was previously reported
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(a) Coarse mesh without dissipation.

(b) Coarse mesh with numerical damping.

(c) Fine mesh with numerical damping.

Figure 5.7: Crack path obtained with unstructured meshes forthe tensile test. The black line
draws the reference crack path. The displacements are magnified 10 times.

in the literature by P. Zavattierri [269], who used shell elements combined with an intrinsic
cohesive law for which cohesive elements are pre-inserted along the crack path. Furthermore
he used a fracture criterion based on a maximal bending momentum, which is transformed
herein to a criterion on the stress (cfr. Section 5.1.3). The mesh used, Fig. 5.10(b), has
40 × 80 cubic quadrangle elements. Finally, although the crack path is well defined for
this case, due to the loading conditions, in our framework the crack can propagate along
any interface elements. This shows that the stress wave propagation is not modified by the
DG/ECL framework.

The simulation is performed on four CPUs using the Hulbert-Chung [123] time-integration
algorithm, and without numerical dissipation. The crack propagation over time is displayed on
Fig. 5.11 which also shows the results obtained by [269]. In both cases the crack propagation
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Figure 5.8: Small variations of the force-displacement relation are observed with different
meshes for the tensile test.
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1
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crack

Figure 5.9: Activation of fracture at two Gauss points (+) ondifferent edges. The initiation
can occur simultaneously at both Gauss points of group 1 if the rupture criterion is reached at
both points. The criterion can also be met later on for groups2a and 2b independently. If all
integration points are broken the element can blow up.

is initiated at the same time and the plate is broken at the same time. This example demon-
strates that our fracture framework models with good accuracy the bending, in combination
with contact.

Blast of a notched pressurized cylinder

A cylinder, with a diameter of 1.2 [m], a length of 1 [m] and with a thickness of 1 [mm], is
blasted. It exhibits an initial crack of 56 [mm] centered on its height. It is made of Al2024-T3
aluminum alloy, which has the properties given in the Tab. 5.3. This example suggested by
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Figure 5.10: Setup of the 3-point bending plate as previously presented by [269].

Property Value
Young modulus [GPa] 200
Poisson ratio [-] 0.3
Density [kg/m3] 7850
Fracture energy [J/m2] 12250
Fracture stress [MPa] 2170
Coupling parameter [-] 1
Frictional coefficient [-] 0.

Table 5.2: Material properties for the single-edge notchedtest in bending.

R. Larssonet al. [133] is studied with two constitutive behaviors: a Hooke law and and a
J2-flow elasto-plastic law. Indeed, the obtained results withan elastic material law were not
in correlation with experiments, as mentioned by R. Larssonet al. [133], who suggested to
introduce an elasto-plastic finite deformation model to study the problem in a more realistic
way.

Note that, contrarily to the elastic cases were the fractureenergy is artificially increased
to 67 [kJ/m2], as suggested by R. Larssonet al. [133], to take into account the plastic work,
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Figure 5.11: Crack propagation for the 3-point bending plate. Results are in agreement with
[269].
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Figure 5.12: Improvement of crack speed computation due to the consideration of elasto-
plastic finite deformations.

the elasto-plastic behavior allows to use the real materialvalues given R. Larssonet al. [133].
Furthermore, in order to avoid unphysical blow up of elements during crack propagation,
the idea suggested by F. Zhouet al. [276], who used statistical distributions for the fracture
strengthσc, is considered. This strength can vary in a range around its nominal value (10% for
the presented application) at each Gauss point of the interface elements which is physically
justified by the material imperfections.

This notched cylinder is loaded by a blast wave, which is simulated using the internal
pressure evolution depicted on Fig. 5.12(a). The cylinder is initially pressurized atp0 = 2
[bars]. This initial pressure is applied in a quasi-static way. As the use of an implicit scheme
is prohibitive due to the very thin mesh used to capture the crack path, the dynamic relaxation
presented by M. Papadrakakis [195], which allows to performa quasi-static analysis with an
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Property Value
Young modulus [GPa] 73.1
Poisson ratio [-] 0.33
Density [kg/m3] 2780
Yield stress [MPa] 350
Hardening modulus [MPa] 800
Fracture strength [MPa] 650±65
Fracture energy [kJ/m2] 19 or 67

Table 5.3: Material properties of the Al2024-T3 alloy used to study the blast of a notched
pressurized cylinder.

explicit dynamic scheme, is used to initiate the pressure inthe cylinder, see Section 4.5 for a
description of the method, before shifting to a classical explicit time integration.

Taking advantage of the problem symmetry, only the top side of the cylinder is modeled,
successively, with 5500 bi-cubic quadrilateral elements and with an unstructured mesh of
18536 cubic triangles. These meshes ensure a mesh size smaller than the cohesive size (2.2),
which is equal to 6 [mm] in this case. The simulations are performed on height processors
using the explicit Hulbert-Chung scheme [123] including a low numerical dissipation (spectral
radius of 0.9).

The speeds of crack propagation, measured experimentally and obtained by XFEM method
by R. Larssonet al. [133], is also obtained with the presented DG/ECL framework for linear
small strains and for elasto-plastic finite deformations. These speeds of crack propagation are
shown in Fig. 5.12(b). As predicted by R. Larssonet al. [133], the introduction of plasticity
allows to obtain results in agreement with experiments evenif the speed at the beginning of
the crack propagation seems faster in our model. After a propagation of 0.18 [m] the model
matches well the experimental data. The crack path predicted by the simulations is shown on
Figs. 5.13 and 5.14, respectively for triangular and quadrangle elements. A straight propaga-
tion is observed with quadrangle elements, so only the final crack path is depicted. With the
unstructured triangular mesh, due to the heterogeneity in the mesh, the crack initially deviates
but afterward it propagates straight before bifurcation when reaching the clamped part, as ob-
served in the experimental data Fig. 5.13(h). As expected, an unstructured mesh converges
toward the solution, but the structured mesh was used as comparison.

5.2.2 Dynamic fragmentations

The results previously presented demonstrate the ability of the full discontinuous Galerkin
/ extrinsic cohesive law framework to propagate an initial crack. Hereafter, we investigate the
ability of such a model to initiate cracks. An interesting case of multiple crack initiations is the
case of fragmentation. Recently, several authors investigate such a problem with 3D elements
(in place of shell elements). On one hand, R. Radovitzkyet al.[211] studied the fragmentation
of a thick plate due to the impact of a rigid sphere. On the other hand, S. Levy [137] applied
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Figure 5.13: Crack propagation with the triangular mesh. Picture (h) comes from [133].

the same framework to the uniform expansion of a hollow sphere. This last case, can be solved
with the linear shell formulation (4.148) when the thickness is small enough (the thickness of
the sphere is 0.1 [mm] for an external radius of 10 [mm], which allows modelling the sphere
as a thin body. Furthermore, the literature reports other fragmentation studies as, among
others, the one presented by F. Zhouet al. [275]. In this reference the fragmentation of a
plate ring under radial uniform expansion is studied with a classical extrinsic cohesive law for
2D elements. As they used a continuous formulation only serial computations were performed
with a high computational time. The DG/ECL framework presented in this thesis allows using
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(a) Cylinder at the beginning of the simula-
tion.
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(b) Cylinder at the end of the simulation.

Figure 5.14: Straight crack path with the quadrangular mesh.

a parallel implementation and leads to a reduced computational time.
In the following, through the study of two benchmarks, a successful comparison between

the 3D formulations of the literature and the shell framework presented herein is carried on.

Defect model: Weibull distribution

The mechanism of fragmentation is mainly controlled by the distribution of the defects
in the specimen. Indeed, for a specimen made of a perfect material and uniformly loaded the
fracture takes place in each point at the same time. Thus, thenumber of fragments obtained by
a finite element analysis is equal to the number of elements contained in the mesh. On the con-
trary, in a component made of a non perfect material the fracture initiations of multiple cracks
take place near the defects, which are the locations of stress concentration in the microstruc-
ture. Obviously, fracture occurs earlier at these stress concentrations and forms fragments
composed of several elements. Thus the model of these defects is not straightforward in a
finite element analysis as they cannot be represented by simple parameters. So a statistical
distribution of the cohesive strength is commonly used as suggested by [80,136,137,275].

In this section we consider a statistical distribution of the strengthσc to be consistent
with the fragmentation data of the literature based on the work of W. Weibull [255]. He
performed some experiments which demonstrated that the tensile loading leading to fracture
can vary for specimens of the same material and of the same geometry. Based on these
experiments he suggested an empirical formula for the probability of fracture, accounting
for the heterogeneity of the material,

Pf (σ,V) = 1−exp−N(σ,V) , (5.35)

whereσ is the value of the equivalent stress and whereV is the volume of the specimen. The
functionN(σ,V) increases necessarily monotonically withσ and, therefore, [255] suggested,
based on his experimental data, to employ a power law,

N(σ,V) =

{
V
V0

(
σ−σmin

σ0

)m
if σ ≥ σmin

0 otherwise
, (5.36)
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whereV0 is an arbitrary normalizing volume. Furthermore the other parametersσ0, σmin and
m, representing respectively a stress scale factor, the minimal value for which the fracture can
occur and the Weibull modulus, are all characteristics of the material.

The work of Weibull can be applied on the cohesive strength, which is then computed
from

F(σc) = 1−exp
−
(σc−σc,min

σ0

)m

. (5.37)

In practice it is easier to generate a uniform distribution between zero and one, from which a
Weibull distribution can be easily obtained,

σcs = σ0(− log(xrand))
1
m +σc,min , (5.38)

whereσcs is the value of the cohesive strength for the interfaces and withxrand a random
value coming from a uniform distribution between zero and one.

Therefore in this following, the simulations are performedwith the linear full discontin-
uous Galerkin Kirchhoff-Love shell formulation presentedin the Chapter 4. The fracture
initiation is modeled by cohesive interface elements as described in Section 5.1. The cohesive
strength of these elements follows a Weibull distribution,see Eq. (5.38).

Fragmentation of a plate ring

Figure 5.15: Geometry of the plate ring fragmentation.

The first example of fragmentation presented herein focuseson a thin plate ring under
radial expansion, as shown on Fig. 5.15, and with the material properties given in Tab. 5.4.
The fragmentation is consequent to a centrifugal force thatis simulated, as suggested by F.
Zhouet al. [275], by prescribing on each mass pointi a body force computed as,

fi(r) = miw
2r , (5.39)

wheremi is the nodal mass,r is the radial vector of nodei and wherew is the angular velocity
given by,

w =

{ w0t
2πt0

if t ≤ t0
w0
2π if t > t0

. (5.40)



5.2 Full-DG/ECL framework applications 169

0 200 400 600 800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

σ
c
 [MPa]

pd
f [

−]

 

 

m=5
m=40

Figure 5.16: Weibull distribution: the more a material is homogeneous, the more the Weibull
modulus is high and the more the pdf (probability density function) is concentrated around
the peak value.

Property Value

Young modulus [GPa] 320
Poisson ratio [-] 0.3
Density [kg/m3] 3300
Fracture energy [J/m2] 200
Minimal fracture strength [MPa] 0
Weibull modulus [-] 5 or 40
fracture strength scale factor [MPa] 450
Coupling parameter [-] 1
Frictional coefficient [-] 0.

Table 5.4: Material properties of the plate ring fragmentation.

Valuesw0 = 60000 [rps] andt0 = 75 [µs] are considered for the presented simulations.
The ring is meshed with 32380 quadratic triangles to obtain more or less the same number

of interfaces than in the reference [275]. The simulation isperformed on 16 CPUs for different
Weibull moduli (5 and 40) with the explicit [123] time-integration algorithm associated to low
numerical dissipation (spectral radius = 0.95). The stability parameters used areβ1 = β2 = 10.
In this case, as the out-of-plane displacement is prescribed, the value ofβ3 has no influence
on the results. Two Weibull moduli are successively considered, which give the strength
distributions reported in Fig. 5.16.

For both Weibull moduli, the fragmentation processes, displayed on the Fig. 5.17 form= 5
and Fig. 5.18 form= 40, are coherent with the results provided by [275]. Form= 5, cracks
initiate at the inner radius at approximately 28 [µs] and propagate more or less radially (with
crack branching) toward the outer radius. With a Weibull modulus of 40, more cracks (i.e.
smaller fragments) are generated and they appear later thanfor m= 5. This observation is in
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Figure 5.17: Fragmentation process of the plate ring with a Weibull modulusm= 5. Results
are in agreement with [275].

agreement with [275] who noticed that “a high Weibull modulus implies a fairly homogeneous
material, it is not surprising that under sufficient loadingconditions, crack initiation occurs at
more locations [...] the ring rotation speed at crack initiation should be an increasing function
of the Weibull modulus”. However in our simulations, form= 40 the cracks reach the outer
side after 44 [µs] instead of the 36 [µs] reported by [275].

Fragmentation of a sphere

The second fragmentation test considers a thin sphere underuniform expansion, as previ-
ously analyzed by S. Levy [137] with 3D elements. The material parameters of the ceramic
sphere are reported in Tab. 5.5. The symmetry of the sphere istaken into account and only
1/8th of the sphere is meshed with 144528 quadratic triangles. As the mesh corresponds to
the mid-plane of the sphere, its radius is equal to 9.95[mm] for a thickness of 0.1[mm].

Note that the very thin mesh used to discretize the sphere leads to consider a problem
with approximately 2.6 millions of unknowns. This large number of degrees of freedom
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Figure 5.18: Fragmentation process of the plate ring with a Weibull modulusm= 40. Results
are in agreement with [275].

can be treated by the parallel implementation presented in Section 4.5, and an acceptable
computational time is obtained using 32 CPUs (about height hours). The stability parameters
are set, to 10, 10 and 0.0001 respectively forβ1, β2 andβ3. The uniform expansion of the
sphere (centered in(0,0,0)) is simulated by prescribing an initial velocity profile following,

vx(x,y,z) = ε̇x, (5.41)

vy(x,y,z) = ε̇y, and, (5.42)

vz(x,y,z) = ε̇z, (5.43)

whereε̇ is the strain rate. Three different strain rates are successively considered: 1e4, 2e4

and 1e5[s−1].
Fig. 5.19 represents the time evolutions of the kinetic and potential energy of the sphere

loaded with a strain rate of 1e5
[
s−1
]
. As an initial velocity is prescribed the kinetic energy

is initially different from zero and decreases with the increase of the potential energy. This
one reaches a peak value at timetpeak when part of the potential energy is released during
the fracture process which occurs at that time. Afterward, the kinetic and potential energies
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Property Value

Young modulus [GPa] 370
Poisson ratio [-] 0.22
Density [kg/m3] 3900
Fracture energy [J/m2] 50
Minimal fracture strength [MPa] 264
Weibull modulus [-] 2
fracture strength scale factor [MPa] 50
Coupling parameter [-] 1
Frictional coefficient [-] 0

Table 5.5: Material properties for the fragmentation of a sphere.

