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Abstract

The main purpose of this thesis is the development of a frasrlewo model fracture
initiation and propagation in thin bodies. This is achietasgdhe combination of two original
models.

On one hand, (full) discontinuous Gakerkin formulationg&afer-Bernoulli beams as well
as Kirchhoff-Love shells are established. These formaretiallow modeling a thin structure
with discontinuous elements, the continuity being enswuvedkly by addition of interface
terms. The first advantage of the recourse to a discontinomibod is an easy insertion
of cohesive elements during the simulation without a maodlifon of the mesh topology. In
fact with a continuous method, the insertion of the cohesleenents at the beginning of the
simulation leads to numerical issues and their insertiammaét of fracture requires a complex
implementation to duplicate the nodes. By contrast, asfaterelements are naturally present
in a discontinuous formulation their substitution at fraetinitiation is straightforward. The
second advantage of the discontinuous Galerkin formulasi@ simple parallel implementa-
tion obtained in this work by exploiting, the discontinudfthe mesh in an original manner.
Finally, last advantage of the recourse to a discontinualsr&n method for thin bodies is to
obtain a one field formulation. In fact, the* continuity is ensured weakly by interface terms
without considering rotational degrees of freedom.

On the other hand, the through-the-thickness crack prdjwaiga complicated by the im-
plicit thickness model inherent to thin bodies formulatoitherefore we suggest an original
cohesive model based on reduced stresses. Our model cantiendifferent reduced stresses
in such a way that the expected amount of energy is releasedydhe crack process leading
to a model which respects the energetic balance whatevepthieed loadings.

The efficiency of the obtained framework is demonstratedugh the simulation of sev-
eral benchmarks whose results are in agreement with nuaharnd experimental data com-
ing from the literature. Furthermore, the versatility ofrdtamework is shown by simu-
lating 2 very different fracture phenomena: the crack pgapan for elastic as well as for
elasto-plastic behavior and the fragmentation of britteenals. This demonstrates that our
framework is a powerful tool to study dynamics crack pheneai@ thin structure problems
involving a large number of degrees of freedom.



Resune

L'objectif principal de cette tbse est le éveloppement d’'une technique permettant de
mockliser I'initiation ainsi que la propagation d’une ou plusis fissures dans un corps mince.
Cette technique combine deux nébels originaux.

D’une part, une formulation Galerkin (congément) discontinue des poutres d’Euler-
Bernoulli ainsi qu’une formulation Galerkin (conggément) discontinue des coques de type
Kirchhoff-Love sontétablies. Ces formulations permettent de &lsgr une structure mince
avec de®léments discontinus, la contin@i¢tant assu@e faiblement par I'addition de termes
d’interface. Le premier avantage iettenta I'utilisation d’'une néthode Galerkin discontinue
est une insertion aée de€léments coésifs au cours de la simulation et ce sans devoir mod-
ifier la topologie du maillage. En fait, dans le cas d’'unétinode continue, des pr@phes
numeriques apparaissent si I'insertion d’aélement cobsif est galie au ébut de la sim-
ulation et l'insertion au cours de la simulation rend liraplentation complexe puisque les
noeuds doivenétre dupliq@s dans le cas d’'uneéthode continue. Au contraire, comme
lesélements d’interface sont naturellemenégents dans une formulation discontinue la sub-
stitution de ceflements d'interface par dedements cobsifs a l'initialisation de la frac-
ture est aige. Le deuwéme avantage d’uneathode Galerkin discontinue est qu’elle facilite
I'impl émentation en paralle du scema de eésolution. Dans ce travail, celle-ci est obtenue en
exploitant la discontinué du maillage d’'une maere originale. Enfin, dernier avantage dans
le cas des corps minces d’'uneéthode Galerkin discontinue est I'obtention d’'une formula
tion & un champ. En fait, comme la contiriit! est asswre faiblement dgice aux termes
d’interface, il n’y a pas besoin de consi@r des de@s de liber& en rotation.

D’autre part, la moélisation implicite de Epaisseur, infrente aux formulations des corps
minces, complique la propagation d’'une fissarravers celle-ci. Bs lors, nous suggons
un mockle colesif original baé sur les contraintesduites. Notre mogle combine ces
differentes contrainte@duites de maerea dissiper la bonne quar@it’énergie pendant le
processus de fracture ce qui permet d’obtenir un@®cespectant le bilan @hergie quelque
soit le chargement appligu

Lefficacité de la technique propes est @montéea travers la simulation de défents
exemples dont lesesultats sont en accord avec les degs nurgriques et ex@rimentales
tirées de la ligrature. De plus, deux phonenes de fractureés differents (d’'une part, la
propagation de fissure dans un milielastique owelasto-plastique et d’autre part, la frag-
mentation dans des n@taux fragiles) sont simak pour @montrer la versatilg de la tech-
nique propose. Cela @montre que cette degre constitue un puissant outil pcetudier les
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phénonenes dynamiques de fissuration dans les structures minadidisges avec un mail-
lage comportant un nombre important de e liberé.
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Tables of notations & definitions

This works use several definitions and notations summahzéniv.

Definitions

Compact

Compact closure
Condition number

Consistent

Cosserat plane

Hyperelastic
Plate

Shell
Stable

A set is compact if every open cover of itis a finite
subcover of the set

The closure of the set is a compact

The condition number of a matrix A measunes t
stability and sensitivity of A to an error in the data.

If the condition number of A is near 1, A is well
conditionned.

A numerical method is consistent if the strong
form satisfies the equations of the method.

A Cosserat plane is a plane embedded in an
Euclidean space with a deformation vector as-
signed at each points of it. The vector has the prop-
erty to be invariant in length under rigid body mo-
tion and is not necessary along the normal of the
surface.

A material model is hyperelastic if the sttessor
derives from a potential

Thin flat structure represented by a Cosserat plane
(without no initial curvature)

Plate with an initial curvature

A numerical method is stable if a quantity related
to the energy of the system remains constant or de-
creases over the time
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14 Table with notations & definitions
Abbreviations
CG Continuous Galerkin method
CzZMm Cohesive zone model
DG Discontinuous Galerkin method
DCB Double clamped beam
dof Degree of freedom
ECL Extrinsic cohesive law
EFG Element free Galerkin
FE Finite element
LEFM Linear elastic fracture mechanics
pdf Probability density function
PMMA Polymethylmethacrylate
RKPM Reproducing kernel particle method
RVE Representative volume element
SCB Simply clamped beam
SPH Smooth hydrodynamic particles
TSL Traction separation law
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Conventions

Consider x as a representation of a mathematical quantigyafsvector or tensor).

X H =8B X 8 X

Xo

Xiner

X a

&

Italic letter: scalar quantity (O order tensor with 1 comeot)
Bold italic letter: St order tensor (vector)

Bold letter: 219 order tensor (matrix)
Underlined bold italic letter: unknowns system vector

Calligraphic italic letter: 1 order tensor (81 components)
Double lined letter: manifold

Symbol followed by another one between brackets: x is de-
pending ony. This is nog priori , used to define a mathemat-
ical priority between operations

Symbol overcome by a dot:Sitotal derivative of x with re-
spect to time

Symbol overcome by two dotsd total derivative of x with
respect to time

The exponent is a bold roman letter: x is evaluated at the
(pseudo-)time step

x is expressed in the initial configuration

x is expressed in the reference initial frame

The index is a Greek lettera™™ scalar component of a two-
component vecto# (formulated in the convected basis in the
case of thin body kinematics)

The exponent is a Greek lettert" scalar component of a two-
component vectat (formulated in the conjugated basis in the
case of thin body kinematics)

Both indices are Greek letters: componeaftof a two by two
matrix x (formulated in the convected basis in the case of thin
body kinematics)

Both exponents are Greek letters: comporeghof a two by

two matrixx (formulated in the conjugated basis in the case of
thin body kinematics)

The index is a Greek letter preceded by a comma: partial
derivative of x with respect to theth variablea ¢ [1; 2] (for-
mulated in the convected basis in the case of thin body kine-
matics)

The exponent is a Greek letter preceded by a comma: partial
derivative of x with respect to thell variablea ¢ [1; 2] (for-
mulated in the conjugated basis in the case of thin body kine-
matics)

The exponent is a bold greek letter: x is evaluated at i§ode
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Table with notations & definitions

Xi

Xl

Xa Byd

x aByd

Xijkl

X

x)

The index is a roman letter:"iscalar component of a 3-
component vectae (formulated in the convected basis in case
of thin body formulations)

The exponent is a roman lettef" scalar component of a 3-
component vectore (formulated in the conjugated basis in
case of thin body formulations)

The index is a roman letter preceded by a comma: partial
derivative ofx with respect to theth variablei e [1; 3 (for-
mulated in the convected basis in the case of thin body kine-
matics)

The exponent is a roman letter preceded by a comma: par-
tial derivative ofx with respect to thet variablei e [1;3
(formulated in the conjugated basis in the case of thin body
kinematics)

Both indices are roman letters: scalar compomgnt [1; 3] x

[1; 3 of matrixx

All the indices are Greek letter: componeng3,y,d € [1; 2] x
[1;2x[1;2 x[1;2 of 41 order tenson (formulated in the
convected basis in the case of thin body kinematics)

All the indices are Greek letter: componeng3,y,d € [1; 2] x

[1;2 % [1; 2] x [1; 2] of 41N order tenson formulated in the
conjugated basis in the case of thin body kinematics)

All the indices are roman letter: componeng,k,| € [1; 3] x
[1;3 x[1;3 x[1;3 of 41 order tenson (formulated in the
convected basis in the case of thin body kinematics)
Overlined letter: x is evaluated on the neutral axis of tha t
bodies

A wide hat above x: x is formulated in the basis of the integfa
(and not in the basis of the bulk element)
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Mathematical operations

z
This work uses the Einstein notatioine( inyi is summarized by;y; with Z = 2 if the

|
indices are Greek letters a@d= 3 if the indices are roman letters) unless otherwise stated.
Considerx andy two mathematical quantities (scalar, vector or tensor),

Xy = %x Partial derivative ok with respect ofy

diyx Total derivative ofx with respect ofy

||| Euclidean norm of vectat: ||z|| = /XX

12| Infinite norm of vectore: ||x||,, = max x;