Figure 5.19: Kinetic and potential energy over time for the fragmentation of a sphere with a
strain rate of 1e5

[
s−1
]

.

stabilize. The final time of our simulation is chosen as twicethe value oftpeak, which differs
for the different strain rates. Furthermore, the final configuration of the sphere is displayed on
Fig. 5.20 in the case of a strain rateε̇ = 1e4[s−1].

Fig. 5.21 represents the mass distribution and the number offragments obtained in terms
of the loading strain ratėε. In the presented results, the dust-like fragments (i.e. the fragments
composed of only one or two elements) are neglected as suggested by S. Levy [137]. The
pictures show that the results obtained by the framework presented in this thesis are in agree-
ment with the mass distribution and the number of fragments predicted by the work of [137],
at the exception of the largest strain rate for which the shell formulation predicts less frag-
ments. This difference is due to the small number of elementsper fragment obtained with
our mesh. Indeed, the mean value is around seven elements by fragment, which may cause a
mesh dependency. Overall, our shell formulation is showed to be an efficient tool to predict
fragmentation in brittle materials.
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Figure 5.20: Final configuration of the fragmentation of a sphere with a strain rate of 1e4
[
s−1
]
.

5.3 Conclusions on the DG/ECL framework for thin bodies

In this chapter we have presented an original framework to simulate fracture mechanics
problems in thin bodies. This framework is based on the combination between a DG dis-
cretization of the structure combined with an extrinsic cohesive law. The main advantage of
the method is its ability to insert cohesive elements on the fly during the simulation without
any topological mesh modifications. This simplicity leads to a straightforward parallel imple-
mentation which allows to simulate large problems (more than 106 dofs) within an acceptable
computational time (few hours/days).

Furthermore, the cohesive zone approach is applied on reduced stresses in an original
way leading to a fracture model which respects the energeticbalance. Such an approach
avoids the complex implementation of the neutral axis moving during the simulation required
by the difference of fracture behavior in tension and compression. The ability of the model
is demonstrated on several numerical benchmarks coming from literature by comparing our
results with numerical and experimental data. In particular, the versatility of the framework
is proved as different fracture phenomena (crack propagation, impact and fragmentation) are
simulated with success. We restrict the applications to (explicit) dynamic cases where the
XFEM method is less developed. Indeed, for quasi-static cases and linear elastic fracture,
XFEM is very suitable and we don’t think that our method can bean efficient alternative in
this case, however a combination between our method and the XFEM could be envisaged in
the case of parallel simulations. Indeed, theC0/DG method could be used on each processor
in combination with the full-DG formulation at interfaces of partitions to obtain an efficient
parallel scheme. The fracture could be modeled by having recourse to the XFEM.
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(b) Mass distribution of fragmentṡε = 2e4
[s−1].
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(c) Mass distribution of fragmentṡε = 1e5
[s−1].
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Figure 5.21: Results for the fragmentation of a sphere with different strain rates. Results ob-
tained with the DG/ECL shell framework are compared to 3D fragmentation results obtained
by [137].



Chapter 6

Prospective of extension of the full-DG/
ECL framework to damage

The cohesive law introduced in Section 5.1 is suitable for brittle fracture but it is not
applicable to ductile fracture although an elasto-plasticlaw can be used to account for the
small scale yielding. Indeed, even if the elasto-plastic behavior of the material can be modeled
thanks to the bulk constitutive behavior, the mechanisms ofbrittle and ductile fracture are too
different to be treated with the same approach. In fact, in case of ductile fracture, cracks
initiate in the material due to nucleation, growth and coalescence of micro-cavities and a
continuum damage model is generally considered to model them [110, 135]. Nevertheless,
the initiation of a crack is by nature a discontinuous phenomenon which explains the interest
to develop a criterion to switch from the continuum damage theory to the fracture mechanics
(i.e. to switch from a continuum to a discontinuous model). Among the different works
presented on this subject in the literature, we focus on the work presented by J. Oliveret al.
[187,189,188,222,121]. It has to be mentioned that a reviewof this work and its applicability
to linear damage theory presented herein was part of the master thesis of G. Vo Thi [254]
(the student that I supervised). The main idea of J. Oliveret al. is to model the damage
with a continuum model until the lost of ellipticity of equations (Hadamard criterion [113])
and to introduce a strong discontinuity (crack) at this time. This idea is quite general and
can be applied whatever the damage and crack models. In fact in their works J. Oliveret
al. [121] used a modified Gurson model (see reference [110] for a presentation of this model)
combined with the introduction of a strong embedded discontinuity (see Section 2.4 for a brief
review) to model the crack. Notice that, as highlighted by F.Scheyvaertset al. [226], the use
of Hadamard criterion to insert a crack is reserved for low stress triaxiality cases. Indeed,
it is experimentally observed that if cracks appear immediately after the maximal stress for
low stress triaxiality, moderate and high stress triaxiality specimen exhibited a not negligible
softening behavior before the apparition of a crack. The modeling of this softening behavior
requires a non-local approach as suggested by several authors [30,65,102,203,202,201].

Hereafter, we suggest to use this idea in the context of our full-DG/ECL framework. In-
deed, we can model the damage thanks to the bulk material law as our formulation can be
used with any constitutive behavior and we can activate a cohesive element when a criterion

175
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is reached at an integration point. The major drawback compared with the work of J. Oliveret
al. [187, 189, 188, 222, 121] is that with our approach the crack has to follow element bound-
aries. In fact, J. Oliveret al. [187, 189, 188, 222, 121], as they introduce a strong embedded
discontinuity, can choose the direction of the crack based on a criterion [121]. Nevertheless,
with our method we ensure, on one hand, a continuity of the crack during its propagation,
and, on the other hand, an easy parallel implementation. Indeed, to investigate such problems,
only three few adaptations are required in our full-DG/ECL implementation:

(i) Implementation of a damage constitutive model;

(ii) Change the fracture criterion (5.17) based on an effective stress by a criterion based on
damage ase.g. the Hadamard criterion;

(iii) Define the shape of the cohesive law from the damage theory;

As a starting point to achieve this goal, in the following we discuss these adaptations through
a simplified case. In fact we consider a membrane (no bending contribution) with a linear
damage model and small displacements. Furthermore, although the value of the cohesive
energy will be discussed, it will be assumed that the shape ofthe cohesive law remains linear
and monotonically decreasing.

6.1 Linear damage model

The damage theory models the creation, growth and coalescence of micro-cavities and
micro-cracks. Although these phenomena are discrete (and therefore discontinuous in the
material) they can be modeled by a continuum variable, called D, if their sizes are small
compared with a representative volume element (RVE) of the material. This variableD is
defined for an isotropic damage in a section of surfaceS as the ratio between the surface of
voids included in this section andS. Due to this void surface, at the continuum level, the
stresses are exerted on a smaller surface, and so they are higher than if they were exerted on
the surfaceS, leading to the definition of the effective stress as,

σ̃i j =
σi j

1−D
. (6.1)

This definition of the stress tensor allows writing the Hookeconstitutive law as,

σ = (1−D)H : εεε , (6.2)

thus the Hooke law can still be used if its tensor is multiplied by (1−D).
The evolution ofD is governed by a damage law, which can be written in the case oflinear

damage as,

f = (1−D)Y
m
2 −Y

m
2

c ≤ 0, (6.3)

f Ḋ = 0. (6.4)
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Figure 6.1: There is no lost of ellipticity of acoustic tensor for the linear damage theory if
m< 1. If m> 1, there is a lost of ellipticity as soon asD > 0.

wherem is an exponent (material parameter), whereY is the damage energy release rate
defined as,

Y = −εεε : H : εεε
2

, (6.5)

and whereYc is the energy of deformation required to initiate the damage(material parameter).
When damage increases, Eq.(6.3) governs the damage evolution as,

D = 1−
(

Yc

Y

)m
2

. (6.6)

Such a law is drawn on Fig. 6.1 for the 1D case with different values of the parameterm.
Unfortunately, it appears clearly from this picture that the Hadamard criterion cannot be used
with this law. Indeed, this criterion inserts the crack whenthe acoustic (or localization) tensor
loses its ellipticity. In 1D, ifm> 1, this corresponds to the point of the maximal stress, as
after this point the softening effect leads to the lost of theuniqueness of the solution for local
formulation. Ifm< 1 the stress increases with the deformation without reaching a maximum.
The casem= 1 corresponds to a degenerate case where the stress is constant with no unique
maximum. Furthermore, this behavior was demonstrated mathematically by G. Vo Thi [254]
for the general case of a linear plane stress law. Therefore the Hadamard criterion bifurcation
cannot be applied with the linear damage constitutive behavior.

Keeping in mind that the main objective of this section is to illustrate the concept, we
fix this issue by substitute to the Hadamard criterion a criterion based on a critical damage
valueDc. Indeed, with a more realistic damage model ase.g. Lemaitre-Chaboche [135] or
Gurson [110] the lost of ellipticity occurs for a damage value∈ ]0;1[ and we can simulate this
effect by fixing the value to a given one. Therefore, in the following, the fracture criterion
(5.17) based on an effective stress is replaced by a criterion on a critical damage value. This
one is evaluated at each Gauss point of interface elements and a cohesive element is inserted
where the criterion is reached. Finally, to keep uniquenessof the solution we considerm< 1.
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6.2 Cohesive law for damage theory

If we assume a linear monotonically decreasing shape for thecohesive law, the values
of (reduced) stresses being known at fracture initiation, the only parameter that has to be
defined is the fracture energy. We suggest to compute this onefollowing the work of J. Mazars
et al. [155]. In this work they demonstrated, based on thermodynamic considerations, that
an equivalence between the continuum damage theory and the fracture mechanics can be
formulated as,

∫
V
−YḊdV = −GȦ, (6.7)

whereV is the total volume of the considered body and whereȦ is the variation of the cracked
surface area. This equation allows to transform a given damage zone into an equivalent crack
or conversely. Using this formula, M. Seabraet al. [227] suggested to defineGc of the co-
hesive zone as the energy which would be dissipated by the continuum damage model if this
model was used to model the entire fracture process. Indeed,givenD f the final damage value
(which can differ from one depending on the damage model) an amount of energy is dissi-
pated between a damage valueDc, at which we insert a cohesive element, andD f . This energy
should be dissipated by the cohesive zone, which can be mathematically formulated as,

GcdA= B
∫ D f

Dc

YdD, (6.8)

with B is the width of the damage localization band. This one, supposed to be a material
parameter, is introduced to take into account the accumulation of damage in a narrow band
due to the softening effect. For the linear damage model usedherein, using Eq. (6.3) we have,

Y =
Yc

(1−D)
2
m

. (6.9)

Inserting this last relation in Eq. (6.8) it comes,

Gc = −BYc

∫ D f

Dc

1

(1−D)
2
m

d(1−D) ,

=





BYc

(1− 2
m)

[
(1−Dc)

1− 2
m −

(
1−D f

)1− 2
m

]
if m 6= 2,

BYc log 1−Dc
1−D f

if m= 2.
(6.10)

It has to be mentioned that to avoid the definition of the parameterB, a model of void coales-
cence by internal necking could be used as suggested by F. Scheyvaertset al. [226]. In fact,
their model is able to predict the unloading slope of the cohesive zone and thus it could be
used to determineGc without the recourse to a damage bandwidth.
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6.3 Numerical benchmark

The fracture model combining the damage theory and the extrinsic cohesive zone as pre-
sented in Sections 6.1 and 6.2 is illustrated by consideringa plate radially notched, as depicted
on Fig. 6.2(a). The parameters of (fictitious) damage and cohesive materials are given in Tab.
6.1. The parameters of the material law are set to illustratethe developed model with an
acceptable computational time on a personal computer.

0.01 [m/s]

w=400 [mm]

h=
60

0
[m

m
]

thickness t=1 [mm]

5 [mm]

(a) Geometry.

X

Y

Z

(b) Quadratic triangles mesh.

Figure 6.2: Configuration of the plate used to illustrate the transition from damage to crack.

Property Value

Young modulus [GPa] 200
Poisson ratio [-] 0.3
Density [kg/m3] 7850
Fracture energy [J/m2] 13.26
Damage threshold[

√
Pa] 225

Critical damage[-] 0.4±15%
Final damage[-] 0.8
Damage law exponent [-] 0.75
Coupling parameter [-] 1
Frictional coefficient [-] 0

Table 6.1: Material properties for the notched plate with damage.
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Moreover, as the insertion of a cohesive element leads to convergence problem of the
quasi-static scheme, we use the dynamic relaxation technique (see Section 4.5) to simulate in
parallel (on six processors) the tensile loading. Moreover, to avoid spurious dynamic effects
at computation initializing, an initial velocity along y-axis is prescribed. This one is zero at
the edge near the hole and increases linearly to the pulling speed (0.01 [m/s]) at the opposite
edge. One quarter of the plate is meshed (taking into accountthe symmetries) with quadratic
triangles and with a refinement of the mesh near the hole, as depicted on Fig. 6.2(b). The
plate is fixed along z-axis. The value of the last stability parameterβ2 (the only one remaining
due to the boundary conditions) is set to 10.

0

0.2

0.4

Damage
X

Y
Z

Figure 6.3: Blow-up of elements near the hole a few (pseudo)-times step after reaching the
fracture criterion. Displacement are magnified 50 times.

Furthermore, with the aim of reducing the blow up of elementswe prescribe a statistical
distribution ofDc, which can vary from 15% around its nominal value from one interface to
another one, although this strategy seems not as efficient asfor crack propagation as illustrated
on Fig. 6.3. Indeed, as expected the damage is concentrated near the hole (see also Fig. 6.4)
but all interfaces in this area reach the fracture criterionmore or less at the same time, leading
to the blow up of elements in this region. A strategy to solve this spurious behavior should be
develop in the future. One idea is notably to have recourse toa non local fracture criterion.
Nevertheless, we can see from the different captures depicted on Fig. 6.4 that finally only
one macro-crack propagates from this region to the other side of the specimen. Furthermore,
during the whole propagation, the damage remains concentrated in a narrow band around the
crack. Therefore this simple example demonstrates the ability of the suggested framework
to produce qualitative results although improvements are still required to obtain quantitative
results.
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Figure 6.4: The crack propagates due to damage which remainsin a narrow band around
the crack. The displacements are magnified 25 times andεyy =

uy
h/2 with uy the value of the

prescribed displacement.



182 Prospective of extension of the full-DG/ ECL framework to damage

6.4 Conclusions on the applicability of the DG/ECL frame-
work to ductile fracture

As perspective to this thesis, we have illustrated on a very simple example the extension
to the damage to crack transition of our framework. On this benchmark we demonstrate the
capacity of our DG/ECL framework to model the damage thanks toa damage law and then
to insert a cohesive element to model a crack when a criterionis reached to reproduce a
phenomenon observed experimentally. Obviously, this partof the work should be improved
(with a more complex damage model ase.g. the extension to shell of a non local damage
model to capture the softening) to solve practical applications and this should be part of a
future research project.



Chapter 7

General conclusions & perspectives

An original framework to model fracture in thin bodies is themain achievement of this
work. Starting from a review of the literature in Chapter 2, itappeared that there are several
methods which allow modeling such phenomena. Among them, the XFEM method, seems to
be very efficient to study the quasi-static crack propagation in the context of linear fracture
mechanics. Nevertheless, the efficiency of XFEM to study non-linear dynamic of large prob-
lems has still to be proved and thus our DG/ECL framework focuses with success on such
problems.

Toward this end, we developed a framework similar to the one suggested by on one hand,
J. Mergheimet al. [157] and on the other hand R. Radovitzkyet al. [211] who presented a
method combining DG formulation and ECL for 3D elements. The two main advantages to
recourse to a DG formulation (compared with a classical CG one) are, on one hand, an easy
parallel implementation, and, on the other hand, an easy insertion of cohesive elements at
onset of fracture. We adapted this framework to thin bodies formulations in an original way by
developing a novel full-DG formulation of Euler-Bernoulli beams and Kirchhoff-Love shells.
Furthermore, an original cohesive model based on reduced stresses was also presented.

In Chapter 3, we focused on the Euler-Bernoulli beams case to demonstrate on a very
simple example how the DG formulation leads to a straightforward insertion of a cohesive
element for thin bodies. In fact, as the insertion of the cohesive elements at the beginning of
the simulation generates numerical problems, such an element should only be inserted when
a fracture criterion is reached. As a DG method ensures weakly the continuity between bulk
elements thanks to interface terms, a cohesive element can very easily substitute to these terms
at onset of fracture. Nevertheless, in the specific case of thin body formulations, the equilib-
rium equations are integrated separately on the thickness and are therefore formulated in term
of reduced stresses. Furthermore, the propagation of a crack through-the-thickness requires
the moving of the neutral axis during the through-the-thickness propagation with a classical
cohesive law (i.e. a cohesive law based on stresses). For these two reasons we developed an
original cohesive model based on reduced stresses. In our cohesive model different contri-
butions of membrane and bending (there is no other contribution in the case of beams) are
combined to respect the energetic balance. Indeed, it is well known that the energy released
during the whole fracture process is a characteristic of thematerial. Therefore, at the end of
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the fracture process the dissipated energy has to be identical to this quantity. We proved at the
end of Chapter 3, that our suggested cohesive model verifies this identity.

These developments were then extended to Kirchhoff-Love shells. In a first time we pre-
sented an original full-DG formulation of non-linear Kirchhoff-Love shells in Chapter 4. We
demonstrated that our new method has the same numerical properties as other shell meth-
ods suggested in the literature. In particular it is demonstrated through several numerical
continuum mechanics problems that our method provides results as accurate as other (contin-
uous) methods. The main advantages of our method in continuum mechanics are: a one-field
locking-free formulation for shells and its easily parallel implementation. Indeed, as the mesh
is discontinuous by nature, its partitioning between the different processors is straightforward
and the interface terms can be used to ensure the continuity between the partitions. Toward
this end, we suggested an original efficient manner to perform the integration at interfaces
between two partitions. In fact, we used ghost elements which allow communicating (through
MPI) only the degrees of freedom of these ghost elements. Proceeding this way, allows, on
one hand, reducing the cost of communication, and, on the other hand, being independent of
the material law. This advantage is demonstrated through numerical benchmarks.

Afterward in Chapter 5, we coupled this full-DG framework of non-linear shells with
a cohesive law to model fracture mechanics problems. For thesame reasons as the ones
presented in the case of beams, we suggested an original cohesive law based on reduced
stresses which respects the energetic balance. The differences with the law for beams are that,
on one hand, the accounting for mixed fracture mode, and on the other hand, the accounting
for non-linear material behaviors. Then we illustrated theability of the framework to simulate
crack propagation as well as fragmentation through severalbenchmarks, including non-linear
plasticity and a large number of degrees of freedoms. This large number is required to capture
the crack path and highlights the interest of the development of a parallel implementation.
Furthermore, the comparison with the numerical and experimental results from the literature
proved the ability of the framework to model different fracture phenomena.

Finally, as a preview to the future works, we present the application of the framework to
the damage to crack transition problem in Chapter 6. We demonstrated that we can easily
model the damage in the bulk material law and that a crack can be inserted through a cohesive
zone when a criterion is reached. In the future, the damage constitutive behavior as well as the
transition criterion will be improved notably by the recourse to the non local damage theory.
Furthermore, although the stress triaxility plays a key role in ductile fracture, we neglected its
effect which should be taken into account in our next development.

Moreover, the out-of-plane shearing is neglected in this work. Therefore, our framework
cannot model a fracture mode III. The remove of this limitation requires the model of the out-
of-plane shearing which necessitates some developments tointegrate it in a Kirchhoff-Love
formulation.
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[165] MOËS, N., DOLBOW, J., AND BELYTSCHKO, T. A finite element method for crack
growth without remeshing.International Journal for Numerical Methods in Engineer-
ing 46, 1 (1999), 131–150.
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Appendix A

Annex to chapter 3

A.1 Euler-Bernoulli beams kinematics

The kinematics of thin bodies is previously established in Section 4.1.1 in the general case
of Kirchhhoff-Love shells. These equations can be particularized to Euler-Bernoulli beams.
Under the assumptions given in Chapter 3, which are,

(i) Linear small strains;

(ii) Initially straight beam;

(iii) The out-of-plane shearing is neglected;

(iv) Plane stress state.

First, for a straight beam with small strain the mapping of the mid-surface (4.3)ϕϕϕ can be
written,

ϕϕϕ =ϕϕϕ0+u1(ξ1)E1+u3(ξ1)E3 (A.1)

as under this assumption, the mid-surface is subjected to the small displacement fieldu lead-
ing to,

ϕϕϕ = ϕϕϕ0+u . (A.2)

Furthermore, the calculation of the derivatives ofϕϕϕ are straightforward,

ϕϕϕ,1 = ϕϕϕ0,1+u1,1E1+u3,1E3 = (1+u1,1)E1+u3,1E3 (A.3)

ϕϕϕ,2 = E2 (A.4)

as a straight beam is always included in the planeE1,E3.
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The third assumption leads to neglect the out-of-plane shearing and so the cross section
always remains perpendicular to the neutral axis. Therefore, t is always perpendicular to the
neutral axis and it comes at first order,

t =
ϕϕϕ,1 ∧ ϕϕϕ,2

||ϕϕϕ,1 ∧ ϕϕϕ,2||
(A.5)

=
(1+u1,1)E3−u3,1E1√

1+2u1,1
(A.6)

= E3−u3,1E1 . (A.7)

Then, following these developments, the use of relations (4.12) and (A.7) in the expression
of ∇Φ (4.8) gives at first order,

∇Φ = [(1+u1,1)E1+u3,1E3]⊗E1+E2⊗E2−
(
ξ3u3,11E1

)
⊗E1

+(E3−u3,1E1)⊗E3 (A.8)

=




1+u1,1−ξ3u3,11 0 −u3,1

0 1 0
u3,1 0 1


 . (A.9)

Moreover, as there is initially no deformation mapping,∇Φ0 = I , and so∇Φ
−T
0 = I . There-

fore, using Eq. (4.7), the deformation gradientF = ∇Φ and as by definition of Cauchy strain
tensorεεε = 1

2

(
F+FT −2I

)
, which leads to,

εεε =




u1,1−ξ3u3,11 0 0
0 0 0
0 0 λh


 (A.10)

A.2 Governing equations of Euler-Bernoulli beams

The governing equations of shells previoulsy obtained in Section 4.1.2 are now particular-
ized to Euler-Bernoulli beams. The set of Eqs. (4.30) and (4.50) can be written with the stress
tensor related to the particular case of Euler-Bernoulli beams,

σ =




σ11 0 σ31

0 0 0
σ31 0 0


 . (A.11)

with σ11 = Eε11 as plane stress is assumed. Normally, as out-of-plane shearing is neglected
by assumption,σ31≈ 0, but this term is kept as it will be used to obtain the full discontinuous
Galerkin formulation.
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Furthermore, the initial deformation mapping of a straightbeam reads,gI
0 = EI , the ex-

pression of resultant quantities (other values are equal tozero) are,

n11 =
1
j̄

∫ hmax

hmin

jσ11dξ3 (A.12)

m̃11 =
1
j̄

∫ hmax

hmin

jσ11ξ3dξ3 (A.13)

l1 =
1
j̄

∫ hmax

hmin

jσ31dξ3 (A.14)

Finally, as there are no external effort by assumption, the balance of linear (4.30) and angular
momentum (4.50) become respectively,

n11
,1 = ρü1 , (A.15)

m̃11
,1 − l1 = 0 and, (A.16)

l1,1 = ρü3 . (A.17)

Notice that the Jacobian of∇Φ can be determined from Eq. (A.8) with a first order approxi-
mation,

j = 1+u1,1−ξ3u3,11. (A.18)

(A.19)

At neutral axis (ξ3 = 0) and the Jacobian reads,

j̄ = 1+u1,1 . (A.20)

Since we have the following identities,

ρB = ρ , (A.21)

n11 = n11
B , (A.22)

m̃B
11 = m̃11 and, (A.23)

l1B = l1 , (A.24)

the set of Eqs. (A.15) - (A.17) corresponds to the set of Eqs. (3.8) and (3.14)

A.3 Numerical properties of the full-DG formulation

In Chapter 3 we enumerated the numerical properties of the suggested DG formulation of
Euler-Bernoulli beams. To be concise some demonstrations were omitted. They are reported
here below.
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A.3.1 Upper bound of the bilinear form

To obtain an upper bound of the bilinear form each term of (3.34) is bounded separately
as suggested in [185]. First, the membrane and bending termsare considered. The use of
Cauchy-Schwartz inequality1 leads to,

∣∣∣∣∑
e

∫
le

Ehu1,1δu1,1dx

∣∣∣∣ ≤ ∑
e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
L2(le)

∣∣∣
∣∣∣
√

Ehδu1,1

∣∣∣
∣∣∣
L2(le)

and,

(A.25)
∣∣∣∣∑

e

∫
le

Eh3

12
(−u3,11)δ(−u3,11)dx

∣∣∣∣ ≤ ∑
e

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
u3,11

∣∣∣∣∣

∣∣∣∣∣
L2(le)

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
δu3,11

∣∣∣∣∣

∣∣∣∣∣
L2(le)

.

(A.26)

Now the interface terms can be bounded. As all terms are bounded by the same way, only the
first membrane interface term of consistency is developed. The results for the others terms
will be extended. First, the sum on the interface elements are replaced by a sum of elements’s
integral of contour. In doing this, the contribution of eachinterface term is taken twice which
is valid because it is a upper bound,

∣∣∣∣∑
s

〈
nB

11〉Jδu1K
∣∣∣∣ =

∣∣∣∣∑
s
〈Ehu1,1〉Jδu1K

∣∣∣∣
≤ ∑

s
|〈Ehu1,1〉Jδu1K|

≤ ∑
e
|Ehu1,1Jδu1K| . (A.27)

Then,
∣∣∣∣∑

s

〈
nB

11〉Jδu1K
∣∣∣∣ ≤ ∑

e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
L2(∂le)

∣∣∣
∣∣∣
√

EhJδu1K
∣∣∣
∣∣∣
L2(∂le)

≤ 2∑
e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
L2(∂le)

∣∣∣
∣∣∣
√

EhJδu1K
∣∣∣
∣∣∣
L2(∂le)

. (A.28)

Finally, to have a norm overL2(le) the scaling property2 demonstrated by P. Hansboet al.
in [116] is used,

∣∣∣∣∑
s

〈
nB

11〉Jδu1K
∣∣∣∣ ≤ Ck

2√
β2

∑
e

∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
L2(le)

∣∣∣∣∣

∣∣∣∣∣

√
Ehβ2

hs Jδu1K
∣∣∣∣∣

∣∣∣∣∣
L2(∂le)

. (A.29)

The same procedure applied to the others terms gives successively3:

1|ab| ≤
√

a2
√

b2

2For an element ehs
∣∣∣
∣∣∣
√
H a
∣∣∣
∣∣∣
2

L2(∂le)
≤Ck

∣∣∣
∣∣∣
√
H a
∣∣∣
∣∣∣
2

L2(le)
with hs = |le|

|∂le| and withCk = sup
a∈P k(le)

|le|
∫
sa2d∂le

|s|∫le a2dl
≥ 0

depends only on the polynomial degree k
3Note that the scaling property is not applied for the terms ofstabilization
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• for the symmetrization term of membrane part,

∣∣∣∣∑
s
〈Ehδu1,1〉Ju1K

∣∣∣∣ ≤ Ck
2√
β2

∑
e

∣∣∣
∣∣∣
√

Ehδu1,1

∣∣∣
∣∣∣
L2(le)
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∣∣∣∣∣

√
Ehβ2

hs Ju1K
∣∣∣∣∣

∣∣∣∣∣
L2(∂le)

,

• for the stabilization term of membrane part,

∣∣∣∣∑
s

Ju1K
〈

β2Eh
hs

〉
Jδu1K
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e
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,

• for the consistency term of bending part,

∣∣∣∣∑
s

〈
m̃B

11〉Jδ(−u3,1)K
∣∣∣∣ ≤ Ck

1√
β1

∑
e
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,

• for the symmetrization term of bending part,
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〈
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,

• for the stabilization term of bending part,
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,
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• and for the stabilization term of the ”shearing” part,

∣∣∣∣∑
s
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〈

β3Eh
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.