TNy Vector product betweem andy: [x A y]; = &jkXjYk, With €ijk
the Levi-Civita 3" order tensor

Ty Scalar product of andy: -y = XV

TRY Dyadic product ofc andy: [z ® yl;; = XiYj

xT Transpose of tensot. e.g.for a anorder tensor[xT} i = Xii

x~1 Invert tensor ok: e.g.for a Td order tensor[x_l} i Xk = dij
with §j; the Kronecker delta

detx Determinant of second order tensor

|X| Absolute value ok: |x| = xif x> 0 and|x| = —x otherwise

trx Trace of a second order tensor

Ty Tensorial product ofc andy: e.g. for a second order tensor
X and vectory product[Xy]ij = XikYk and for 2 second order
tensorsxy|; | = XikYK]

Xy Tensor contraction between a tengand a tensoy: e.g. for
two second order tensoxs y = Xij Yij

Xy Product between a matrix and a th tensory: [X: 9]y =
Xij Yijki

Xy Contraction between aMorder tensorr and a second order
y: Xyl = Xijia Y

A—DB Transformation which gives for each point&fa point of B

AxB—C Transformation which gives for each point&fandB, a point
of C

B Jump operatorfx] = (x™ —x")

(X) Mean operator(x) = 3 (x" +x)

H\/ﬁa’ EZ(I ) Abusive notation forf,_a- # -adl, with 7/ definite positive

e
H\/Ea‘ : Abusive notation fo} H\/_a
L2(s) L2(ale)

||| 2el]| Energetic norm defined for the weak discontinuous Galerkin
form
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<X >

mathematical operator defined such as its value is nullisf
negative and ta otherwise:< x>>=xif x> 0 and 0 otherwise
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Variables
Scalar variables
OF

Om

Atcrit
&ijk
ni

N

Weighting factor of inertial forces for time integrationgat
rithm of Hulbert-Chung

Weighting factor of external and internal forces for timéein
gration algorithm of Hulbert-Chung

Boolean value to implement fracture criteriams = 1 if frac-
ture and O otherwise

Fracture modes coupling parametee.(3 = KK'_.'f)

First Newmark parameter

it" non dimensional stability parameters of the discontinuous
Galerkin weak form of a thin body

Width of the damage localization band

Dilatational wave speed

Second Newmark parameter

Safety factor on the critical time step for explicit timeegta-
tion

Kronecker symbol

Unidimensional cohesive opening displacement

Equivalent critical opening of crack lips

Normal effective opening of the cohesive law

Tangential effective opening of the cohesive law

Effective maximal opening of the cohesive law reached durin
the simulation

Damage variable

Critical damage value

Final damage value

Time step size

Critical time step for explicit time integration

Component, j,ke [1; 3 x[1; 3 x[1; 3 of Levi-Civita tensor
Coupling parameter between resultant cohesive effortagivi
a mode | opening

Coupling parameter between resultant cohesive effortagivi
a mode Il opening

Young modulus

Total energy

Energy dissipate by a fracture process

Fracture energy of the material

Thickness of a thin body

Thickness coordinate of the lower skin of a thin body
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Table with notations & definitions

hmax

J-integral
K

Kic

Kiic

A

An

L

le

Thickness coordinate of the upper skin of a thin body
Equivalent thickness for membrane/bending coupling af-fra
ture mode |

Equivalent thickness for in-plane shearing/torsion cmgpbf
fracture mode Il

Hardening coefficient

Characteristic size of an element

Polar moment of mass inertia

Moment of inertia

Determinant of the deformation gradient with respect to the
inertial frame

Determinant of the deformation gradient with respect to the
inertial frame evaluated on the neutral axis

Jacobian of the two-point deformation gradient

Jacobian of the two-point deformation gradient evaluated o
the neutral axis

J-integral

Bulk modulus

Fracture toughness in mode |

Fracture toughness in mode I

Undefined pressure

Describes a change of shell thickness due to deformations
Length of the Euler-Bernoulli beam

Length of an element of an Euler-Bernoulli beam

Shear modulus

Frictional Coulomb coefficient

Nodal mass (scalar)

Bending moment of a beam

Nodal mass of the diagonalized mass matrix (scalar)
Bending contribution to the cohesive law

Torsion contribution to the cohesive law

Unidimensional resultant bending cohesive stress

Poisson ratio

Inplane outward unit normal alorgto a Cosserat plane
Inplane outward unit normal to a beam (used at interface ele-
ment)

Number of nodes of a system

Tensile contribution to the cohesive law

Shearing contribution to the cohesive law

Unidimensional resultant membrane cohesive stress

Shape function

Tensile effort of a beam
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p Pressure

PB Distributed load applied on a beam

p Density

P Reduced density defined in the shell formulation

Ps Density by unit of surface

Pd Spectral radius of the time integration algorithm of Hutber
Chung

Oeff Effective stress used in the fracture criterion

O¢ Strength used as fracture criterion in tensioa. (fracture if
Oeff > O¢ With g > 0)

o) Initial yield stress

Oy Von Mises yield stress

Tc Shearing strength used as fracture criterion in sheaiieg (
fracture if|Oef| > T¢)

t Unidimensional cohesive traction

Tol Tolerance of Newton-Raphson algorithm

Uint Internal energy

Vv Volume

Vs shearing effort of a beam

Wy Weight of Gauss point

W Hyperelastic potential

Wiext External work

Wint Internal work

gl Coordinate of the shell in the reference frame,|L; 3

Y Damage energy release rate

Ye Threshold of deformation energy yielding damage

Vectors

B Body forces per unit volume

ox Kinematic admissible virtual displacement

Ax Positions increment during Newton-Raphson resolution

A Cohesive displacement opening vector

E, It Vector of the inertial (orthogonal) reference frames |
[1;3

Foyt External forces

Finertial Inertial forces

Fint Internal forces

Fleac Reaction forces

g It vector of the shell deformation gradient which corresponds

by definition to the i vector of the convected framesl[1; 3
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Table with notations & definitions

gl

Fbe

intn

be
Fintb

Fbs

intconsn

Fbs

intcompn

Fbs

intstabn

Fbs

intconsm

Fbs

intcompm

Fbs

intstabm

FbS

intstaba

FbS

intcohn

Fbs

intcohm

Fe

iner

Fe

intn

e
Fintb

FS

intconsn

FS

intcompn

ES

intstabn

FS

intconsm

FS

intcompm

FS

intstabm

It vector of the conjugated frame to the convected frame, |
[1;3

Elementary internal membrane force vector of the Euler-
Bernoulli beams formulation

Elementary internal bending force vector of the Euler-
Bernoulli beams formulation

Elementary consistent membrane internal force vector f th
Euler-Bernoulli beams formulation

Elementary compatibility membrane internal force vectbr o
the Euler-Bernoulli beams formulation

Elementary stability membrane internal force vector of the
Euler-Bernoulli beams formulation

Elementary consistent bending internal force vector of the
Euler-Bernoulli beams formulation

Elementary compatibility bending internal force vectortioé
Euler-Bernoulli beams formulation

Elementary stability bending internal force vector of theet-
Bernoulli beams formulation

Elementary stability shearing internal force vector of Huter-
Bernoulli beams formulation

Elementary cohesive membrane internal force vector of the
Euler-Bernoulli beams formulation

Elementary cohesive bending internal force vector of the
Euler-Bernoulli beams formulation

Elementary inertial force vector of the Kirchhoff-Love ke
formulation

Elementary internal membrane force vector of the Kirchhoff
Love shells formulation

Elementary internal bending force vector of the Kirchhoff-
Love shells formulation

Elementary consistent membrane internal force vector @f th
Kirchhoff-Love shells formulation

Elementary compatibility membrane internal force vectbr o
the Kirchhoff-Love shells formulation

Elementary stability membrane internal force vector of the
Kirchhoff-Love shells formulation

Elementary consistent bending internal force vector of the
Kirchhoff-Love shells formulation

Elementary compatibility bending internal force vectortioé
Kirchhoff-Love shells formulation

Elementary stability bending internal force vector of the
Kirchhoff-Love shells formulation
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FS

tstaba Elementary stability shearing internal force vector of the

Kirchhoff-Love shells formulation
F3: conn Elementary cohesive membrane internal force vector of the
Kirchhoff-Love shells formulation

F> Elementary cohesive bending internal force vector of the

intcohm

Kirchhoff-Love shells formulation

l Resultant across-the-thickness stress vector

g Resultant across-the-thickness stress vector of an Euler-
Bernoulli beams

m? Reduced bending stress along axis

m? Bending resultant stress along agis

o Bending resultant stress along agigormulated in the basis
of the interface

mg Bending resultant stress along axas for Euler-Bernoulli
beams

n? Reduced membrane stress along axis

n% Membrane resultant stress along axis

R’ Membrane resultant stress along axiformulated in the basis
of the interface

ng Membrane resultant stress along asisfor Euler-Bernoulli
beams

m? Resultant external torque

n? Resultant external surface traction

v Outward unit normal of the shell in the inertial frame

vB Outward unit normal of the beam in the inertial frame

t Direction of the Cosserat surface

wi Rotational inertia

u Small displacement field to the exact solution

Uh Small displacement field corresponding to the discretized s
lution of the problem

T Cohesive traction vector

Second order tensors

C Right Cauchy strain tensor

ce Right elastic Cauchy strain tensor
€ Cauchy strain tensor (small strain)
F Deformation gradient

I Unity tensor (order 2)

K Stiffness matrix

KPS Elementary internal membrane stiffness matrix
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be
Kintb

Kbs

intconsn

K_bs

intcompn

Kbs

intstabn

K_bs

intconsm

Kbs

intcompm

Kbs

intstabm

Kbs

intstaba

K_bS

intcohn
S

o

intcohm

Mbe

X 44 99 YOS

Elementary internal bending stiffness matrix

Elementary consistent membrane internal stiffness matrix
Elementary compatibility membrane internal stiffnessnrat
Elementary stability membrane internal stiffness matrix
Elementary consistent bending internal stiffness matrix
Elementary compatibility bending internal stiffness matr
Elementary stability bending internal stiffness matrix
Elementary stability shearing internal stiffness matrix
Elementary membrane cohesive internal stiffness matrix
Elementary bending cohesive internal stiffness matrix
Elementary mass matrix of Euler Bernoulli beams
Deformation mapping

First Piola-Kirchhoff stress tensor

Second Piola-Kirchhoff stress tensor

Cauchy stress tensor

Effective Cauchy stress tensor (for damage theory)
Kirchhoff stress tensor

Push-forward tensor is used to change the metric of shell
Two-point deformation mapping

Fourth order tensors

H
C

Manifold

Hooke tensor
Tangent modulus of the material law

Cosserat mid-plane surface of a shell
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Chapter 1

Introduction

Use of raw materials is streamlined by environmental andi@eic reasons. Indeed, the
recent worldwide awareness of environment conservatiadsi¢o limit the quantity of raw
materials used in different goods. In fact, if less matagalsed their extraction as well as
their carriage impacts decrease their environmental Eosthermore, the takeoff on financial
markets of raw materials prices reinforces this point asstidalists tend to produce with the
smallest factory price. An obvious consequence of thisego of raw material is the thinner
design of some components. For example, pressurized gaslesd or safety barriers are
designed with a smaller thickness than in the past. Howgigimportant to ensure their safe
mechanical behavior in case of problems. Indeed a gas eylimas to support an amount of
overpressure and a safety barrier has to hold a car impaittimgtivating the development
of numerical tools predicting the fracture of thin bodies.

The complexity of crack mechanics limits the recourse tdyical models to very simple
situations, which leads during the last three decades tddkelopment of some numerical
methods. The scope of the present thesis comes within thigxioand contributes in this
field. In particular, it focuses on the dynamic crack inibatand propagation in large prob-
lems (.e. problems involving a large number of degrees of freedomh wispecial care to
pressurized components.

Toward this end, we present first in the Chapler 2 a review ofiifierent methods de-
veloped in computational mechanics to model crack indgratind evolution. We show that
the actual popular technique XFEM is well suited to model @asinstatic crack propagation in
the context of linear elastic fracture mechanics. Nevégtis its applicability in dynamics is
still challenging especially for large problems. Besides,this specific case, a new method
combing cohesive zone method (CZM) and the discontinuousr@al(DG) formulation has
been recently presented. This combination suggested byedghdimet al. [157] and R.
Radovitzkyet al.[228/211] allows avoiding the usual drawbacks of the cokesiement in-
sertion (as lengthy discussed in Chapler 2) to model the dréti&tion and propagation in
a manner that is well designed for a parallel implementatlarfact, industrial components
require models with a lot of degrees of freedom, especiallihe case of tearing, as a very
thin mesh is needed to well capture the crack path. Thus twrse to parallel implemen-
tation is mandatory, on one hand, to reduce the computationa and, on the other hand,
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to avoid memory issues. Nevertheless, this framework isgmted in the literature for 3D
elements only. Since the problems investigated in this workcern thin bodies, we formu-
late an original adaption to thin structure formulationedded, modeling thin structures with
3D elements leads to an excessive number of degrees of freexddivating the development
of special formulations for thin bodies. However, such &R formulation is lacking in
the literature. Therefore in a first time, we develop a fulk-Bormulation for non linear thin
structures. Once this formulation obtained, we can simaula continuum part of the defor-
mation with discontinuous elements and in a second time, eveldp an original cohesive
law adapted to thin structures to model a crack. Afterwdrd,dtudy of the crack initiation
and propagation is performed by a combination of the full-a@nulation with an extrinsic
cohesive law. Such a law models, on phenomenological lihsisyork of separation required
to separate the crack lips. It is called extrinsic as it isitsemodel only the fracture process
by opposition to intrinsic cohesive laws which also model ¢bntinuous deformations.

These developments are first realized in the case of linel@r-Bernoulli beams in the
ChapteB. In fact, the particular case of beams allows peifay several simplifications
leading to a more understandable formulation that can beldesd in an easier way. We start
from the Euler-Bernoulli beam theory to develop a space disigcoous discretization of the
beam. This discretization is based on the previous works. &r@elet al. [91] where they
presented a space continuous method but where the DG methisdd to ensure weakly the
¢! continuity (.e. the continuity of the slope). Such a method has the advartege a one-
field formulation (.e. the nodal unknowns are only the spatial displacementsjtir@jdrom
this formulation, we add interface terms to guarantee wethld continuity of displacements
and thus to have a full-DG formulation of the problem. We shibat a consistent and sta-
ble discontinuous formulation can be obtained using the Dg&hod, which ensures weakly
the continuity at interfaces between elements, by addingesaterface integral terms in the
formulation. Furthermore, we illustrate the numericalpgeuies of our original formulation
through a numerical benchmark. We demonstrate that ourulatron provides results as ac-
curate as other methods coming from the literature. Aftedves the thickness is implicitly
modeled in a thin bodies formulation, we develop an origawdiesive law based on the resul-
tant tension and bending stresses of the beam and we deatertbt our model respects the
energetic balance by dissipating the expected amount ofjgdering crack propagation.

The Chaptell4 suggests an original extension to KirchhotfeLshells formulation of our
full-DG formulation presented in Chapter 3 for beams. Thigioal shell formulation is
shown to have numerical properties of consistency, stghifid of optimal convergence rate in
two different norms. Furthermore, we prove through seveuwaterical benchmarks of contin-
uum mechanics that this novel full-DG shell formulation\ides results as accurate as other
(continuous) methods coming from the literature. Thesengtas include large deformations
and plasticity to demonstrate with success the ability afroathod in these conditions. As
previously mentioned, a parallel implementation is neeegerform industrial problems
and we present a novel original parallel implementatiorhefethod, which is proved to be
highly scalable on numerical examples. This implementaggerformed in an open source
software Gmsh [105], written in C++, allowing for the treatmhef large problems.
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Afterward, the Chaptdr]5 shows how the cohesive model degdlégr beams in Chap-
ter[3 can be generalized to shells. The combination of thieswe law with the full-DG
formulation of shells presented in Chagtér 4 provides a viggsand powerful framework to
study dynamic crack initiation and propagation in thin lsdi Toward this end, we show
through several numerical benchmarks that our framewaaklis to model crack propagation
in notched specimen, as well as fragmentation due to aet®ler In particular, a model of
the blast of a notched pressurized cylinder is presentatidexample, the deformations lead
to plasticity before the propagation of the crack. It is shplay comparison with experimental
data coming from the literature that our framework can pottiis crack propagation with the
correct crack speed only if the elasto-plastic behaviangtuided in the formulation.

Finally, as perspective to this thesis we provide the basgtend the DG/ECL framework
to the ductile fracture in Chaptel 6. We keep the same appraagdiwe suggest modeling
the damage in the constitutive behavior. A cohesive eleroantbe inserted to model the
apparition of a crack when a criterion based on a critical algenvalue. This concept is
illustrated through an example demonstrating that theimdtaresults are qualitative although
some improvements will be necessary to obtain quantitaimes.
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Chapter 2

Computational fracture mechanics:
review & contributions

The outcomes of this thesis are based on the combinatioroaii@n concepts: the Cohe-
sive Zone Model (CZM) and the Discontinuous Galerkin (DG) moelt Both concepts were
developed independently during three decades beforerfe@nt combination to solve frac-
ture mechanics problems by several authors as J. Mergéeah [157], R. Radovitzkyet
al. [211,/228137] or M. Prechtadt al. [210] for 3D problems. The cohesive zone method
is used to model the fracture work inherent to new crack sarfaitiation. Therefore, this
method can be coupled with the Finite Element (FE) method adehcrack initiation or
propagation at interface of elements in an appealing wayortimately, the introduction of
cohesive elements is an issue with Continuous Galerkin (C@)Utations as it has to intro-
duce a discontinuity in a continuous mesh. Some ideas haredmeloped but the recourse
to DG methods is very appealing in this case as it allows tpkito account discontinuities
in the unknowns fields. The continuity is then ensured weaklynterface terms. These
ones can be used advantageously to insert the cohesiverdteleading to a very simple and
elegant implementation of the CZM.

Furthermore, DG/CZM framework is not the only way to computefure phenomena
and other methods, as Linear Elastic Fracture Mechanicshlegs methods or enrichment
methods (EFEM, XFEM), are also developed in the literat{iteerefore, we summarize all
these methods (with more developments for the chosen agpmspto justify the relevance of
the development of a totally original DG/CZM framework foirthbodies formulation under
dynamic loading. Finally, the perspectives of this reviell pe exploited in the next chapters
to develop such a framework in an original way.

2.1 Linear Elastic Fracture Mechanics and its extension to
the non linear range

The origin of fracture mechanics analysis comes from therdghation of different frac-
ture quantities (stress intensity factors, fracture eneglpase od-integral) under linear elas-
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tic assumption. This one is restrictive but is a good stgnpioint for materials and geometries
leading to a confined plastic zone at the crack tip. This ntettansiders an initial crack
and therefore cannot model a fracture initiation. taill Thest commonly used criterion to

Mode T Mode 11 Mode IIT

(sliding) (shearing}~
-

(opening

Figure 2.1: lllustration of the three fracture modes.

predict fracture resistance is based on stress intensitgriaor fracture energy release. The
stress intensity factors approach was presented by G. [A£6], where he introduced the
three fracture modes depicted on Hig.] 2.1: the mode | retatachormal opening, the mode
Il related to a sliding and mode Il relative to a shearingt{ofiplane). For each mode he
solved the problem of an infinite plate with a crack and exé@@ stress intensity facté.

He demonstrated that near the crack tip, this one is govdmpedterm in%, wherer is the
distance from the crack tip. This solution leads to an unjiaysfinite stress at the crack tip
due to the neglecting of plasticity. With this developmeaplostulated that the stress intensity
factors depend on the length of the crack and on a functiandakto account the geometry.
To predict the fracture resistance, the fracture toughKgss evaluated by experiments. If
an equivalent stress intensity factor (combiniggK;, andkK;; ) of a component is larger than
K¢, the crack begins to propagate.