The summation of these different expressions with Eqs. (A.25-A.26) gives the inequality,

|a(u,δu)| ≤ ∑
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

 . (A.30)

Then, a constant defines byC′k(β1,β2) = max

(
1, Ck

1√
β1
,

Ck
2√
β2

)
is put in evidence. Indeed,

as the equation (A.30) is an inequality, it is possible to replace Ck
1√
β1

and Ck
2√
β2

by C′k and to

multiply the two first terms byC′k. Moreover, the terms five, eight and nine of right member
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of (A.30) can be multiply byC
k(β)√

2
with Ck(β1,β2) = max

(
2,
√

2C′k(β1,β2)
)

andC′k(β1,β2)

can be replaced byCk(β1,β2) in the others terms, which gives,

|a(u,δu)|
Ck(β1,β2)

≤ ∑
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∣∣∣
L2(le)

+

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
u3,11

∣∣∣∣∣

∣∣∣∣∣
L2(le)

∣∣∣∣∣

∣∣∣∣∣

√
Eh3

12
δu3,11

∣∣∣∣∣

∣∣∣∣∣
L2(le)

+
∣∣∣
∣∣∣
√

Ehu1,1

∣∣∣
∣∣∣
L2(le)

∣∣∣∣∣

∣∣∣∣∣

√
Ehβ2

hs Jδu1K
∣∣∣∣∣

∣∣∣∣∣
L2(∂le)

+
∣∣∣
∣∣∣
√

Ehδu1,1

∣∣∣
∣∣∣
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

 . (A.31)
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Then the terms can be rearranged to write4,

|a(u,δu)|
Ck(β1,β2)

≤ ∑
e


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
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∣∣∣
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∣∣∣
L2(le)

+

∣∣∣∣∣

∣∣∣∣∣
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 . (A.32)

Now using the Cauchy-Schwartz inequality, the relation (A.32) becomes,

|a(u,δu)|2
C′′k(β1,β2)

≤ ∑
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



 , (A.33)

4If the product of the right member of (A.32) is developed the nine terms of right members of (A.30) are
found back with sixteen other terms (≥ 0) added which is possible as it is a upper bound.
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with C′′k(β1,β2)= (Ck(β1,β2))
2. Finally using (3.45) and the definition of energy norm (3.43)

the relation (A.33) can be rewritten,

|a(u,δu)|2 ≤ C′′k(β1,β2) |||u|||2 |||δu|||2 , (A.34)

which is identical to the relation (3.46).

A.3.2 Lower bound of the bilinear form

The lower bound of the bilinear form is found following the developments suggested in
[185]. By definition ofa(u,u) (see equation (3.34)),

a(u,u) = ∑
e
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∣∣∣
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. (A.35)

First to have a lower bound ofa(u,u), the two terms of the form 2∑s〈a〉H JaK in (A.35) are
bounded by a sum of integrals on the boundary of elements,

2∑
s
〈a〉H JaK ≤ 2

∣∣∣∣∑
s
〈a〉H JaK

∣∣∣∣
≤ 2∑

s
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∣∣

≤ 2∑
e
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∣∣
∂le

. (A.36)

and,

2∑
e

∣∣〈a〉H JaK
∣∣
∂le

≤ 2∑
e

∣∣aH JaK
∣∣
∂le

, (A.37)

using the Cauchy-Schwartz inequality in the right member of this inequality, and introducing√
hs,

2∑
s
〈a〉H JaK ≤ 2

√
hs∑
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L2(∂le)

. (A.38)

Afterwards the scaling property can be applied to equation (A.38) which leads to,
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∣∣∣
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. (A.39)



218 Annex to chapter 3

Finally this equation can be multiply by−1 to reverse the inequality,
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. (A.40)

This relation (A.40) can be used to replace the terms of the form 2∑s〈a〉H JaK in the equation
(A.35),

a(u,u) ≥ ∑
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Then, theε-inequality5 can be applied to the two terms of the form :
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which multiplied by−1 leads to,
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5∀ε > 0 : |ab| ≤ ε
2a2+ 1

2ε b2 or |ab| ≤ εa2+ 1
4ε b2
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Similarly for the bending term one has,
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Furtermore, for the term∑s
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(A.45)

Then the final form of the lower bound ofa(u,u) is obtained by injecting the relations
(A.43), (A.44) and (A.45) in the relation (A.41),
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, (A.46)

which is identical to the lower bound given by (3.47).

A.3.3 Proof of convergence rate in the energy-norm

The convergence rate in the energy norm of the full-DG formulation is derived by follow-
ing [185] under a quasi static assumption. To achieve this the error between the FE solution
and the interpolation of the exact solution with the same polynomial degree is calculated.
First, some definitions and assumptions are given. Consideru is the exact solution of the
problem where displacement and derivative are constraint to zero on the boundary anduk
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its interpolation of degreek in each element defined by
∫

Ah
(u−uk)δudA= 0, satisfying the

essential boundary conditions. Then the error is defined bye= uh−u, and the error with the
interpolation of the exact solution is given byek = uh−uk.

To show the convergence rate in the energy norm the bilinear expressiona(u,δu) is con-
sidered. This expression includes only linear terms by definition so,

a(uh−uk,uh−uk) = a(uh−u,uh−uk)+a(u−uk,uh−uk) . (A.47)

The terma(uh−u,uh−uk) is equal to zero (see the orthogonality property (3.42)). Further-
more, using the expression of the lower bound of the bilinearform (3.49) leads to,

a(uh−uk,uh−uk) ≥ C(β1,β2)
∣∣∣
∣∣∣
∣∣∣uh−uk

∣∣∣
∣∣∣
∣∣∣
2
, (A.48)

or, using the error definition,

a(uh−uk,uh−uk) ≥ C(β1,β2)
∣∣∣
∣∣∣
∣∣∣ek
∣∣∣
∣∣∣
∣∣∣
2
. (A.49)

Then the Eq. (A.47) can be replaced by an upper bound given by expression (3.46),

C1(β1,β2,β3)
∣∣∣
∣∣∣
∣∣∣u−uk
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∣∣∣
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2
. (A.50)

Then, an upper bound of
∣∣∣∣ek

∣∣∣∣ can be obtained by bounding the term
∣∣∣∣∣∣u−uk

∣∣∣∣∣∣. To
achieve this, the terms of the energetic norm are bounded. First the membrane and the bending
terms are considered. The framework is the same for the two terms so the calculations are only
presented for the membrane term.
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, (A.51)

whereCn1 is a constant sufficiently large to boundEh. Using the definition of the notation∣∣∣
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(see equation (3.44)),
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Afterward, the definition of the Sobolev6 space is used,
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. (A.53)

6A property of Sobolev space is the inequality
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.
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Furthermore, the basic error estimates of interpolation theory7 is applied,
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. (A.54)

Similarly, using the same framework, the bending term is bounded by,
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Moreover, the interface terms can be bounded. As the framework is again the same for the
three terms, the calculations are only presented in the caseof the membrane term. GivenCnI1

a constant such asCnI1 > Ehone has,
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Furthermore, using the scaling property leads to,
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Using the Sobolev space’s definition yields,
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Using the basic error estimates of interpolation theory onehas,
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Similarly for the bending interface term,
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and for the ”shearing” interface term,
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7Given a mappingu ∈ Hk+1(le), then ∀uk ∈ P k interpolating u ∈ le :
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≤

C1hsk+1−q |u|Hk+1(le)∀0≤ q≤ k+1 with C1 independent ofhs, the size ofle [140].
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Finally, as there is no coupling between the different variablesu1,u3 these quantities can
be replaced byu in the right hand terms equations (A.54),(A.55),(A.59),(A.60) and (A.61).
Moreover, these inequalities are upper bounds of the right terms of the energy norm’s defini-
tion (3.43) so they can be used to bound the quantity

∣∣∣∣∣∣u−uk
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Giving C(β1,β2,β3) = max(Cm,Cn,CmIβ1,CnIβ2,ClI β3) this last equation is rewritten,
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This equation (A.63) can be injected in the relation (A.50) leading to,
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hsk−1 |u|Hk+1(le) , (A.64)

which corresponds to the Eq. (3.50).

A.3.4 Proof of the convergence rate in the L2-norm

The convergence rate in theL2-norm of the full-DG formulation is derived by following
[185] and under the three assumptions :

1. Cubic approximation;

2. Proper elliptic regularity of the problem;

3. Pure Dirichlet boundary conditions (ieu= t= 0 on∂Lh).

Givenud the exact solution of a problem governed by the external loadingb(δu) such thatud

satisfies the essential boundary conditions. This solutionsatisfies the equationa(ud,δu) =
b(δu). So considering the particular casee satisfying the essential boundary conditions as
virtual displacements field,

b(e) = a(ud,e) . (A.65)

Defininguk
d the interpolation ofud satisfying the essential boundary conditions, the bilinear

form allows writing,

b(e) = a(ud,e) = a(ud −uk
d,e)+a(uk

d,e) . (A.66)

Furthermorea(u,δu) is symmetric so,

e = a(ud −uk
d,e)+a(e,uk

d) . (A.67)
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Then by definition of the errora(e,uk
d)= a(uh−u,uk

d)= 0 from orthogonality relation (3.42)
and Eq. (A.66) becomes,

b(e) = a(ud −uk
d,uh−u) . (A.68)

Afterward, asa(u,δu) is a bilinear form, one has

b(e) = a(ud −uk
d,uh−uk)+a(ud −uk

d,u
k−u) . (A.69)

Now the external loading is particularized such thatb(e) = ||e||2L2(Lh)
leading to,

e = a(ud −uk
d,uh−uk)+a(ud −uk

d,u
k−u) . (A.70)

Then, an upper bound ofe is obtained by applying the upper bound of energy (3.46),
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, (A.71)

with Ck = max(Ck
1,C

k
2). The error will be bounded if the term

∣∣∣∣∣∣ud −uk
d

∣∣∣∣∣∣ is bounded. To
prove this, we use the theorem 5.1 and 5.4 demonstrated by J. Lionset al. [147]. The result of
the theorems under proper ellipticity is,

||u||Hp(L) ≤Cp

{
||A ·u||Hp−2m(L)+∑

i
||B ·u||Hp−i−1/2(∂L)

}
, (A.72)

∀p≥ 2m. As by assumption pure Dirichlet boundary conditions are assumed the last term of
(A.72) is equal to zeros so,

||u||Hp(L) ≤Cp
{
||L ·u||Hp−2m(L)

}
(A.73)

Moreover the application of equation (A.63) to
∣∣∣∣∣∣ud−uk

d

∣∣∣∣∣∣ gives,
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∑eChs|ud|H4(le) if k= 2

(A.74)

where the casek = 2 is obtained by following the work of G. Wellset al. [257]. Then the
result of the theorems (A.73) can be applied to the relation (A.74) with m= 2, p = 4 ≥ 2m
which gives,
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. (A.75)
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To finish and to have a bound of the error, using the triangle inequality||e||L2(le) <
∣∣∣∣ek
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L2(le)

(see G. Wellset al. [257] for details), and injecting the Eqs. (A.64) and (A.75)into the Eq.
(A.71) it comes,

||e||L2(le) ≤
{

∑eChsk+1 |u|Hk+1(le) if k> 2

∑eCh2
s |u|H3(le) if k= 2

, (A.76)

which proves that the method has a optimal convergence if at least cubic element are used as
presented in Chapter 3 Eq. (3.51). Note that for a pure membrane problem,
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e
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which leads to (in applying the theorems withm= 1 andp= 2),

||e||L2(le) ≤ ∑
e

Chsk+1 |u|Hk+1(le) if k≥ 1, (A.78)

which shows that if only the membrane term is present, the convergence of the method is
optimal inL2-norm even for second order interpolation. This is consistent with the fact that
as the membrane terms include only the first derivative, the continuity is (weakly) enforced
by second order shape functions.

A.4 Difference of internal energy in a DCB at fracture ini-
tiation

In this section we demonstrate formula (3.126) and (3.127).We demonstrate first the
expression of internal energy for the two configurations: (i) DCB (unfractured) and (ii) 2 SCB
(full broken) and afterward the formula are obtained by a subtraction.

First we investigate the case of a DCB, which force-displacement relation is given by,

P =
16Eh3

L3
DCB

u3 , (A.79)

with u3 the vertical displacement at the center of the beam,P the punctual loading at the
middle of the beam andLDCB the beam length. It has to be mentioned that in the following a
unit width is considered.

Secondly for a SCB the relation force-displacement is expressed by,

u3 =
4PL3

SCB

Eh3 =
PL3

DCB

2Eh3 , (A.80)

or,

P=
2Eh3

L3
DCB

u3 , (A.81)
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whereLSCB is the length of a SCB. As the fracture occurs at center of DCB thisone becomes
2 SCB, which have both the same length (i.e. LDCB = 2LSCB).

Furthermore, the relation between the maximal bending stress (i.e. the stress at lower or
upper skin) and the forceP is given by,

σ =
Mbendingh

2I
, (A.82)

with Mbending=
PLDCB

8 for a DCB, the bending moment andI = 1∗h3

12 the inertia of the beam.
Therefore for a DCB,

u3 =
LDCBσ
12Eh

. (A.83)

Similarly for a SCB,Mbending= PLSCB=
PLDCB

2 , and Eq. (A.81) becomes

u3 =
L3

DCB

12Eh
σ . (A.84)

From these developments the internal energy is given by (linear elasticity),

Wint =
1
2

Pu3 . (A.85)

The application of this formula to the particular case of DCB (A.79) gives,

WintDCB =
8Eh3

L3
DCB

u2
3 , (A.86)

and for a SCB (A.81),

WintSCB =
Eh3

L3
DCB

u2
3 . (A.87)

Afterward, the energy can be expressed with respect to the stress. For the DCB case the Eq.
(A.83) allows writing,

WintDCB =
8Eh3

L3
DCB

(
LDCBσ
12Eh

)2

=
hLDCB

18E
σ2 , (A.88)

similarly, for SCBcase using Eq. (A.84) it comes,

WintSCB =
Eh3

L3
DCB

(
L2

DCB

12Eh

)2

σ2 =
hLDCB

144E
σ2 . (A.89)

Finally the difference of internal energy at fracture initiation is given by,

∆Wintbending = WintDCB−2WintSCB=
hLDCB

18E
σ2−2

hLDCB

144E
σ2 =

hLDCB

24E
σ2 .
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Moreover as the fracture occurs when the stress reachesσc (fracture criterion), the difference
of internal energy at fracture initiation is given by,

∆Wintbending =
hLDCB

24E
σ2

c , (A.90)

which is identical to Eq. (3.126). It appears from this equation than the geometry of the beam
has an influence on the fracture stability. Indeed the fracture will be unstable ifLDCB≥ 24EGc

σ2
c

.
Eq. (A.90) is valid for a pure bending loading and for a combined membrane/bending

case the energy of the membrane mode has to be considered. Nevertheless, we assume that
the membrane energy after fracture is equal to zero. This hypothesis restricts the validity of
formula to tension loading and to compressive loading with no interpenetration (i.e. there is
no contact forces between crack lips after fracture).