Another fracture quantity developed by A. Griffith is thedare energyl[109]. He calcu-
lated the energy variation of a body due to an infinitesimatkrextension. Indeed, due to
crack extension an amount of energy is released, so thestotad)y has to decrease due to the
crack extension. In fact, the fracture process dissipatesyyg to create new crack surfaces.
Phenomenologically, the work of separation process iredwdcontribution from the intrinsic
surface energys, modeling the energy per unit area requires to form a singlesurface after
breaking atoms bondings, and a contribution from the mastirk of the process zonaj.
Both contributions are depending on the material, and thersk@yy depends on the geome-
try and is negligible for brittle materials. In fact by defion, these materials break without
significant deformation and therefore show a small (nelglg)iplastic zone confined at the
crack tip. Therefore, callin@. the energy per unit area dissipated by the fracture protess,
comes, for brittle material€. = 2ys, which can be evaluated experimentally. Therefore if
the energy released is larger than this material value theenrack propagates.

The third quantity used to characterize fracture isihitegral concept developed by J.
Rice [215]. He suggested to calculate the energy that flonkdaatack tip. Indeed, for an
uncracked body, the flow of energy through a closed surfaegusi to zero, therefore the
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computation of the flows parallel to the crack tip is able tarclcterize the fracture. The
concept ofJ-integral has several advantages compared to the stresssiiyt factor or frac-
ture energy approaches presented above as it is, in linestragty, independent of the path of
further crack extension (contrarily to the fracture enesgierion assuming a straight propa-
gation) and it just requires the definition of a potential.efidforeJ-integral concept can be
used for non linear fracture mechanics contrarily to thesstrintensity factor. Notice than
equivalence of the three concepts is demonstrated undexsthenption of linear elasticity
and a straight crack extension.

Since their apparition, these quantities have been usedaonh @ practical and indus-
trial applications. Nevertheless, their analytical eadilon is only possible for very simple
geometries. Thus, their evaluation for complex geometsigenerally performed by numer-
ical methods. The stress intensity factors can be obtaangakteriorifrom a finite element
analysise.g.[68,[199[ 217, 246]. In fact its value can be approximatedkbdo the stress or
displacement fields. The last one is generally used as it re mocurate for kinematic for-
mulations. As this technique requires a refinement of thenmesar the crack tip to properly
capture the singularity, R. Barsoum [25] suggested to moti#yisoparametric elements by
moving the middle nodes of a quadratic element to captureraocurately the asymptotic
field. Nevertheless the technique remains time consumirdalthe mesh refinement.

The crack advance technique [141] allows the evaluatiorhefftacture energy with a
coarser mesh. The fracture energy is just evaluated by a fiifference of energies for two
computations of the specimen: on one hand with the size ofrdiek and on the other hand
with the length of the crack with a small extension. This teghbe is very appealing as many
commercial codes supply energy as an output. This concepemtanded by D. Parks [198]
who introduced the virtual crack extension method to take atcount non linear behavior.
Furthermore de Lorenzi extended the virtual crack extenfid@, 78] to avoid the numerical
finite differentiation, which requires two computations.

Some numerical methods were also developed to evaluat@drititegral [215]. It can
be easily computed from integration point values along aagarsurrounding the crack tip.
This technique has the advantage to be path independemt &astic case and can be used in
linear or non linear range as long as there is no unloadinthdicase of plastic deformations,
unloading can occur and the introduction of an appropriateection is required_[59, 64].
The general formulation of thé-integral, called energy domain integral, was suggested by
C. Shihet al. [171[229] and R. Doddst al.[81]. They developed a versatile and powerful
framework which can be used for quasi-static or dynamic lprab and with elastic, plastic
or viscoplastic materials.

The methods presented above are still used today to perfi@ok propagation. One of
the fracture quantities is evaluated and then compared tvitfcritical material valueg(g.
[61,[120/148]). If it is larger than this critical value, ameshing operation is realized to
propagate the crack, usually, in the direction of the ppgatihoop stress as suggested by
F. Erdogaret al. [92]. In fact, they confirmed by experimental comparisoret the crack
propagates in the direction where the stress intensityifastlarger than the toughness of
pure mode | loading. Nevertheless, other kinking critexiatease.g.the one suggested by M.
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Hussairet al. [124] who consider a global criterion based on the distrdmubf the energy in
the neighboring of the crack tip. Moreover, a micro-void twomum damage model can also
be used to determine the direction of the crack propagatigmesented by J. van Vroonhoven
et al. [253]. These three mentioned kinking criteria are compane®. Bouchardt al. [56]
who conclude that the criterion of F. Erdoganal. [92] is the easiest to implement while it
provides results as accurate as the other ones. As thisgeehtemands small time steps and
remeshing operations to follow the crack propagation,vely time consuming. To avoid the
remeshing operations, meshless techniques can also bfd@$ésee Sectioh 215).

2.2 Cohesive Zone Model

The cohesive zone model (CZM) was pioneered fifty years ago.Ba@nblatt/[24] and

D. Dugdale([89]. They developed this concept to remove tihysical infinite stress at crack
tip resulting from the linear behavior assumption. Barettldtecused on brittle elastic bodies
with a decomposition of the crack into two regions. He catleel physical extent of crack,
which is stress free, the "inner region” and he named "coleertgion” the crack extension
where the surface separation is strangled by surface dractnodeling the fracture work.
These tractions model the atomic separation process withligsoale postulate, see Fig. P.2,
and lead to a finite stress at crack tip under the two follovasgumptions:

(i) The width of the cohesive region is small compared to the of the whole crack. This
hypothesis is justified by a fast decrease of molecular codésrces with the distance
between atoms.

(i) The shape of the cohesive zone is a material paramaiependent of the loading con-
ditions. This restrictive hypothesis is needed to have alldistribution of cohesive
forces unvarying with loading.

With these two assumptions the singularity at crack tip @d@ad by the determination of the
cohesive zone size. A few year later, J. Rice introducedltheegral [215] and therefore
demonstrated that the second assumption is unnecessaoyvéotBe crack tip singularity
problem. Furthermore he proved that the CZM concept is etgrivéo the classical Griffith
energetic approach [109] for the description of brittlesétafracture.

Dugdale, on his side, investigated a thin sheet of elagtiteptly plastic materials with
the same idea of removing the crack tip singularity. He dastd that the plastic zone is
confined in a small region ahead of the crack tip and definesddgion as the cohesive zone.
Similarly to Barenblatt the size of the zone is such that iuees a finite stress a crack tip.

Both models were combined by A. Hillerbosg al. [117] to obtain the first numerical
implementation of the cohesive zone concept. They insexttel a zone along edge of ele-
ments where a crack can be formed. The gradual separatitresd bnes is governed by a
Traction Separation Law (TSL) linking the traction to theeapyg. The phenomenological
observations lead to consider cohesive tractions stdiriimg zero, reaching a maximal value
o¢, which depends on the fracture mode, decreasing to zero datieal openingA. value
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Crack face separation occurs Idealization of atomic separation
across cohesive zone processes in cohesive zone
Cohesive tractions

Sharp crack

Cohesive zone

Physical extent of
crack

Figure 2.2: lllustration of multiscale postulate of BaratblWwith a decomposition of crack
into two regions. (Picture comes from [228]).

and then remaining null as illustrated on F[g. 2.B(a). Theieaf a; is supposed to be a
material parameter and the value/gfis chosen by energetic considerations with regards to
A. Griffith [L09] works,

Ac
Ge — /0 T(A)dA, 2.1)

whereT (A) represents the TSL . This one is either relative to a fractoogle or is an
effective law modeling a fracture modes combination. Thaglel was used by A. Hillerborg
et al. [117] to insert explicitly the discontinuity resulting frocrack in a finite element mesh.
The cohesive element is simply inserted between bulk el&svaerd the crack appears due to
nodal displacement jumps governed by inter-element cebésictions.

Furthermore, the application dfintegral on the cohesive zorie [215] introduces a cohesive
length equal to, for mode | fracture under static loadiBg= Young modulusy = Poisson
ratio),

nEGe

which conditions the mesh size. Indeed, the length of cobhedements has to be sufficiently
small to resolveR. For example for the material Al2024-T3, the mesh size istéichto
approximately 6[mm] to respect this characteristic sizber€fore for large components the
mesh becomes ultra thin and its sequential resolution cam lgsue.

Finally, as it was demonstrated experimentally by severtias [108, 129, 131, 132] that

the fracture strength is rate dependent, G. Camathb[63] introduced a characteristic time
of the cohesive zone for dynamic problems,

PCylAc
fis

tc ) (2.3)

with p the density,cq the dilatational wave speed arfg the maximal quasi-static tensile
strength of the material. Note thtis not a determining factor of the critical time step of the
simulation. The Eq.[{2]3) is obtained by G. Camaehal. in formulating the equilibrium of
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incident and transmitted wave equilibrium to establishygoeential law relying the dynamic
and static values af,

T
expe

odn = oﬁtat—il, (2.4)
expe

wherert is the duration of the pulse of incident wave. The choice ohgeficritical opening
/¢ included this characteristic time in the TSL which ensumea tate insensitive TSL to be
strain-rate sensitive as demonstrated by G. Rt@. [220] and thus to account for the fracture
strength rate dependency.

At this point, the remaining challenging issue concernsisertion of the cohesive ele-
ments for 3D geometries. Indeed, their insertion duringsiiheulation requires topological
mesh modifications and therefore a complex implementatiothis case the assorted cohe-
sive law is called extrinsic as it has not to model the rebéestontinuum part of the defor-
mation. The other approach, used by A. Hillerbetal.[117], inserts the cohesive elements
at the beginning of simulations. In this case the assortbésive law is called intrinsic as it
models the continuum deformation. This cannot be achieweaxldgonsistent way and leads
to numerical problems as discussed here below. An examyteeofSLs considered in both
cases is depicted on Fig. 2.3.

T T

Oc

A A AV A
(@) Intrinsic TSL. (b) Extrinsic TSL.