The energy of membrane mode can be computed in linear elasticity by,

Wintmembrane =
1
2

Pmembraneu1

=
hLDCB

2E
σ2

membrane, (A.91)

asu1 =
σmembraneLDCB

E andσmembrane=
Pmembrane

h . The total internal energy of the DCB configu-
ration can be obtained by linear superposition using Eqs. (A.91) and (A.88) with the part of
the stress in bending,

WintDCBcombined =
hLDCB

2E

(
1
9

σ2
bending+σ2

membrane

)
. (A.92)

The difference of internal energy at fracture initialization can be obtained as previously by,

∆Wintcombined = WintDCBcombined−2WintSCB,

=
hLDCB

2E

(
1
12

σ2
bending+σ2

membrane

)
. (A.93)

Finally this formula can be expressed with respect ofηI . Indeed,

ηI =
6/hMcoh0

Ncoh0+6/hMcoh0
=

σbending 0

σmembrane 0+σbending 0
, (A.94)

asMcoh0 =
h
6σbending0andNcoh0 = hσmembrane0in linear elasticity by definition. Furthermore

at fracture initialization the identityσc = σbending0+σmembrane0is verified which leads to,

∆Wintcombined =
hLDCB

2E

(
1
12

σ2
bending 0

σ2
c

+
σ2

membrane 0

σ2
c

)
σ2

c

=
hLDCB

2E

(
1
12

η2
I +(1−ηI )

2
)

σ2
c

=
hLDCB

2E

(
13
12

η2
I −2ηI +1

)
σ2

c , (A.95)
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which is the relation Eq. (3.127). Furthermore for the pure bending case,ηI = 1, which gives
the relation (A.90). As previously the fracture stability is governed by the beam’s length but
also by the ratio between the membrane and bending stresses.
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Appendix B

Annex to chapter 4

B.1 Linearization of compatibility terms

The derivation of the full discontinuous Galerkin formulation of shells is realized by intro-
ducing compatibilty interface terms that are linearized. The development of this linearization
is written herein. The linearized expression ofδ( j̄λhm̃

α) is suggested by L. Noelset al.[185]
and is summarized in this work. Afterwards, the same argumentation is applied onδ( j̄nα).

B.1.1 Bending compatibility term

The expression of the bending compatibility term is presented by L. Noels [181], who
developsδ( j̄λhm̃

α). First, j̄λhm̃
α is decomposed into the mid-plane convected basis,

δ( j̄λhm̃
α) = δ

(
j̄λhm̃αβϕϕϕ,β + j̄λ2

hm̃3αt
)
. (B.1)

Then this equation reads, separating the material and geometric parts,

δ( j̄λhm̃
α) = δ

(
j̄λhm̃αβ

)
ϕϕϕ,β + j̄λhm̃αβδϕϕϕ,β +δ

(
j̄λ2

hm̃3α)t+ j̄λ2
hm̃3αδt . (B.2)

The material part can then be computed using the linear expression ofm̃αβ andm̃3α given
by [237], for elasticity with finite deformations,

m̃αβ =
j̄0

j̄λh
H

αβγδ
m

(
ϕϕϕ,γ · t,δ −ϕϕϕ0,γ · t0,δ

)
and, (B.3)

m̃3α =
j̄0

j̄λ2
h

jE (hmax−hmin)
3

240(1+ν)
ϕϕϕ,α

0 ·ϕϕϕ,β
0 (logλh),β . (B.4)
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Thus,

δ
(

j̄λhm̃αβ
)

= j̄0H
αβγδ

m

(
δϕϕϕ,γ · t,δ +ϕϕϕγ ·δtδ

)
and, (B.5)

δ
(

j̄λ2
hm̃3α) = j̄0

jE (hmax−hmin)
3

240(1+ν)
ϕϕϕ,α

0 ·ϕϕϕ,β
0 δ(logλh),β

= j̄0
jE (hmax−hmin)

3

240(1+ν)
ϕϕϕ,α

0 ·ϕϕϕ,β
0

(
δλh

λh

)

,β
. (B.6)

Finally, using these two linearizations and using ˜mαβ = m̃αγϕϕϕ,γ ·ϕϕϕ,β = m̃α ·ϕϕϕ,β, asϕϕϕ,γ ·ϕϕϕ,β =
δγβ

δ( j̄λhm̃
α) = j̄0H

αβγδ
m

(
δϕϕϕ,γ · t,δ +ϕϕϕ,γ ·δt,δ

)
ϕϕϕ,β + j̄λhm̃

α ·ϕϕϕ,βδϕϕϕ,β

+
j̄0

j̄λ2
h

jE (hmax−hmin)
3

240(1+ν)
ϕϕϕ,α

0 ·ϕϕϕ,β
0 δ(logλh),β t+ jλ2

hm̃3αδt , (B.7)

furthermore, as the terms inδλh or λ2
h are of the same order than the out of plane shearing

which is neglected the final form of the bending compatibility term is,

δ( j̄λhm̃
α) = j̄0H

αβγδ
m

(
δϕϕϕ,γ · t,δ +ϕϕϕ,γ ·δt,δ

)
ϕϕϕ,β + j̄λhm̃

α ·ϕϕϕ,βδϕϕϕ,β , (B.8)

which is identical to the Eq. (4.83).

B.1.2 Membrane compatibility term

We describe here the derivation ofδ( j̄nα) which appears in the compatibility membrane
term (see equation (4.87)). As the shearing is neglected forKirchhoff-Love shells,

nα =
(

ñαβ +λβ
µm̃αµ

)
ϕϕϕ,β , (B.9)

with,

λβ
µ = λht,µ ·ϕϕϕ,β . (B.10)

The virtual form can therefore be computed as,

δ( j̄nα) = δ
[

j̄
(

ñαβ +λβ
µm̃αµ

)
ϕϕϕ,β

]

= δ
(

j̄ ñαβ + j̄λβ
µm̃αµ

)
ϕϕϕ,β + j̄

(
ñαβ +λβ

µm̃αµ
)

δϕϕϕ,β

= δ
(

j̄ ñαβ
)

ϕϕϕ,β + j̄ m̃αµδλβ
µϕϕϕ,β +λβ

µδ( j̄ m̃αµ)ϕϕϕ,β +

j̄
(

ñαβ +λβ
µm̃αµ

)
ϕϕϕ,β ·ϕϕϕ,γδϕϕϕ,γ , (B.11)
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with the introduction of the identityϕϕϕ,β ·ϕϕϕ,γ = δβγ in the last term. Then, the values of

δ( j̄ m̃αµ) = δ( j̄ m̃αµλh)
λh

− j̄ m̃αµδλh
λh

is provided by Eq. (B.3) and the one ofδñαβ can be com-
puted from,

ñαβ =
j̄0
2 j̄
H

αβγδ
n

(
ϕϕϕ,γ ·ϕϕϕ,δ −ϕϕϕ0,γ ·ϕϕϕ0,δ

)
, (B.12)

and Eq. (B.11) is rewritten when neglectingδλh (as always did),

δ( j̄nα) =
j̄0
2
H

αβγδ
n

(
δϕϕϕ,γ ·ϕϕϕ,δ +ϕϕϕ,γ ·δϕϕϕ,δ

)
ϕϕϕ,β + j̄nα ·ϕϕϕ,βδϕϕϕ,β

+
j̄0
λh

λβ
µH

αµγδ
m

(
δϕϕϕ,γ · t,δ +ϕϕϕ,γ ·δt,δ

)
ϕϕϕ,β + j̄ m̃αµδλβ

µϕϕϕ,β . (B.13)

Moreover using equation (B.10) and neglectingδλh,

δλβ
µ = λh

(
δt,µ ·ϕϕϕ,β + t,µ ·δϕϕϕ,β

)
. (B.14)

The second member of this equation can be rewritten (to remove δϕϕϕ,β) using successively

δ
(
ϕϕϕ,α ·ϕϕϕ,β

)
= 0, (B.15)

δϕϕϕ,α ·ϕϕϕ,β = −ϕϕϕ,α ·δϕϕϕ,β , (B.16)

and from Eq. (B.10),

t,α ·δϕϕϕ,β =
λµ

α
λh

ϕϕϕ,µ ·δϕϕϕ,β =−λµ
α

λh
ϕϕϕ,βδϕϕϕ,µ , (B.17)

leading to

δλβ
µ = λh

(
δt,µ ·ϕϕϕ,β − λζ

µ

λh
ϕϕϕ,β ·δϕϕϕ,ζ

)
. (B.18)

Finally (B.13) becomes

δ( j̄nα) =
j̄0
2
H

αβγδ
n

(
δϕϕϕ,γ ·ϕϕϕ,δ +ϕϕϕ,γ ·δϕϕϕ,δ

)
ϕϕϕ,β + j̄nα ·ϕϕϕ,βδϕϕϕ,β

+
j̄0
λh

λβ
µH

αµγδ
m

(
δϕϕϕ,γ · t,δ +ϕϕϕ,γ ·δt,δ

)
ϕϕϕ,β

+ j̄λhm̃αµ

(
δt,µ ·ϕϕϕ,β − λζ

µ

λh
ϕϕϕ,β ·δϕϕϕ,ζ

)
ϕϕϕ,β , (B.19)

with m̃αµ = m̃α ·ϕϕϕ,µ. This expression can be used for the implementation ofas
nI2(ϕϕϕh,δϕϕϕ)

(4.87).
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B.2 Development of the stability shearing term

We present here the developments leading to the expression of the stability shearing term
as

sI3(ϕϕϕh,δϕϕϕ) (4.92) suggested in Chapter 4. Toward this end, we first reduceour analysis to
the linear case and then we show that a linearization of the non-linear term (4.92) is identical
to the linear form suggested.

Following the developments presented in Section 4.4.2 it ispossible to give the linear form
of the consistency shearingas

lsI1(uh,δu) as well as of the compatibility shearingas
lsI2(uh,δu)

terms,

as
lsI1(uh,δu) =

∫
s
〈 j̄0l〉 ·

s∫
α

δ∆tβϕϕϕ,β
0 dα′

{
ν−α d∂Ae ≈ 0 and, (B.20)

as
lsI2(uh,δu) =

∫
s

s∫
α

∆tβϕϕϕ,β
0 dα′

{
·
〈

ϕϕϕ0,γH
γδ

s δγδ j̄0
〉

ν−α d∂Ae ≈ 0. (B.21)

Therefore, by inspection of these two relations the quadratic stability term is formulated as,

as
lsI3(uh,δu) =

∫
s

{s∫
µ

∆tγϕϕϕ
,γ
0 dµ′

{
·ϕϕϕ0,αν−µ

〈
β3H

αβ
s j̄0

hs

〉

ϕϕϕ0,β ·
s∫

ν
δ∆tδϕϕϕ,δ

0 dν′
{

ν−ν

}
d∂Ae, (B.22)

which weakly ensures the compatibility of the deflection normal to the mid-surface. However,
in order to implement it in an efficient way, it is necessary tofind an expression for the prim-
itive of ∆∆∆t andδ∆∆∆t. Using the definition of the shearing strain component (4.112) it comes
uh,α · t0 ≈−∆t ·ϕϕϕ0,α which yields

∫
µ

∆tγϕϕϕ
,γ
0 dµ′ ≈ −

∫
µ
uh,γ · t0ϕϕϕ,γ

0 dµ′ . (B.23)

As the unique purpose of the stability shearing term is to weakly enforce the stability, it can
be approximated without damaging the accuracy of the method(consistency is preserved).
Therefore, the relation (B.23) can be approximated by assuming a surface with a curvature
radius large compared to the sizes, thus leading for a planarassumption to

s∫
µ

∆tγϕϕϕ
,γ
0 dµ′

{
·ϕϕϕ0,α =−

s∫
µ
uh,γ · t0ϕϕϕ,γ

0 dµ′
{
·ϕϕϕ0,α → −JuhK · t0δαµ .

(B.24)

Finally, using this last approximation in Eq. (B.22) it comes,

as
lsI3(uh,δu) =

∫
s
JuhK · t0ν−β

〈
β3H

αβ
q j̄0

hs

〉
JδuK · t0ν−α d∂Ae, (B.25)

which is identical to the Eq. (4.147).
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Then we discuss the non-linear form ofas
sI3(ϕϕϕh,δϕϕϕ) (4.92). As the unique purpose of

this term is to ensure the stability and the compatibility ofthe displacement normal to the
mid-surface, any consistent expression can be used. Therefore, in a similar way for the other
compatibility and stability terms we derive an expression of as

sI3(ϕϕϕh,δϕϕϕ) which after lineariza-
tion leads to the linear formas

lsI3(uh,δu) (B.25). Toward this end, we suggest the expression:

as
sI3(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK · t(ϕϕϕh)ν−β

〈
β3H

αβ
s j̄0

hs

〉
JδϕϕϕK · t(ϕϕϕh)ν−α d∂Ae, (B.26)

whose linearization leads to Eq. (B.25). Indeed, using (4.101-4.102),

JϕϕϕhK · t = Jϕϕϕh0+uhK · (t0+∆t)≈ JuhK · (t0+∆t) , (B.27)

asJϕϕϕh0K ≈ 0 and, with a first order approximation, Eq. (B.27) reads,

JϕϕϕhK · t ≈ JuhK · t0 . (B.28)

Similarly,

JδϕϕϕK · t ≈ JδuK · t0 . (B.29)

Finally, using Eqs. (B.28-B.29) to linearize the shearing stability termsas
sI3(ϕϕϕh,δϕϕϕ) (B.26) it

provides its linear counterpartas
lsI3(uh,δu) (B.25).

B.3 Implication of the symmetry of σ

To satisfy Eq. (4.47), the symmetry of the effective membrane stress tensor can be en-
forced. This tensor is defined, in the convected basis, as

ñ = ñαβϕϕϕ,α ⊗ϕϕϕ,β = nα ⊗ϕϕϕ,α + l⊗λht− (λht),α ⊗m̃α = ñαβϕϕϕ,β ⊗ϕϕϕ,α . (B.30)

From this definition, the components ˜nα3 = (ñ ·ϕϕϕ,α) ·λht andñ3α read,

ñα3 = lα −λα
γ m̃3γ = l̃α and, (B.31)

ñ3α = qα −λ3
γm̃αγ , (B.32)

whereλβ
µ = λht,µ ·ϕϕϕ,β. Moreover as we neglect by assumptionλh,α and taking into account

the relationt,α · t = 0 we haveλ3
α = 0. Finally, asm̃3 vanishes fore thin bodies the Eqs.

(B.31-B.32) can be written as,

ñα3 = lα = l̃α and, (B.33)

ñ3α = qα . (B.34)

But as Eq. (4.47) is satisfied by enforcing the symmetry of the effective membrane stress
resultant tensor it leads to ˜nα3 = ñ3α and thus,

qα = l̃α (B.35)

Finally, from the definition of̃n (B.30), we have also,

ñαβ = nαβ −λβ
µm̃αβ . (B.36)
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B.4 Numerical properties

In Chapter 4 we enumerated the numerical properties of the suggested DG formulation
of Kirchhoff-Love shells. To be concise some demonstrations were omitted. They are a
generalization to shells of the different demonstrations made in Appendix A.3 in the case of
Euler-Bernoulli beams. Notice that all the demonstrations reported here below are made under
a linear assumption as discussed in Section 4.4.

B.4.1 Upper bound of the bilinear form

The upper bound of|a(u, δu)|2, is derived by first using the Cauchy-Schwartz inequal-

ity (
∣∣∣aαβbαβ

∣∣∣ ≤
√

aαβaαβ
√

bαβbαβ) in the membrane and bending parts of the bilinear form

(4.148) which gives,

∣∣∣∣∑
e

ae
n(u, δu)

∣∣∣∣ ≤ ∑
e

∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

L2(Ae)

×
∥∥∥∥∥
√
H n j̄0

γδ 1
2

(
ϕϕϕ0,γ ·δu,δ +δu,γ ·ϕϕϕ0,δ

)
∥∥∥∥∥

L2(Ae)

and, (B.37)

∣∣∣∣∑
e

ae
m(u, δu)

∣∣∣∣ ≤ ∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

L2(Ae)

×
∥∥∥∥∥
√
Hm j̄0

γδ (
ϕϕϕ0,γ ·δ∆t,δ +δu,γ · t0,δ

)
∥∥∥∥∥

L2(Ae)

, (B.38)

where the notation,
∥∥∥∥
√
H

αβ
aαβ

∥∥∥∥
2

L2(Ae)

=
∫
Ae

aαβH
αβγδaγδdA , (B.39)

is used. Then, the recourse to the property‖〈•〉‖2
L2(s) ≤ ‖•+‖2

L2(s) + ‖•−‖2
L2(s) allows bound-

ing the consistent membrane interface term,

∣∣∣∣∑
s

as
lnI1(uh,δu)

∣∣∣∣ ≤ ∑
e

∣∣∣∣∣∣

∫

∂Ae

as
lnI1(uh,δu)

∣∣∣∣∣∣

≤ 2∑
e

∥∥∥∥∥
√

hsH n j̄0
αβ (

ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β
)
∥∥∥∥∥

L2(∂Ae)

×

∥∥∥∥∥∥

√
H n j̄0

hs

γδ

JδuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

, (B.40)
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which becomes using the scaling property1,
∣∣∣∣∑

s
as

lnI1(uh,δu)
∣∣∣∣ ≤ Ck

2√
β2

∑
e

∥∥∥∥∥
√
H n j̄0

αβ (
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

L2(Ae)

×

∥∥∥∥∥∥

√
β2H n j̄0

hs

γδ

JδuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

, (B.41)

whereCk
2 depends only on the degree ofu. Note that this one isa priori unknown, but

applying the bounds to the discretizationuh satisfying the essential boundary conditions, the
degree ofu, corresponds to the degree of the polynomial approximation. The other interface
terms can be bounded in a similar ways2:

• Compatibility membrane term,
∣∣∣∣∑

s
as

lnI2(uh,δu)
∣∣∣∣ ≤ Ck

2√
β2

∑
e

∥∥∥∥∥
√
H n j̄0

αβ (
ϕϕϕ0,α ·δu,β +δu,α ·ϕϕϕ0,β

)
∥∥∥∥∥

L2(Ae)

×

∥∥∥∥∥∥

√
β2H n j̄0

hs

γδ

JuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

, (B.42)

• Stability membrane term,

∣∣∣∣∑
s

as
lnI3(uh,δu)

∣∣∣∣ ≤ ∑
e

∥∥∥∥∥∥

√
β2H n j̄0

hs

αβ

JδuK ·ϕϕϕ0,βν−α

∥∥∥∥∥∥
L2(∂Ae)

×

∥∥∥∥∥∥

√
β2H n j̄0

hs

γδ

JuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

(B.43)

• Consistency bending term,
∣∣∣∣∑

s
as

lmI1(uh,δu)
∣∣∣∣ ≤ Ck

1√
β1

∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

L2(Ae)

×

∥∥∥∥∥∥

√
β1Hm j̄0

hs

γδ

J∆t(δu)K ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

, (B.44)

1Hansboet al. [115] demonstrate that for an elementeone has the propertyhs‖a‖2
L2(∂Ae)

≤Ck‖a‖2
L2(Ae)

with

Ck > 0 independent of the element geometry and withhs = |Ae|
|∂Ae| . ConstantCk = sup

aαβ∈Pk(Ae)

|Ae|
∫
s{aαβ:aαβ}d∂A

|s|∫Ae{aαβ:aαβ}dA

depends only on the polynomial degreek.
2Note that the scaling property is not applied for the terms ofstabilization
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• Compatibility bending term,

∣∣∣∣∑
s

as
lmI2(uh,δu)

∣∣∣∣ ≤ Ck
1√
β1

∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·δ∆t,β +δu,α · t0,β

)
∥∥∥∥∥

L2(Ae)

×

∥∥∥∥∥∥

√
β1Hm j̄0

hs

γδ

J∆tK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

, (B.45)

• Stability bending term,

∣∣∣∣∑
s

as
lmI3(uh,δu)

∣∣∣∣ ≤ ∑
e

∥∥∥∥∥∥

√
β1Hm j̄0

hs

αβ

Jδ∆tK ·ϕϕϕ0,βν−α

∥∥∥∥∥∥
L2(∂Ae)

×

∥∥∥∥∥∥

√
β1Hm j̄0

hs

γδ

J∆tK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

, (B.46)

• Stability shearing term,

∣∣∣∣∑
s

as
lsI3(uh,δu)

∣∣∣∣ ≤ ∑
e

∥∥∥∥∥

√
β3H q j̄0

hs

α

JδuK · t0ν−α

∥∥∥∥∥
L2(∂Ae)

×
∥∥∥∥∥

√
β3H q j̄0

hs

γ

JuK · t0ν−γ

∥∥∥∥∥
L2(∂Ae)

. (B.47)
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Then, completing the form to obtain the complete binomial terms, the summation of Eqs.
(B.37-B.47) gives,

|al (uh,δu)|
Ck (β)

≤ ∑
e



∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

L2(Ae)

+

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

L2(Ae)

+

∥∥∥∥∥∥

√
β2H n j̄0

2hs

αβ

JuK ·ϕϕϕ0,βν−α

∥∥∥∥∥∥
L2(∂Ae)

+

∥∥∥∥∥∥

√
β1Hm j̄0

2hs

αβ

J∆tK ·ϕϕϕ0,βν−α

∥∥∥∥∥∥
L2(∂Ae)

+

∥∥∥∥∥

√
β3H q j̄0

2hs

α

JuK · t0ν−α

∥∥∥∥∥
L2(∂Ae)


×



∥∥∥∥∥
√
H n j̄0

γδ 1
2

(
ϕϕϕ0,γ ·δu,δ +δu,γ ·ϕϕϕ0,δ

)
∥∥∥∥∥

L2(Ae)

+

∥∥∥∥∥
√
Hm j̄0

γδ (
ϕϕϕ0,γ ·δ∆t,δ +δu,γ · t0,δ

)
∥∥∥∥∥

L2(Ae)

+

∥∥∥∥∥∥

√
β2H n j̄0

2hs

γδ

JδuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

+

∥∥∥∥∥∥

√
β1Hm j̄0
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γδ

Jδ∆tK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
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+

∥∥∥∥∥

√
β3H q j̄0

2hs

γ

JδuK · t0ν−γ

∥∥∥∥∥
L2(∂Ae)


 , (B.48)
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with Ck (βi) = max
(

2,Ck
1

√
2/β1,Ck

2

√
2/β2

)
. Finally, using the property 2ab≤ a2+b2 and

the Cauchy-Schwartz inequality (

∣∣∣∣∑
i

aibi

∣∣∣∣≤
√

∑
i

a2
i ∑

j
b2

j ) is Eq. (B.48), this last one reads,

|al (uh,δu)|2
Ck′ (βi)

≤ ∑
e



∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

2

L2(Ae)

+

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

2

L2(Ae)

+

1
2

∥∥∥∥∥∥

√
β2H n j̄0

hs

αβ

JuK ·ϕϕϕ0,βν−α

∥∥∥∥∥∥

2

L2(∂Ae)

+

1
2

∥∥∥∥∥∥

√
β1Hm j̄0

hs

αβ

J∆tK ·ϕϕϕ0,βν−α

∥∥∥∥∥∥

2

L2(∂Ae)

+

1
2

∥∥∥∥∥

√
β3H q j̄0

hs

α

JuK · t0ν−α

∥∥∥∥∥

2

L2(∂Ae)


×

∑
e′



∥∥∥∥∥
√
H n j̄0

γδ 1
2

(
ϕϕϕ0,γ ·δu,δ +δu,γ ·ϕϕϕ0,δ

)
∥∥∥∥∥

2

L2(∂Ae′)

+

∥∥∥∥∥
√
Hm j̄0

γδ (
ϕϕϕ0,γ ·δ∆t,δ +δu,γ · t0,δ

)
∥∥∥∥∥

2

L2(∂Ae′)

+

1
2

∥∥∥∥∥∥

√
β2H n j̄0

hs

γδ

JδuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥

2

L2(∂Ae′)

+

1
2

∥∥∥∥∥∥

√
β1Hm j̄0

hs

γδ

Jδ∆tK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥

2

L2(∂Ae′)

+

1
2

∥∥∥∥∥

√
β3H q j̄0

hs

γ

JδuK · t0ν−γ

∥∥∥∥∥

2

L2(∂Ae′)


 , (B.49)

which can be written as,

|al (uh,δu)|2 ≤Ck (β) |‖u‖|2 |‖δu‖|2 , (B.50)

for all u satisfying the essential boundary conditions and whereCk depends only on the degree
of u. The Eq. (B.50) corresponds to the upper bound given by the Eq.(4.156)
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B.4.2 Lower bound of the bilinear form

The following relation is used in order to obtain a lower bound of the bilinear form,

al (u, u) = ∑
e

∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)∥∥∥
2

L2(Ae)
+

∑
e

∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)∥∥∥
2

L2(Ae)
+

2∑
s

∫
sJuK ·ϕϕϕ0,γ

〈(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
H

αβγδ
n j̄0

〉
ν−δ d∂A

+∑
s

∥∥∥∥∥
√

β2Hn j̄0
hs

γδ
ϕϕϕ0,γ · JuKν−δ

∥∥∥∥∥

2

L2(s)

+

2∑
s

∫
sJ∆tK ·ϕϕϕ0,γ

〈(
ϕϕϕ0,α ·∆t(u),β +u,α · t0,β

)
H

αβγδ
m j̄0

〉
ν−δ d∂A

+∑
s

∥∥∥∥∥
√

β1Hm j̄0
hs

γδ
ϕϕϕ0,γ · J∆t(u)Kν−δ

∥∥∥∥∥

2

L2(s)

+

+∑
s

∥∥∥∥∥

√
β3Hq j̄0

hs

γδ
t0 · JuKν−δ

∥∥∥∥∥

2

L2(s)

. (B.51)
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Then, the product ofL2-norms with constantsCk
1 andCk

2 depending on the degree ofu is used
to bound the remaining interface integral (see Eq. (B.42)), which gives,

al (u, u)≥ ∑
e

∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

2

L2(Ae)

+

∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

2

L2(Ae)

−

2
√

2Ck
n√

β2
∑
e

∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

L2(Ae)

×

∥∥∥∥∥∥

√
β2H n j̄0

2hs

γδ

JuK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

−

2
√

2Ck
m√

β1
∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

L2(Ae)

×

∥∥∥∥∥∥

√
β1Hm j̄0

2hs

γδ

J∆tK ·ϕϕϕ0,δν−γ

∥∥∥∥∥∥
L2(∂Ae)

+

∑
e

∥∥∥∥∥∥

√
β2H n j̄0

2hs

γδ

ϕϕϕ0,γ · JuKν−δ

∥∥∥∥∥∥

2

L2(∂Ae)

+

∑
e

∥∥∥∥∥∥

√
β1Hm j̄0

2hs

γδ

ϕϕϕ0,γ · J∆t(u)Kν−δ

∥∥∥∥∥∥

2

L2(∂Ae)

+

∑
s

∥∥∥∥∥

√
β3H q j̄0

2hs

γ

t0 · JuKν−γ

∥∥∥∥∥

2

L2(s)

. (B.52)

Finally, the recourse to theε-inequality3 applied to Eq. (B.52) provides the lower bound

3∀ε > 0 : |ab| ≤ ε
2a2+ 1

2ε b2 or ∀ε > 0 : |ab| ≤ εa2+ 1
4ε b2.
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of the bilinear form,

a(u, u) ≥ (1− εn)∑
e

∥∥∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·u,β +u,α ·ϕϕϕ0,β

)
∥∥∥∥∥

2

L2(Ae)

+

(1− εm)∑
e

∥∥∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β +u,α · t0,β

)
∥∥∥∥∥

2

L2(Ae)

+

(
1−2

Ck
n

2

εnβ2

)
∑
e

∥∥∥∥∥∥

√
β2H n j̄0

2hs

γδ

ϕϕϕ0,γ · JuKν−δ

∥∥∥∥∥∥

2

L2(∂Ae)

+

(
1−2

Ck
m

2

εmβ1

)
∑
e

∥∥∥∥∥∥

√
β1Hm j̄0

2hs

γδ

ϕϕϕ0,γ · J∆t(u)Kν−δ

∥∥∥∥∥∥

2

L2(∂Ae)

+

∑
e

∥∥∥∥∥

√
β3H s j̄0

2hs

γ

t0 · JuKν−γ

∥∥∥∥∥

2

L2(∂Ae)