Figure 2.3: Compared to the extrinsic TSL (b) the intrinsie ¢a) models the reversible
continuum part of the deformation thanks to an initial slope

2.2.1 Intrinsic cohesive law

Historically the intrinsic cohesive laws were the first deped due to their easy imple-
mentation, mainly to solve interface delamination prolderindeed in this case, the initial
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slope of the TSL has a physical meaning, as it representsitbdace cohesion, and the co-
hesive elements can be inserted along a well known crack faiffierent shapes of TSL
were suggested by several authors to describe differeniophena of decohesion. A. Needle-
man [175] introduced a polynomial potential law to study de®onding of a spherical inclu-
sion in a ductile matrix (see Fig. 2.4(a)). Despite the fhet the delamination occurs due
to the normal opening, A. Needleman took into account thgeaatial opening in his model.
Furthermore, the shape of the TSL suggested by A. Needlefttamsao model the behav-
ior of the decohesioni.e. the normal traction increases, reaches a maximal valueham t
decreases until zero for a finite critical opening). Even i$§ inot motivated by experimental
evidences, the choice of a polynomial potential form leadspath independent law. Finally,
it has to be mentioned that this polynomial law is restridi@shormal opening dominated
problems.

---Tvergaard 1992|
X\ — Scheider 2003
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(a) Polynomial[[175]. (b) Exponential[176]. (c) Trapezoidal[249,225].

Figure 2.4: Different shapes of the intrinsic cohesive lawe uniaxial tension test.

This limitation is removed by an extension of the polynonpatential cohesive model
supplied by V. Tvergaard [247]. In fact the initial model of Needleman was inefficient in
case of mixed mode with a high normal compression as it leadsiegative normal opening.
Therefore, V. Tvergaard suggested, considering a unidsiroaal effective opening, to model
mixed mode fracture. However, as he focused on interfacerdbbg in a fiber-reinforced
metal matrix composite, the mixed mode capability of the etaglnot demonstrated. Indeed,
pure normal separation occurs at the fiber tips and pure mdiagjseparation occurs for fiber
pull-out. Moreover, V. Tvergaard highlighted the necgsgitconduct experiments to deter-
mine correct values of cohesive parametersdikeThis one is still generally considered as a
constant despite it is known that it can vary due to matee&ttogeneities.

With regard to the atomistic simulations conducted by seveunthors[[94, 218, 219], the
polynomial shape of the TSL has to be reconsidered. Indeedimulations show a universal
exponential shape between the binding energy and the diosgparation. Following these
works, A. Needlemari [176, 177] adapted his model to takeaotmunt this exponential de-
pendency of the normal opening (see Fig. 2J4(b)). Neveztisehe kept the linear assumption
on the tangential component as no data were available ircéisis. He included also in the
model a spatial variation af. to study the decohesion of a viscoplastic block from a rigio-s
strate under uniaxial plane strain conditions [176], eséshto the multiaxial loading in [177].



36 Computational fracture mechanics: review & contributions

In this case, as large tangential openings can arise, tharl@ssumption is not valid and it
is replaced by an exponential potential. Therefore, basgthenomenological periodicity of
the crystal lattice, the cohesive tractions are considasqzeriodic despite the fact that it leads
to consider null interfacial work over one a period of tartggmisplacement.

Further simulations performed by G. Bozzalo][57] confirm tleeigdic behavior of tan-
gential cohesive components in the plane of interface. &opdex modes of fracture involv-
ing shear and normal separation, X.-P. &tal. [261] suggested an exponential displacement
potential, based on the works of G. Bedtizal. [35], who introduced a maximal shearing trac-
tion 1 different fromao.. Notice that this model ensures the isotropy of the tangktméction
in relation to the tangential sliding. X.-P. Xat al. [261] considered this model to study the
void nucleation by inclusion debonding in an elastic-ptastystalline matrix. Afterward,
several authors used this model to analyze different pnablef dynamic crack growths, for
brittle materials[[1610, 161, 262], for elastic-viscoplashaterials[[178, 231], for functionally-
graded material$ [273] and for interfacial fracture [2631R

Although the exponential potential law is suitable for tieimaterials it cannot model the
dependency of fracture toughness with the plasticity. Tdwhis end, V. Tvergaarét al.
developed a trapezoidal cohesive law, first restricted tdemiq249] (see Fig[ 2.4(f)), and
then for mixed mode fracturé [250]. The dwell region introdd in this law is supposed to
model the plastic work of the fracture process. In their gtiieby varied the length of the
plateau and demonstrated the little effect of the shape loégive law on the results except
for the initial slope, which the sensitivity is discussedbiae |I. Scheideet al.[225] modified
this law by inserting quadratic and cubic functions in platdinear branches to remove
the slope discontinuity at the extremities of the dwell oeg{see Fig.[ 2.4(t)). With this
modified model they successfully simulate the cup conedraadf a uniaxial tension test in
a 2D axisymmetric setting. However, the nature of ductictiure cannot be modeled by
this cohesive law. Indeed, ductile fracture involves natten, growth and coalescence of
microcavities which cannot be resolved by a cohesive lalw waoinstant fracture parameters.
To solve this issue V. Tvergaaed al. modified their model and considered@@depending on
the plastic strain raté [251].

Despite of this improvement, damage models as the Gursorelnfibfld] remain more
suitable to describe ductile fracture. Therefore, sewsoaks [5/6](230, 231, 249] have been
realized to merge this continuum damage model with the ¢cedapproach. The main idea is
to considered a representative volume element (RVE) geddoy the Gurson model to extract
the cohesive law. Nevertheless, it seems that the coheslives/obtained are dependent on the
constraints prescribed to the RVE. In another work, V. Taard [248] suggested to govern the
cohesive surface by a Gurson model but with a new implementaf the cohesive surface.
Finally, J. Oliveret al.[121/187], 1809, 188, 222] suggested a new approach wherdiaam
damage theory is used until the verification of Hadamaregan [113] relative to the lost of
ellipticity of the acoustic tensor. At that time, they inser a cohesive element to take into
account the local and discontinuous nature of fracture.

The specific case of thin structures was addressed in thatlite by F. Ciralet al.[69,70]
who studied in a first time the petalling of an aluminum platbsequent to a bullet impact
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[70]. Afterward, they used the same model to study the crackamation in an initially
notched pipe subjected to a blast wavel [69]. Although thefopmed the simulations with
a shell formulation, they conserved the 3D TSL approach.réfbes to propagate the crack
through the thickness they suggested using the Simpsomspaiithe thickness integration.
In fact, they computed the fracture criterion at each ponat ased the cohesive law only at
fractured points. Nevertheless, the manner of moving aeaiis during crack propagation
for bending dominant problems is not presented in their gageaurthermore, the use of a TSL
based on the stress tensor can be an issue for thin bodiesl&dions as for these methods, the
governing equations are formulated in terms of resultaessesi.e., stress tensor integrated
on the thickness. Therefore, P. Zavattiéri [268,/269] ibticed a traction displacement law
coupled to a bending moment rotation law to model the threthghthickness dynamic crack
propagation in thin structures. He compared the resultsisiodel with full 3D FE models
and showed that they are well correlated.

Whatever the shape of the cohesive law, the intrinsic cobesdmments are inserted at
the beginning of the simulation, and thus, have to model theicuum part of the defor-
mation field with an initial slope. This fact leads to some muical problems as mesh de-
pendency, lift-off and artificial compliance. The mesh degency was not an issue in the
beginning as works mainly focused on delamination or proklevith ana priori known
crack path[[175, 176, 177, 247,249,252], allowing the itiseiof cohesive elements only in a
well defined zone. As promising results were obtained, it matsgral to extend the method to
ana priori unknown crack path, which became an output of the simulafiberefore several
authors investigate the fragmentation of brittle matseriale to dynamic impact and the crack
branching instability problem. Toward this end, X.-P. ¥ual. [262] used their exponential
cohesive law[[261] and inserted a cohesive element betwledresbulk ones of their mesh
built with quadrilateral elements cut in "cross trianglés allow crack branching. Although
they modeled with success crack branching, X.-PeXal. reported a crack path depending
on the triangle orientation. They obtained a straight cracpagation for triangles with &

45 degrees orientation but for triangles oriented dt5 or+ 30 degrees they obtained a crack
path in zigzag. |. Scheidet al.[225] noted the same phenomena. Indeed, in their cup cone
fracture simulation, they obtained the correct crack pati b the cohesive elements were in
the direction of the maximal tangential stress. The corereeg of the solution with the mesh
was only achieved for crack path confined in a single plankawit crack branching as,g.,
reported by A. Needleman [178] in the case of a pure Mode lkcgaowth in a plane-strain
block with a pre-existing central crack subjected to impaosile loading. Nevertheless, in
this case as emphasized by P. Geubetlal. [L04], ultra thin meshes are needed to resolve
the cohesive zone and achieve convergence.

The second issue related to an intrinsic cohesive law,cthfteoff, is a spurious high crack
speed. This one is illustrated in [177,262] and results ftheninitial opening of elements
along a potential crack path which can be close from thecalitbopening. In this case, a
sufficiently large load leads to the instant crack of all theements and therefore a crack
speed faster than expected is observed.

Finally, the last drawback of the intrinsic cohesive law msaatificial compliance of the
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material. Indeed, the insertion of cohesive elements whiolel the continuum part of de-
formations by an initial slope degrades the elastic mododusaterial. The effective modulus
becomes, in the case a one-dimensional network of cohasifgcss at constant spacing h,

sh

E = E
eff E +sh

(2.5)

with s the value of the initial slope of the TSL. The softening efffet the cohesive law
is negligible only ifsh>> E, which can only be reached for very large values@sh is
typically the mesh size. Notice that for a constathis effect will increase with the refine-
ment of the mesh. Furthermore this artificial compliance@$ the wave propagation in an
anisotropic way for a multidimensional problem. The infloenfswas studied by several au-
thors [93,94,95,10%,270] who concluded that the wave [gafian is not affected i > 10
Nevertheless, a resolution of the initial slope in many stsgequired and the time step has
to be decreased with the increasesoivhich can lead to very large computational time.

The drawbacks of the intrinsic TSL lead to an inefficient feavork to study fragmentation
problems. Indeed, in this case, interactions and propawyafi stress waves play a key role.
An accurate resolution can only be achieved for large ingiapes leading to very small
time steps and therefore to infeasible 3D large simulatwitis regard to the computational
time required. Beside, to our knowledge, such a case is nottezpin the literatureand
the dynamic fragmentation was only investigated for 2D sdweseveral authors [84,195,96,
[160/261]. They all highlighted a fragment size dependemndhe distance between cohesive
elements except if they are sufficiently closed. From thésdies it is not clear whether the
intrinsic TSL can predict fragmentation in caseagbriori unknown crack paths.