, (B.53)

for all u satisfying the essential boundary conditions. The lower bound (B.53) corresponds to
the definition given in Section 4.4 by the Eq. (4.157)

B.4.3 Proof of the convergence in the energy-norm

The convergence rate of the problem is established by calculating the error between the
finite element solution and the interpolantuk of the exact solutionu in the same space of
functions of polynomial degreek. If bothu anduk satisfy the essential boundary conditions,
the definition ofuk is, ∫

Ah

(
u−uk

)
·δu j̄0dA = 0 ∀δu , (B.54)

for all δu satisfying the essential boundary conditions. The definition of the error is,

e = uh−u , (B.55)

where the prescribed displacement on∂UA and the prescribed normal director on∂TA are
strictly equal to zero. Furthermore, the error on the exact solution interpolant reads,

ek = uh−uk (B.56)

As the terms (4.148) are by definition linear, having recourse to Eqs. (4.156) and (4.158) it
comes, using the orthogonality relation (4.152) ,

C2

∣∣∣
∥∥∥ek
∥∥∥
∣∣∣
2

≤ a
(
uh−uk, uh−uk

)

≤ a
(
uh−u, uh−uk

)
+a
(
u−uk, uh−uk

)

≤ C1

∣∣∣
∥∥∥u−uk

∥∥∥
∣∣∣
∣∣∣
∥∥∥uh−uk

∥∥∥
∣∣∣=C1

∣∣∣
∥∥∥u−uk

∥∥∥
∣∣∣
∣∣∣
∥∥∥ek
∥∥∥
∣∣∣ , (B.57)
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Afterward, the error resulting from the discontinuous Galerkin method is calculated by
bounding the terms of

∣∣∥∥u−uk
∥∥∣∣. Giving I αβγδ the unit forth order tensor, a bound of the

membrane energy term is,

∥∥∥
√
H n j̄0

αβ 1
2

(
ϕϕϕ0,α ·

(
u,β −uk

,β

)
+
(
u,α −uk

,α
)
·ϕϕϕ0,β

)∥∥∥
2

L2(Ae)
≤

Cn1

∥∥∥
√
I

αβϕϕϕ0,α ·
(
u,β −uk

,β

)∥∥∥
2

L2(Ae)
≤

2Cn1

[∥∥∥
√
I

αβ
(ϕϕϕ0,α·(u−uk)),β

∥∥∥
2

L2(Ae)
+
∥∥∥
√
I

αβϕϕϕ0,αβ·(u−uk)
∥∥∥

2

L2(Ae)

]

≤ 2Cn2

∥∥∥
√

I
αϕϕϕ0,α·(u−uk)

∥∥∥
2

H1(Ae)
+2Cn1

∥∥∥
√
I

αβϕϕϕ0,αβ·(u−uk)
∥∥∥

2

L2(Ae)

≤Cn3

(∥∥u−uk
∥∥2

H1(Ae)
+
∥∥u−uk

∥∥2
L2(Ae)

)
≤

Cn4hs2k |u|2Hk+1(Ae)
+Cn5hs2k+2 |u|2Hk+1(Ae)

≤Cnhs2k |u|2Hk+1(Ae)
, (B.58)

asH n is positive and symmetric by nature and where in Eq. (B.58) thederivation by part, the
property(a+b)2 < 2a2+2b2, the definition of the Sobolev space (‖a,α‖H0(Ae)

≤ ‖a‖H1(Ae)
),

the property‖a ·b‖ ≤ ‖a‖‖b‖, the basic error estimates of interpolation theory4 as well as
the assumptionhs< 1 are used. Therefore these assumptions lead to considers that the surface
is continuous and regular (no singular point).

The same argumentation holds to bound the bending term whichreads,

∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β

(
u−uk

)
+
(
u,α −uk

,α
)
· t0,β

)∥∥∥
2

L2(Ae)
≤

Cm1
∥∥u−uk

∥∥2
H2(Ae)

+Cm2
∥∥u−uk

∥∥2
H1(Ae)

+Cm3
∥∥u−uk

∥∥2
L2(Ae)

(B.59)

where the definition (4.104) of∆t,γ is used. Having recourse to the error estimates from
interpolation theory and the fact thaths < 1, Eq. (B.59) becomes,

∥∥∥
√
Hm j̄0

αβ (
ϕϕϕ0,α ·∆t,β

(
u−uk

)
+
(
u,α −uk

,α
)
· t0,β

)∥∥∥
2

L2(Ae)
≤

Cmhs2k−2 |u|2Hk+1(Ae)
. (B.60)

Now the bound of the different interface terms are investigated. For the membrane inter-

4Given a mappingu ∈ Hk+1 (Ae), then ∀uk ∈ Pk interpolating u in Ae:
∥∥u−uk

∥∥
Hq(Ae)

≤
Cihsk+1−q |u|Hk+1(Ae)

∀0≤ q≤ k+1, with Ci independent ofhs, the size ofAe [140].
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face terms one has,

1
2 ∑

e

∥∥∥∥∥
√

β2Hn j̄0
hs

αβ
ϕϕϕ0,α ·

q
u−uk

y
ν−β

∥∥∥∥∥

2

L2(∂Ae)

≤

∑
e

∥∥∥∥∥
√

β2Hn j̄0
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αβ
ϕϕϕ0,α ·

(
u−uk

)
ν−β

∥∥∥∥∥

2

L2(∂Ae)

≤

∑
e

CnI1β2
hs

∥∥∥
√

I
α (

u−uk
)∥∥∥

2

L2(∂Ae)
≤

∑
e

CnI2β2

hs4

∥∥u−uk
∥∥2

L2(Ae)
≤

∑
e

CnIβ2hs2k |u|2Hk+1(Ae)
, (B.61)

asH n is positive and symmetric by nature, and where the property‖a · b‖ ≤ ‖a‖‖b‖, the
trace inequality5, the definition of Sobolev spaces (i.e. ‖∇x‖H0(Ae)

≤ ‖x‖H1(Ae)
), the inverse

inequality6 as well as the the interpolation theory are used. Notice thaths is assumed to be
constant in this development. Similarly, for the bending interface terms the Eqs. (4.12) and
(4.103) imply,J∆tK ·ϕϕϕ0,α =−Ju,αK · t0, and

1
2 ∑

e

∥∥∥∥∥
√

β1Hm j̄0
hs

αβ
ϕϕϕ0,α ·

q
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(
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∥∥∥∥∥

2

L2(∂Ae)
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∥∥∥∥∥
√
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αβ
t0 ·
(
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∥∥∥∥∥

2

L2(∂Ae)

≤
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∥∥∥
√
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u,α −uk
,α
)∥∥∥

2

L2(∂Ae)
≤

∑
e

CmI2β1

hs2

∥∥∥
√

I
α
(u,α−uk

,α)
∥∥∥

2

L2(Ae)
+∑

e
CmI3β1

∥∥∥
√
I

αβ(
u,αβ−uk

,αβ

)∥∥∥
2

L2(Ae)
≤

∑
e

CmI2β1

hs2

∥∥u−uk
∥∥2

H1(Ae)
+∑

e
CmI3β1

∥∥u−uk
∥∥2

H2(Ae)
≤

∑
e

CmI4β1

hs4

∥∥u−uk
∥∥2

L2(Ae)
≤

∑
e

CmIβ1hs2k−2 |u|2Hk+1(Ae)
, (B.62)

and finally, for the shearing interface term it comes,

1
2∑

e

∥∥∥∥∥

√
β3H q j̄0

hs

α

t0 · JuKν−β

∥∥∥∥∥

2

L2(∂Ae)

≤ ∑
e

ClI β3hs2k |u|2Hk+1(Ae)
. (B.63)

5∀v ∈ H1 (Ae) ∃CT > 0 : ‖v‖2
L2(∂Ae)

≤ CT
hs ‖v‖2

L2(Ae)
+CThs‖v,α‖2

L2(Ae)
.

6∀m≥ l ∃CI > 0 : ‖v‖Hm(Ae)
≤CI hsl−m‖v‖H l (Ae)

.
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Combining the results of Eqs. (B.58-B.63) the Eq. (B.57) is formulated as,
∣∣∣
∥∥∥ek
∥∥∥
∣∣∣ ≤ ∑

e
Chsk−1 |u|Hk+1(Ae)

. (B.64)

The governing equation involving high order derivatives leading, as expected, to an order of
convergence lower than the degree of the polynomial approximation and thus implies to have
recourse to at least quadratic interpolation.

B.4.4 Proof of the convergence in the L2-norm

A proper elliptic regularity, a cubic approximation of the problem, as well as pure Dirich-
let boundary conditions are assumed to prove the optimal-convergence rate in theL2-norm.
First, the notations are simplified by formulating the linear dependency of vector∆t with u,α
explicitly from Eq. (4.103), which gives

∆t = ∆̃∆∆tαu,α with, (B.65)

∆̃∆∆tα =
eβα3

j̄0

[
ϕ̃ϕϕ0,β − t0⊗

(
t0∧ϕϕϕ0,β

)]
, (B.66)

where∆̃∆∆tα is a second-order tensor andϕ̃ϕϕ0,β is the skew rotation matrix associated toϕϕϕ0,β. The
assumption of pure Dirichlet boundary conditions leads to,

∂UAh = ∂TAh = ∂Ah and∂NAh = ∂MAh = /0 , (B.67)

u=∆t= 0 on ∂Ah . (B.68)

The demonstration of the consistency of the formulation in Section 4.4.1 leads to the
fact that the exact deformation fieldsu, satisfying the essential boundary conditions, satisfies
the bilinear form (4.148). Furthermore, under pure Dirichlet boundary conditions,b(δu) =
bext(δu)+bbound(δu) can be formulated using (B.65) and (B.68),

bn
A ,m̃A (δu) =

∫
Ah

[
j̄0n
A −

(
j̄0∆̃∆∆t

T
µm̃
A
)
,µ

]
·δudA . (B.69)

Let ud, satisfying the essential boundary conditions, be the exact solution of a problem gov-
erned by the system (4.148) for a given pair

(
nAd , m̃

A
d

)
. Therefore, considering the errore

(B.55), satisfying also the essential boundary conditions,as the virtual displacements yields

bn
A ,m̃A (e) = a(ud, e) = a

(
ud−uk

d, e
)
+a
(
uk

d, e
)

= a
(
ud −uk

d, e
)
+a
(
e, uk

d

)

= a
(
ud −uk

d, e
)
+a
(
uh−u, uk

d

)
= a

(
ud−uk

d, e
)

= a
(
ud −uk

d, uh−uk
)
+a
(
ud−uk

d, u
k−u

)
(B.70)
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where theuk
d is the interpolation ofud satisfies the essential boundary conditions, and where

the recourse to the symmetric nature ofa(, ) as well as the orthogonality relation (4.152) are
used. Using the Eq. (4.156) with the particular choice of theadjoint problem such that,

j̄0n
A −

(
j̄0∆̃∆∆t

T
µm̃
A
)
,µ
= e , (B.71)

enables rewriting (B.70) as

‖e‖2
L2(Ah)

≤ Ck (β)
∣∣∣
∥∥∥ud−uk

d

∥∥∥
∣∣∣
[ ∣∣∣
∥∥∥ek
∥∥∥
∣∣∣+
∣∣∣
∥∥∥uk−u

∥∥∥
∣∣∣
]
, (B.72)

as all the terms involved satisfy the essential boundary conditions.
The theorems 5.1 and 5.4 presented in [147] allows establishing the convergence rate

by bounding the term
∣∣∥∥ud−uk

d

∥∥∣∣. Toward this end, these theorems are particularized to a
problem under pure Dirichlet boundary conditions, and thussummarized as:

Theorem 1 Consider the problem

A ·u = f ∈ A , (B.73)

Bi ·u = gi on ∂A for i = 0, 1, ..., m−1, (B.74)

with the proper elliptic operatorA : C ∞ (A )→ Hs−2m(A ) and the operator
Bi : C ∞ (∂A )→ Hs−i−1/2(∂A ) which respectively take the expression

A ·u = ∑
0≤p,q≤m

(−1)pDp(apq(ξα)Dqu
)
, (B.75)

Bi ·u =
∂i

∂ζ i u , (B.76)

with ζ the outer normal of∂A , and with

Dp =
∂p1+p2

∂ξ1p1∂ξ2p2
, p1+ p2 = p. (B.77)

Therefore, ifu∈ H2m(A ) and ifA ·u∈ Hp−2m(A ), Bi ·u∈ Hp−i−1/2(∂A ), one has∀p≥ 2m

‖u‖Hp(A ) ≤Cp

{
‖A ·u‖Hp−2m(A )+∑

i
‖Bi ·u‖Hp−i−1/2(∂A )

}
. (B.78)

Notice that the use of this theorem limits the demonstrationto a problem with a proper elliptic
regularity, which can be easily proved only for particular cases like pure bending.

Then using Eq. (B.64) it comes,

∣∣∣
∥∥∥ud−uk

d

∥∥∥
∣∣∣≤
{

Chs2 |ud|H4(Ah)
if k> 2

Chs|ud|H4(Ah)
if k= 2

, (B.79)
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where the result fork = 2 is obtained following the argumentation of G. Wellset al. [257].
Thus, if the theorem 1 is applied to Eq. (B.79) withm= 2, p= 4≥ 2m, f = e andgi = 0, it
comes

∣∣∣
∥∥∥ud −uk

d

∥∥∥
∣∣∣≤
{

Crhs2‖e‖L2(Ah)
if k> 2

Crhs‖e‖L2(Ah)
if k= 2

. (B.80)

Combining this last results with (B.64), the Eq. (B.72) reads

∥∥∥ek
∥∥∥

L2(Ah)
≤





∑
e

Chsk+1 |u|Hk+1(Ae)
if k> 2

∑
e

Chs2 |u|H3(Ae)
if k= 2

(B.81)

Finally, using the triangular inequality one has‖e‖L2(Ah)
≤
∥∥ek
∥∥

L2(Ah)
(see G. Wellset al.

[257] for details) and thus,

‖e‖L2(Ah)
≤





∑
e

Chsk+1 |u|Hk+1(Ae)
if k> 2

∑
e

Chs2 |u|H3(Ae)
if k= 2

(B.82)

Therefore the full-DG shell formulation is proved to have anoptimal-convergence in the
L2-norm if at least cubic elements are used. Nevertheless, it is shown in a numerical example
of Section 4.6.1 that the optimal convergence rate is also observed for quadratic elements.