As the initial slope of the TSL inherent to the intrinsic apgch leads to the numerical
problems highlighted above, several authors developeldadstusing extrinsic cohesive laws,
which can be seen as an intrinsic TSL with an initial infinitepe.

2.2.2 Extrinsic cohesive law

M. Ortiz et al.[63,/191] pioneered the investigation of the extrinsic aagh, which con-
sists in the insertion of cohesive elements when a fractuterion is reached. As the contin-
uum part of the deformation has not to be modeled by the caeh&siy, an infinite initial slope
of the TSL can be considered avoiding artificial compliamsewell as lift-off and stress wave
propagation issues. The principal drawback of this appgreampared with the intrinsic one,
is the topological mesh modifications required during theugation to insert the cohesive ele-
ments. Indeed, with a continuous Galerkin methaal (vith a classical FE method), elements
are also continuous and there is the necessity to split reideterfaces where fracture occurs
to model the crack lips that are initially constrained by atriesic cohesive law. A further
challenge of the extrinsic approach is to account for theashihg after fracture initiation: the
crack can close and as the normal opening cannot becomeveggatontact condition has to

1There are 3D examples of dynamic fragmentation in litemhut they use an extrinsic approach.
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be implemented to constrain the normal opening to zero (aike this leads to the unphysi-
cal interpenetration of the medium). Such a condition isiraly inserted in the intrinsic case
where the initial slope of the TSL plays the role of a penatigtact conditions.

The most popular extrinsic cohesive law was suggested by @aClacet al. [63] and was
extended a few years later by M. Orétzal.[191]. As it was demonstrated from [191,249,250]
that the shape of the law, as long as it is monotonically desing, has little effects on results
for brittle materials, they used a simple linear monotolhyodecreasing law (as depicted on
Fig. [2.3(b)) and postulated that in case of unloading, foositive effective opening, the
relation between traction and opening decreases linearheto in a reversible way. They
assumed, based on the two first thermodynamic laws [191f,ttieacohesive law derives
from a free energy which allows, as for the intrinsic caseysaering a law which derives
from a potential. By analogy with the work of V. Tvergaard [R4Gr intrinsic TSL, they
used an effective opening, which combines normal and tarj@penings, for mixed modes
fracture.

The applications of the extrinsic cohesive approach foayzroblems for which the intrin-
sic one suffers from problems and so concentrate on dynaagotentation and crack propa-
gation problems for brittle materials. G. Camaeta@l. studied [62, 63] high rate impacts and
fragmentation. Their results were in agreement with thesgrgents of J. Field [100], which
proves the efficiency of the cohesive approach to model drait&tion and propagation. Fur-
thermore, in their 2D benchmarks, they obtained convemgehcrack path and crack growth
rate for sufficiently small cohesive elements (tens of mueter) when they used remeshing
to propagate the crack independently of the mesh. AfterwarBandolfiet al. [193] studied
the experiment of D. Gradgt al. [L07] of a ring fragmentation. The ring is submitted to a
uniform radial expansion, which leads to multiple simuétans neck formations where frac-
ture can happen to lead to fragmentation. The simulatiorotewed quite well the general
behavior of the experiment, but A. Panddlfial. [193] did not perform a convergence study
as the computational cost of the method is high for 3D siniat Another fragmentation
study, performed by E. Repetéb al.[214], concentrates on the glass rods. Once again in this
experiment they captured the initiation and propagatiatmefracture waves.

Moreover, several authors focused on three-point bendinglations [192, 22]1]. In this
case they showed that the extrinsic method is able to priddidime of fracture initiation as
well as the shear lips formation at lateral surfaces. Forptetaness notice that this approach
is also used to model in dynamics, crack propagation![22T), Z&tigue problems[[179],
sandwich components [265, 266] or firearm injuries to the &umranium with 3D models
[172].

As all the previous studies reproduced well the fracturenpheena, the proof of con-
vergence with the mesh size was obtained fomaasriori known crack path, by I. Ariast
al. [11], who performed (parallel) 2D simulations of pure modatérfacial fracture of two
weakly bonded, pre-notched Homalite plates. They also emeapbthe numerical results with
experiments. With the extrinsic approach, they reprodticedrack tip trajectory and velocity
with a high level of accuracy.

Nevertheless at first sights, it seemed that foragoriori unknown crack path, this one
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depends on the mesh size. Indeed, Z. Zheingl. [274] studied the microbranching insta-
bility for brittle materials by simulating symmetric loadj of a pre-cracked PMMAstrip

and captured the crack branching. Nevertheless they expartrack path depending on the
mesh. Furthermore, G. Rui al. [221] observed the same phenomenon despite they ob-
tained convergence for the load-history curve. MoreoveZhéu et al. [275] studied the
mesh dependency to highlight the circumstances leadinggghenomenon and concluded
that a few randomness in the mesh size and orientation aigmgicantly reducing the mesh
dependency. Finally, K. Papoulé al. [197] reported the convergence for a pin-wheel based
mesh. Nevertheless, if the spatial convergence seemedda [esue, the temporal conver-
gence was observed in the different studies.

As well as the convergence of the crack path and crack groatth d.-F. Molinariet
al. [168] studied the convergence of the dissipated energymeitpect to the mesh size. They
focused first on symmetric impulse loading of a pre-crack€id/lA strip. For this case they
reported an increase of the dissipated energy with the meshwsthout convergence. In a
second time, they studied the fragmentation of a ring mesliddone dimensional elements.
They proved the convergence in this simple case, but for d siee tending to zero when a
uniform mesh is used, as predicted in their earlier wdrk§]2For meshes with elements of
various sizes a monotonic convergence was observed argl/adtfor ultra thin meshes.

Finally, time discontinuity drawback has to be reporteddeed, at fracture initiation
the stresses computed by the constitutive material lawepkaced by values coming from
the cohesive law. Therefore the continuity of the stresd fehot ensured for mixed mode
fracture without special care. K. Papouéitial. [196] highlighted this phenomenon and they
demonstrated the non convergence in time and the presenoploysical oscillations in case
of discontinuity.

The extrinsic cohesive framework can therefore be summars follow. It seems very
appealing to model dynamic fragmentation and crack growthtiequires ultra thin meshes
with a randomness on the mesh size and structure to achieveotivergence of the crack
growth rate and of the dissipate fracture energy. Nevegsiselultra thin meshes lead to high
computational time and to a difficult management of memargekd, for dissipative materials
(ase.g. elasto-plastic laws) the history of the material has to beest during the computa-
tion at each integration point. Number of Gauss points mses with the refinement of the
mesh leading to memory problems. Both issues (time computatid storage) can be solved
with an efficient parallel implementation, which is complied due to the topological mesh
modifications inherent to the insertion of cohesive elemeBeside difficulty of developing a
parallel implementation [194], this one can suffer from kwalability unless a graph-based in-
ternal structure is used [173,200]. To avoid this mesh mzatifin, several authors suggested
using the extrinsic cohesive law in combination with a DGniatation. Indeed, as the DG
method considers discontinuous elements and ensuresybaktontinuity between them,
the interface elements exist at the beginning of the sinmuatTherefore the substitution of
an interface element by a cohesive one is straightforwaote bhat another method combin-
ing advantages of both extrinsic and intrinsic approaclassbeen developed| [4,204,232]. It

2PMMA = Polymethylmethacrylate
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is based on inserting interface elements from the beginbungompatibility is enforced by
Lagrangian multipliers, which, in turns, introduces nevkriowns.

2.3 Discontinuous Galerkin methods

The main feature of DG methods is their ability to take intoamt discontinuities in the
interior domain. In these methods, the integration by paites place element by element
leading to interface terms which can be used to ensure weh&lgontinuity. Historically
the first DG methods were introduced to study hyperbolic #guawhere discontinuities and
numerical fluxes are naturally present in the exact solufitw first one was suggested by W.
Reedet al. [213], who focused on the transport of neutrons. As the égusibf mechanics
are purely elliptic, the resolution of hyperbolic equasas out of the scope of this work and
therefore is not developed herein. Nevertheless, inedastader can refer to [11,/72] for a
complete review on this topic. A subsequent work by J. Nigd80] uses this technique to
prescribed weakly boundary conditions. Furthermore, lygested the incorporation in the
formulation of a quadratic term to stabilize the method.

2.3.1 DG methods for solid mechanics problems

For continuum mechanics problems, the use of DG methodsssattime first sight useless
as it considers more degrees of freedom to solve a problemith&G counterpart. Never-
theless, they can be useful in different situations, inipaldr to ensure weakly the high order
continuity. Indeed, in the beginning of the seventies soothas [15] 20, 84, 85, 205, 259]
generalized the hybrid method of T. Pianal. [206] to enforce thes ! continuity between el-
ements for fourth order elliptic equations of thin body falations. Nevertheless after these
initial developments, the interest for this technique shed to the benefit of the method com-
bining displacement and rotation [58]. This well estatdighechnique uses independert
interpolation for displacement and rotation and enforeecth continuity through the shear-
ing equation. This technique is very appealing from the enm@ntation viewpoint but has
the drawbacks of considering more degrees of freedom anduféer from locking without
special care. More recently, with regards to this issue, igefet al. [91] suggested a new
framework coupling CG and DG methods. Extending the pasti&20,84,85,180,205,259]
they obtained a one-field formulation of Euler-Bernoulli imsaand Kirchhoff plates. The use
of 0 shape functions allows having recourse to continuous elesrend the DG method is
used at element interfaces to ensure in a weak manner‘tbhentinuity. Some improvements
were brought by several authors [115,257], who applying tie technique to strain gradi-
ent damage theory [167, 258]. Furthermore, this framewa& extended to Kirchhoff-Love
shells by L. Noelset al. , first with linear elasticity assumption [185] and in the eed time
to the non linear rangé [181]. Note that in this thesis, wegsgtan original extension to full
discontinuous elementséd. ¢ is also weakly ensured) of this one-field shell formulation f
further combination with ECL.
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DG methods can also be useful for hp-adaptive meshes, evtespipears that this tech-
nique is commonly used for fluid mechanics|[27,149,/1119] ankkss developed for solid
mechanics. Indeed hp-adaptivity consists in the local eefient of the mesh with elements
not necessary of the same order yielding hanging nodes. rifaecement of continuity trough
elements becomes an issue. Several continuous technixjaeRl6/47/ 58] but the DG meth-
ods are very appealing in this case as the weak enforcemeonthuity at interfaces does
not require element of the same order nor conforming me&g418].

Another advantage of DG methods is that they reduce cormdbtlethe locking effects
which can arise from finite element discretization. Thisrmgraenon is particularly important
for thin bodies where the membrane and bending modes ardecbufphe common solu-
tion used in this case is the recourse to reduced integri@®®71] or mixed formulation
eventually coupled with assumed stains methods([28, 29/Z23. Nevertheless, several
authors used, with success, DG methods in this situatiobhdams|[6/7, 66], plates [17] or
shells [112,111] elements.

One interesting feature appears when using DG methods ibioation with the cohesive
zone theory, which is the main aim of this thesis.

2.3.2 DG methods combined with extrinsic cohesive law

As a result of previous sections it appears that an efficimméwork to solve dynamic
fragmentation or crack propagation problems can be olddigeoupling the DG method and
the extrinsic cohesive approach. Indeed, the major diffiafithis last one is the insertion of
the cohesive elements at the onset of fracture. Neverthelesnterface elements are naturally
present for the mesh in the DG method, this interface elexwmnbe very easily replaced by
a cohesive one when a fracture criterion is reached. Suan@efvork has been pioneered by
J. Mergheimet al. [157] , R. Radovitzkyet al. [211,228] and M. Prechtdt al.[210].

Firstly, J. Mergheimet al. focused on mixed continuous and discontinuous Galerkin for
mulation first for linear elasticity [157] and then they ended the method to non linear elas-
ticity [159]. They simulated composite material examplethwa well known crack path and
therefore inserted discontinuous elements only alongdfaisk path. They observed a con-
vergence of the results with the mesh size.

Afterward, R. Radovitzkyet al. [211,[228] studied with this approach the longitudinal
wave propagation and the resulting spall of an elastic bdweyTproved that, contrarily to
the intrinsic cohesive element approach, the use of disaamis Galerkin elements does not
affect the wave propagationd. the wave propagates through discontinuous elements gxactl
as if they were continuous). Furthermore they suggestealatde parallel implementation
of the framework opening perspectives to treat ultra thisims and they revisited the high-
velocity impact of ceramic plates by a hard spherical pitdgscstudied before in 2D with
axisymmetric assumption by G. Camacatioal. [63]. This time R. Radovitzket al. simu-
lated this problem with a full 3D model and they captured tbmplex 3D fracture pattern.
Moreover, in case of crack closure they introduced back timenal DG components to avoid
interpenetration.
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Recently, M. Prechtett al. investigated the priori unknown propagation of crack in a
2D composite[[210]. As the fracture energy is dependent ergdometry of the fibers they
implemented an optimization algorithm to obtain the besigteof the fibers shape [209].

Finally, R. Abediet al.[1[2/3] developed a space-time discontinuous Galerkitoutefor
2D elasto-dynamic problems. Their method respects enefggance for linear and angular
momentum over every space-time element and is well desigrneapture shock wave without
spurious oscillations. They coupled their method with atriesic cohesive law to model
crack propagation and used an unstructured space time gichws refined near the crack
tip. Mesh independent crack propagation and convergenceaok path were observed with
the refinement. Therefore their method is very accurate Hmikat. Nevertheless it is very
difficult to implement in a standard FE code as the usual tmegration procedure has to be
replaced by a more complicated space-time grid integration

2.4 Enrichment methods

The main idea of enrichment methods is the enhancement ohtkr@wn (displacement)
field to take into account a discontinuity. In fracture maths, this one represents a crack
which can propagates without necessary following the bapndf the mesh, as the discon-
tinuity can pass through an element. Two kinds of enrichnmawe been suggested in the
literature. On the one hand, the Extended Finite Elemenhdte{XFEM), pioneered by N.
Moéset al.[165] and T. Belytschket al. [36], considers a nodal enrichment, and on the other
hand the Embedded Strong Discontinuity Finite Element MetfEFEM), firstly developed
by F. Armeroet al.[12[13/14, 145, 146] uses the elements as support for thehement. The
main advantage of EFEM compared to XFEM is inherent to itallearichment which allows
static condensation at elementary level and thereforétédes its implementation in a stan-
dard FE software as the number of unknowns of the system nsncanstant during whole
the computation. F. Armero and his coworkers, first studiedstrain localization in inelastic
materials[[12], and afterward they investigated the craockagation([145], by solving several
elementary problems with 2D solid elements under the srtralhsassumption. Their embed-
ded discontinuities method includes a cohesive law to mibaefracture process. Then, they
extended the method to large deformatidns [13], to dynaraitdire [14] and to crack branch-
ing [14€]. Furthermore, G. Wellst al. focused on 3D problems [256]. Nevertheless, EFEM
does not ensure the continuity of the crack through elentan{segardless, convergence of
the results is obtained. But recently, several authorl§ [Z,inproved the EFEM with the use
of interface elements and considered discontinuitieslligata the edges or the facets of the
mesh. Proceeding this way, they ensured the continuityeo€tack propagation. J. Olivet
al. [190] compared EFEM and XFEM. They showed the methods cgeweith the same rate
to the same results. Furthermore, they obtained more aea@sults with EFEM for coarser
meshes at a lower computational cost, especially in caseok dranching. Nevertheless, it
seems that the XFEM remains the most popular method todaleasdattention is focused on
EFEM.

The first uses of XFEM methods focused on specimen with aalicitack as.g.the work
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of N. Moéset al. [L65] where they enhanced the nodal unknowns with Heavisidetions
and with the asymptotic solution of LEFM, allowing for theptare the material behavior
at the crack in an accurate way. They used the hoop stress@nito propagate the crack.
Then, these authors improved the method to model 3D cragkagedion [242] as well as
crack branching or intersecting [75].

Afterward, several authors modeled the displacement juritip avievel set method [43,
[163], which allows combining the XFEM with the cohesive aggth. Thanks to the level
sets they computed the jump between crack lips and the irggetbhesive traction. Toward
this end, R. de Borstt al. [55] developed the so called "cohesive crack segment” tecien
to avoid any mesh bias. An extrinsic cohesive element canderted without mesh modifi-
cation but new unknowns have to be inserted in the resolstystem. N. Mé@set al. [163]
add extra enrichment functions (different from the LEFMragyotic solution) to resolve the
stress concentration near the crack tip. Nevertheleseihsehat this extra enrichment is
not necessary [277]. As the crack does not follow elemennbarties in this method, the
maximal hoop stress criterion is still used to determinedinection of crack propagation. J.
Mergheimet al. extended the approach to inelastic material behayvior [4B8]R. de Broset
al. extended it to damage [564].

Afterward, T. Elguedgt al.[90] used the Hutchinson-Rice-Rosengren elasto-plastatsfiel
[125)216] to obtain elasto-plastic enrichment functioNsvertheless, they kept the assump-
tion of confined plasticity to study the fatigue crack growthotched specimen. Then, B.
Prabel [208] extended this approach to dynamic crack pratpay

These methods cannot take into account a crack initiati@hcerly propagate existing
crack. The model of crack initiation with the XFEM was acl@évby P. Areiaset al. [[7],
where they considered the damage as fracture initiatidarmn. Recently, using the same
idea N. Mdéset al. [166] suggested the thick level set approauthere a crack is inserted
when a damage criterion is reached.

The XFEM method was applied to a large set of mechanical probinvolving composite
materials [[18, 82, 174], contadt [37, 128], dynamic propiaga][156], multiscale[[101, 164]
among others. Moreover, the approach was also applied tbsshestures on one hand by
P. Areiaset al. [8,[10] for static propagation and on the other hand by R. lcarss al. [98,
[133] for dynamic crack growth. In particular, the last refece studies a notched pressurized
cylinder by combining the XFEM and the cohesive approachspile of the shell elements
reduce the computational cost of thin structure problerag fhil to model accurately a 3D
crack propagation. To overcome this issue E. Weidl. developed a multiscale approach
where they recourse to 3D elements at the microscale to nteeletack propagation and they
recourse to shell elements at the macroscale.

Nevertheless, the XFEM has some drawbacks as difficultyaagsibing Dirichlet bound-
ary conditions or Gauss integration when discontinuitielsajpse to a node. The first draw-
back appears when a Dirichlet boundary condition has to bscpbed on an enriched ele-
ment. In this case as there are extra nodal unknowns, theingpitation of the boundary

3However the thick level set approach can be well suited viighXFEMit can be used in combination with
another method of crack representation.
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condition requires special attentidn [162]. The seconevbeak is related to the crack prop-
agation. In fact, spurious results can be obtained if thekccait the element very close to
a node or an edge as it is difficult to have in this case integradoints on every side of the
crack. Therefore special attention is required in this §a38], which complicates the imple-
mentation. This integration problem is not negligible asilidgently thin mesh is required
to capture accurately the crack path which increases tkaaibave a crack cutting an ele-
ment near a node. The necessity of mesh refinement was rebgjitlighted by M. Duflotet
al. [88], who studied 3D multi-sites crack spread in a blade.dileghe cracks can propagate
through elements, they had to refine the mesh to capture dlokcpath in an accurate way
and therefore to obtain a crack independent of the cracKTiiye refinement is so huge that
to solve the problem in a reasonable computational timeg, ffleback on remeshing. Never-
theless, as the crack has not to be conformed with the meshy¢imeshing operation is less
costly than in the case of the approach presented in theoB&EH requiring to have a new
mesh which an edge or face coinciding with the direction efdrack propagation.