B.5 Expression of the elementary force vectors

In this section we provide the expression of the elementary force vectors of the non linear
full-DG formulation of Kirchhoff-Love shells.

B.5.1 Bulk terms

We first present the vectors related to the bulk terms. In these ones, the integration on
the surface is performed through a Gauss quadrature rule with (ξ1

g,ξ2
g) the coordinates of the

Gauss points andwg the corresponding weight. Using the developments providedin Section
4.5.1 the expressions of the elementary force vectors of thenon-linear shell formulation are
successively:

• Membrane term:

∑
e

∫
Āe

j̄nα ·δϕϕϕ,αdA = ∑
e

[∫
Āe

j̄nαNµ

,ξα

(
ξ1,ξ2)dA

]
·δϕϕϕµ

= ∑
e
F e

int n
µ ·δϕϕϕµ , (B.83)
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where,

F e
int n

µ = ∑
g

wg j̄
(
ξ1

g,ξ
2
g

)
nα(ξ1

g,ξ
2
g)N

µ

,ξα

(
ξ1

g,ξ
2
g

)
, (B.84)

is the elementary membrane internal forces vector.

• Bending term:
∫
Āe

j̄m̃α (ϕϕϕh) · (δtλh),α dA =
∫
Āe

[
j̄λh

[
∆̃∆∆t

µ
,α

]T
·m̃αdA

]
·δϕϕϕµ , (B.85)

where,

F e
int b

µ = ∑
g

wg j̄
(
ξ1

g,ξ
2
g

)[
∆̃∆∆t

µ
,α
(
ξ1

g,ξ
2
g

)]T
·m̃α (ξ1

g,ξ
2
g

)
(B.86)

Notice that in these expressions it has been supposed that the resultant membrane and bending
stresses are computed thanks to the material law and that thevariation of the normal vector in
terms of nodal displacements is computed from,

δt = ∆̃∆∆t
µ ·δϕϕϕµ , (B.87)

where∆̃∆∆t
µ

is a 3×3 matrix defined by,

∆̃∆∆t
µ

=
εαβ3

j̄

[
ϕ̃ϕϕh,α − t⊗

(
t∧ϕϕϕh,α

)]
Nµ

,ξβ

(
ξ1,ξ2) , (B.88)

and whereϕ̃ϕϕh,α is the skew rotation matrix7 associated toϕϕϕh,α. From these definitions the
variation of the derivative of the normal unit vector in terms of displacements reads,

δt,α = ∆̃∆∆t
µ
,α ·δϕϕϕµ , (B.89)

where∆̃∆∆t
µ
,α is a 3×3 matrix defined as,

∆̃∆∆t
µ
,α =

1
j̄

{[
ϕ̃ϕϕh,1αNµ

,ξ2

(
ξ1,ξ2)− ϕ̃ϕϕh,2Nµ

,ξ1ξα

(
ξ1,ξ2)+ ϕ̃ϕϕh,1Nµ

,ξ2ξα

(
ξ1,ξ2)−

ϕ̃ϕϕh,2αNµ

,ξ1

(
ξ1,ξ2)]− ∆̃∆∆t

µ ·
[
ϕϕϕh,1α ·

(
ϕϕϕh,2∧ t

)
−ϕϕϕh,2α ·

(
ϕϕϕh,1∧ t

)]

+t⊗
[
−
(
ϕϕϕh,2∧ t

)
Nµ

,ξ1ξα

(
ξ1,ξ2)+

(
ϕϕϕh,1∧ t

)
Nµ

,ξ2ξα

(
ξ1,ξ2)−

(
t∧ϕϕϕh,1α

)
Nµ

,ξ2

(
ξ1,ξ2)+

(
t∧ϕϕϕh,2α

)
Nµ

,ξ1

(
ξ1,ξ2)]

+t⊗
[[

∆̃∆∆t
µ
]T

·
[
−
(
ϕϕϕh,1α ∧ϕϕϕh,2

)
+
(
ϕϕϕh,21∧ϕϕϕh,1

)]]

+ t,α ⊗
[
−
(
t∧ϕϕϕh,1

)
Nµ

,ξ2

(
ξ1,ξ2)+

(
t∧ϕϕϕh,2

)
Nµ

,ξ1

(
ξ1,ξ2)]} . (B.90)

7Givena a 3-components vector, its associated 3×3 skew rotation matrix is




0 −a3 a2

a3 0 −a1

−a2 a1 0


.
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B.5.2 Interface terms

We discuss the implementation of the different interface elementary force vectors of the
full-DG formulation of non-linear Kirchhoff-Love shells.In these ones, the integration on the
curve is performed through a Gauss quadrature rule with(ξs1

g ) the coordinate of the Gauss
points andwg the corresponding weight. Nevertheless, some quantities are computed on the
corresponding point of the elements as depicted on Fig. B.1. Therefore at each coordinate

− +×× ×ξs1
(
ξ1−,ξ2−) (

ξ1+,ξ2+
)

Figure B.1: Gauss integration on the interface is performed on a curve of coordinateξs1

but the different quantities are computed on (minus and plus) elements edges of coordinates(
ξ1±,ξ2±). The symbol× marks a Gauss integration point of the interface. With a continuous

method the three× are congruent and with a discontinuous method, they are veryclose.

(ξs1
g ) of the interface it corresponds a point of coordinates

(
ξ1−

g ,ξ2−
g

)
of the minus element

and another one of coordinates
(
ξ1+

g ,ξ2+
g

)
of the plus element. In the following we write

Nµ− (ξs1
g

)
andNµ+

(
ξs1

g

)
respectively the shape functions of minus and plus element of coor-

dinates
(
ξ1±,ξ2±) evaluated at the pointξs1

g . Thus, these shape functions can be derived with
respect to both coordinatesξ1 andξ2. Once computed on elements, the quantities• are formu-
lated in the interface convected basis using the push-forward tensor, defined by Eq. (4.181),
and are then written̂•. Furthermore, the Jacobian̄j is computed on the interface following

Eq. (4.180). Definingδϕϕϕs =

[
δϕϕϕ−

δϕϕϕ+

]
and using the developments provided in Section 4.5.1,

the expressions of the interface elementary force vectors of the non-linear shell formulation
are successively:

• Consistency membrane term:

∑
s

∫
s
〈 j̄nα〉 · JδϕϕϕKν−α d∂Ae = ∑

s
F s

int consn
µ ·δϕϕϕsµ , (B.91)

where,

F s
int consn

µ = ∑
g

wg j̄
(
ξs1

g

)
ν−α


 −

〈
n̂α
〉

Nµ− (ξs1
g

)
〈
n̂α
〉

Nµ+
(
ξs1

g

)


 , (B.92)

is the elementary interface consistency membrane forces vector.
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• Compatibility membrane term:

∑
s

∫
s
JϕϕϕhK · 〈δ( j̄nα)〉ν−α d∂Ae = ∑

s
F s

int compn
µ ·δϕϕϕsµ (B.93)

where,

F s
int compn

µ = F s
int compn

µ

1
+F s

int compn
µ

2
+F s

int compn
µ

3
+F s

int compn
µ

4
, (B.94)

is the elementary interface compatibility membrane forcesvector and where,

F s
int compn

µ

1
= ∑

g
wg

j̄0
(
ξs1

g

)

4
ν−α JϕϕϕhK ·ϕϕϕh,β




̂
H

αβγδ
n

−
N̂µ−
,ξγ

(
ξ1

g

)
ϕϕϕh,γ

̂
H

αβγδ
n

+

N̂µ+
,ξγ

(
ξ1

g

)
ϕϕϕh,γ


 , (B.95)

F s
int compn

µ

2
= ∑

g
wg j̄

(
ξs1

g

)
ν−α 〈nα〉 ·ϕϕϕh

,β

[
N̂µ−
,ξβ

(
ξ1

g

)
JϕϕϕhK

N̂µ+

,ξβ

(
ξ1

g

)
JϕϕϕhK

]
, (B.96)

F s
int compn

µ

3
= ∑

g
wg

j̄0
(
ξs1

g

)

2
ν−α


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[
λβ−

o
λ−h

̂
H

αoγδ
m

− [(
ϕϕϕh,β ⊗ t,δ

)
N̂µ−
,ξγ
(
ξ1

g

)
+
(

ϕϕϕh,β ⊗ϕϕϕh,γ

)
· ̂̃∆∆∆t

µ−
,δ

]]T

· JϕϕϕhK
[

λβ+
o

λ+h

̂
H

αoγδ
m

+ [(
ϕϕϕh,β ⊗ t,δ

)
N̂µ+
,ξγ
(
ξ1

g

)
+
(

ϕϕϕh,β ⊗ϕϕϕh,γ

)
· ̂̃∆∆∆t

µ+
,δ

]]T

· JϕϕϕhK


 , (B.97)

F s
int compn

µ

4
= ∑

g
wg

j̄
(
ξs1

g

)

2
ν−α



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λh

−̂̃mαo−
{(

ϕϕϕh,β ⊗ϕϕϕh
,β
)
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µ−
,o − λζ−

o
λh

−

(
ϕϕϕh,β ⊗ϕϕϕh

,β
)

N̂µ−
,ξζ

(
ξ1

g

)}]T

· JϕϕϕhK
[

λh
+̂̃mαo+

{(
ϕϕϕh,β ⊗ϕϕϕh

,β
)
· ̂̃∆∆∆t

µ+
,o − λζ+

o
λh

+

(
ϕϕϕh,β ⊗ϕϕϕh

,β
)

N̂µ+

,ξζ

(
ξ1

g

)}]T

· JϕϕϕhK


 . (B.98)

• Stability membrane term:

∑
s

∫
s
JϕϕϕhK ·ϕϕϕh,γν

−
δ

〈
β2H

αβγδ
n j̄0
hs

〉
JδϕϕϕK ·ϕϕϕh,βν−α d∂Ae =

∑
s
F s

int stabn
µ ·δϕϕϕsµ , (B.99)

where,

F s
int stabn

µ = ∑
g

wg j̄0
(
ξs1

g

)
ν−α ν−δ JϕϕϕhK ·ϕϕϕh,γ

〈
β2

̂
H

αβγδ
n

hs

〉[ −Nµ− (ξs1
g

)
ϕϕϕh,β

Nµ+
(
ξs1

g

)
ϕϕϕh,β

]
,

(B.100)
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is the elementary interface stability membrane forces vector. Note that as explained in
Section 4.2 the two last term ofas

nI3(ϕϕϕh,δϕϕϕ) can be and are neglected.

• Consistency bending term:

∑
s

∫
s
〈 j̄λhm̃

α〉 · JδtKν−α d∂Ae = ∑
s
F s

int consm
µ ·δϕϕϕsµ (B.101)

where,

F s
int consm

µ = ∑
g

wg j̄
(
ξs1

g

)
ν−α




−
[
̂̃∆∆∆t

µ−
]T

·
〈

λĥ̃mα
〉

[
̂̃∆∆∆t

µ+
]T

·
〈

λĥ̃mα
〉


 , (B.102)

is the elementary interface consistency bending forces vector.

• Compatibility bending term:

∑
s

∫
s
Jt(ϕϕϕh)K · 〈δ( j̄λhm̃

α)〉ν−α d∂Ae = ∑
s
F s

int compm
µ ·δϕϕϕsµ , (B.103)

where,
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g

wg
j̄0
(
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g

)

2
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(
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H
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ϕϕϕh,β ⊗ t,δ
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(
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+
(

ϕϕϕh,β ⊗ϕϕϕh,γ

)
· ̂̃∆∆∆t

µ+
,δ

]]T

· JtK


 , (B.104)

is the elementary interface compatibility bending forces vector.

• Stability bending term:

∑
s

∫
s
Jt(ϕϕϕh)K ·ϕϕϕh,γν

−
δ

〈
β1H

αβγδ
m j̄0
hs

〉
Jδt(ϕϕϕh)K ·ϕϕϕh,βν−α d∂Ae =

∑
s
F s

int stabm
µ ·δϕϕϕsµ , (B.105)

where,

F s
int stabm

µ = ∑
g

j̄0
(
ξs1

g

)
ν−α ν−δ JtK ·ϕϕϕh,γ

〈
β1

̂
H

αβγδ
m
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〉


[
−̂̃∆∆∆t

µ−
]T

·ϕϕϕh,β
[
̂̃∆∆∆t

µ+
]T

·ϕϕϕh,β


 ,

(B.106)

is the elementary interface stability bending forces vector.
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• Stability shearing term:

∑
s

∫
s
JϕϕϕhK · t(ϕϕϕh)ν−β

〈
β3H

αβ
q j̄0

hs

〉
JδϕϕϕK · t(ϕϕϕh)ν−α d∂Ae =

∑
s
F s

int staba
µ ·δϕϕϕsµ , (B.107)

where,

F s
int staba

µ = ∑
g

j̄0
(
ξs1

g

)
ν−α ν−β JϕϕϕhK · t

〈
β3
̂
H

αβ
q

hs

〉[
−Nµ− (ξs1

g

)
t

Nµ+
(
ξs1

g

)
t

]
, (B.108)

is the elementary interface stability shearing forces vector.

B.6 Dynamic relaxation benchmark: SCB loaded at free ex-
tremity

The principle of dynamic relaxation is illustrated on a simply cantilever beam (SCB)
loaded perpendicularly at its free extremity as depicted onFig. B.2. Material properties are
reported in Tab. B.1. The equilibrium displacement at the free extremity can be computed

Figure B.2: Geometry of the simply cantilever beam benchmark.

with a quasi-static scheme or analytically by [153],

uzstat = 4
F0L3

Ebh3 , (B.109)

with, F0 the applied load,L, b andh respectively the length, the width and the thickness of the
beam andE the young modulus (see Tab. B.1 for numerical values).

As this benchmark is elastic, the use of an explicit scheme leads to oscillations between 0
and 2uzstatas depicted on Fig. B.3. However, if the simulation is performed with the dynamic
relaxation presented above, the oscillations are annihilated and the displacement tends toward
uzstat in just over one period. After one period the convergence is slower which justifies the
limitation of etol to 10−3. This benchmark demonstrates the ability of dynamic relaxation to
prescribe a quasi-static load using an explicit scheme and without evaluation (and inversion)
of the stiffness matrix.
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Property Value
Length [mm] 100
Width [mm] 10
Thickness [mm] 10
Young modulus [GPa] 100
Poisson ratio [-] 0.3
Density [kg/m3] 7850
Applied force [N] 10000

Table B.1: Material properties of the simply cantilever beambenchmark.
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Figure B.3: Simply cantilever beam loaded with dynamic relaxation.
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