2.5 Meshless methods

The development of meshless methods was motivated to avolddgomns of mesh distor-
tions in cases of large deformations or to avoid mesh canstlacracks propagation. Indeed,
if there is no mesh, the crack can growth without following thoundary of elements. The
first meshless method, called Smooth Particle Hydrodynau(@@H), was developed by, on
one hand, L. Lucy([151] and on the other hand by R. Ginglal. [L06] to solve astrophysics
problems. The method was then applied to fluid mechahidslE#R,170] and afterward to
solid mechanics by L. Liberskgt al. [144] where impact problems were studied. As these
problems involve large deformations, SPH has advantagepaeed to the FE for which high
mesh distortion leads to computational issues. SPH metredsased on the strong form res-
olution and the first meshless method based on a weak formmeasried by T. Belytschhket
al. [42]. They developed the Element Free Galerkin Method (ERf&)se equations are close
from the Reproducing Kernel Particle Method (RKPM) [149]. Tdmdy difference between
both methods is the basis, which is intrinsic for EFG andesit for RKPM. Finally, based on
a local weak form, meshless local Petrov-Galerkin methogleweveloped [19]. Among the
difficulties of meshless methods, their major drawbackgtsdreatment of essential bound-
ary conditions and their computational cost generally éigbr the same problems than for
traditional FE methods.

The extension to crack growth of meshless methods is obvaadshas been pioneered
by T. Belytschkoet al. [40,41/44,150]. They propagated the crack by evaluatiegstress
intensity factor coupled with the hoop stress criterion. rétwer to keep constant the node
density at crack tip, J.-P. Ponthattal. [207] suggested to use an Abritary Eulerian Lagrangian
formalism. Such a method allows to study crack growth for 2idic and dynamic problems.
Later, P. Kryslet al. [130] extended the approach to 3D cases. Furthermore, MoDeifl
al. [86,87] improved the solution of the meshless method bycéinrg the displacement with
the LEFM analytical solution at the crack tip. This enrichrhallows capturing the stress



46 Computational fracture mechanics: review & contributions

field with a moderate number of degrees of freedom. M. Déflatl. simulated some fatigue
crack propagation [87] as well as several crack propagati@D elastic medid [86)].

The extension of meshless methods to shell fracture prableas recently been realized
by B. Maurelet al.[154]. They resolved the issue of modeling a shell with onig particle
on the thickness and presented a SPH shell formulation. Staejed fragmentation of elasto-
plastic shells due to high velocity impact. They obtainedrmmenological results although
their fracture criterion is based on a maximal strain withmwdeling explicitly the fracture
processi(e. full opening without remaining traction is considered asrsas the strain is
larger than a critical value). Furthermore F. Cayleron [6id d. Liu [148] obtained good
agreements between simulations and experimental resultegpectively a tank perforation
and a crack propagation in a pipe. Their fracture critermulifferent (based on a critical
damage for F. Cayleron and on a critical stress for J. Liu).fldeture process, of the decrease
of the cohesive strength, seems unmodeled in these studies.

2.6 DGvs XFEM

At this point, two methods seem appealing to model crack ggapon: on one hand
the DG/CZM method and one the other hand the XFEM. Both methasle hdvantages
and disadvantages. Therefore the choice of the methodatedeto the aim of this the-
sis, which is to investigate the initiation and propagatodrfracture in industrial pressur-
ized components, especially in the case of dynamic loadingh as impact or blast. These
ones often include fragmentation, which seems easier tty stith the interface element ap-
proach [63, 137,138, 168, 241, 276] than with the XFEM [24Bgsides, to our knowledge
only a few 2D fragmentation cases are reported in literdior&XFEM, and the interface el-
ement approach is more developed in this subject and hastigbeen combined with DG
on this topic for 3D elements [137,211]. Furthermore, indakapplications require (i) easy
use of elasto-plasticity in the cohesive zone, (ii) thin hessand (iii) a recourse to parallel
implementation. Once again the DG/CZM method seems morabdaithan XFEM to ad-
dresses these points. Finally, for industrial considenstiit is required that the developments
can be easily integrated in an existing software. In this ibwéll be easier to add extra
integration terms through elements than to incorporatahedrichment inherent to XFEM
although more and more FE software include XFEM. For all ehesasons, we choose to
develop the DG/CZM framework for thin bodies formulationss #his framework used and
extrinsic cohesive law we called it the DG/ECL framework.

2.7 Original developments

This chapter is a review of the different methods used to mioaeture in computational
mechanics. One appealing method is the CZM whose main isselaisd to the introduction
of the cohesive elements, which has to be performed durimgithulation to obtain accurate
results, especially in dynamics when the wave propagatiaysm key role in the fracture
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process. Two methods are suggested in the literature te Hukvproblem. On one hand, the
XFEM inserts the cohesive elements by the level set teclenidinis does not require mesh
modification during the simulation but enriched nodes havbe added in the system. On
the other hand, as the DG method considers interface elerbetween discontinuous bulk
elements to ensure weakly the continuity between themethdsrface elements can very
easily be substituted by cohesive ones to model fractummMne previous section we decide
to investigate the initiation and propagation of fracturehin bodies under dynamic loading
using the DG/ECL framework as promising results for largeéesys including fragmentation
have been reported in the literature for 3D problems. As suftamework has never been
presented for a thin bodies formulation, we extend the aagrdo this case. Thus this thesis
introduced five new original developments:

(i) Development of an original full-DG formulation of line&uler-Bernoulli beams under
small strain assumption: this case constitutes the simpdse to study and therefore is
very suitable to illustrate the formulation.

(i) Development of an ECL for thin bodies: as, the implicit d&bof the thickness inherent
to thin bodies formulation makes difficult the use of the ustieess-tensor-based TSL,
an original cohesive law based on resultant stresses iestagy This law is coupled
to the full-DG formulation of beams to model the through-thikness crack propaga-
tion.

(iif) Extension of the framework to non-linear Kirchhoffelze shells: an original full-DG
formulation of shells coupled to the original cohesive laagéd on resultant stresses is
suggested.

(iv) The study of large problems: it requires suitable terapmtegration scheme, including
parallel implementation. We suggest herein an originahielrimplementation of the
whole framework based on ghost elements at mesh partitioasdary. Furthermore,
for quasi-static cases, as the inversion of stiffness mtprohibitive for large systems,
we suggest an original adaptation of the dynamic relaxatmrcept, for the Hulbert-
Chung [123] time integration algorithm. The choice of Hub@hung time integration
algorithm, in place of the traditional central differenademe, allows introducing nu-
merical dissipation to avoid spurious crack branching.

(v) Investigation of the possibility to couple damage toc&r&ransition using the DG/ECL
framework: toward this end, we suggest to insert a cohedemeant between bulk
elements where a criterion based on the damage is reached.

All these developments have been published (or submittgalialication) in peer-reviewing
international journals:

[32] G.Becker& L. Noels A fracture framework for Euler-Bernoulli beams based onlia fu
discontinuous Galerkin formulation/extrinsic cohesiges Icombination)nternational
Journal for Numerical Methods in Engineeringohn Wiley & Sons, Ltd., 201185,
1227-1251
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[31] G.Becker, C. Geuzaine& L. Noels A one field full discontinuous Galerkin method
for Kirchhoff-Love shells applied to fracture mechani€emputer Methods in Applied
Mechanics and Engineering011,200, 3223 - 3241

[34] G. Becker & L. Noels Validation tests of the full discontinuous Galerkin / éxsic
cohesive law framework of Kirchhoff-Love shelinternational Journal of Fracture
CFRAC2011 special issue, submitted

[33] G.Becker& L. Noels A full discontinuous Galerkin formulation of non-lineairkh-
hoff - Love shells: elasto-plastic finite deformations, glkel computation & fracture
applications]nternational Journal for Numerical Methods in Engineerjsgbmitted



Chapter 3

Discontinuous Galerkin / Extrinsic
Cohesive Law framework for
Euler-Bernoulli beams

The aim of this chaptefis to simulate the initiation and the through-the-thiclspsopa-
gation of a crack in an Euler-Bernoullibeam. As a result oftteyious chapter, we suggest to
perform this using a combination between a discontinuouer&ia formulation of the beam
equations, modeling the continuum part of the deformatémg an extrinsic cohesive law,
modeling the fracture process.

We summarize the Euler-Bernoulli beam theory to obtain thengtform of the problem
in terms of the resultant stresses. Furthermore, as theigearof this chapter is to illustrate
the concept and not to solve industrial problems we resiticanalysis to:

(i) Linear small strains;

(i) Straight rectangular beam without initial deformatjo
(i) Problems where the out-of-plane shearing is negldcte
(iv) Plane stress state.

Moreover, to simplify the notation the contribution of extal forces is omitted in the estab-
lishment of the formulation. A more general and rigoroudysia will be presented for shells
in the next chapter.

In a second time we present an original manner to discretimam with fully discontinu-
ous elements. Then we demonstrate that our new method hsetteenumerical properties as
a classical FE method: consistency, stability and optiroal’ergence rate. These properties
and the ability of the formulation to simulate a continuumcimenics problem are illustrated

1The main results of this chapter are published inltiiernational Journal for Numerical Methods in Engi-
neering[32].

49
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through several benchmarks. It has to be mentioned thatrdsepted method is a gener-
alization to discontinuous test functions of&/DG formulation of beams presented by G.
Engelet al. [91]. This paper suggests a method for Bernoulli beams, wbictsiders con-
tinuous test functionsi.e. continuous elements) but uses the DG method to ensure’the
continuity required by a thin bodies formulation. Besidesestablish that in case of contin-
uous test functions both formulations are identical. Tooeenany ambiguity between both
formulations, we call our formulation "full discontinuo@alerkin”.

Third, as we did not find an appealing cohesive model for tloigiés in the literature, we
present an original extrinsic cohesive law dedicated tolloidies. Indeed in the literature two
ideas are developed to propagate the crack through-tbknttgs. On one hand, F. Cirak
al. [70] suggested to insert the stress-based cohesive laneantdgration points across the
thickness where the fracture criterion is reached. Suclradwork allows the propagation
but leads to a very complex implementation in case of a begnefifort. On the other hand, P.
Zavattieri ideal[269] is to use the reduced quantities asid@rand bending moment. We keep
this idea but we adapt it in an original way to combine memeéeramnd bending contributions
with respect to the energetic balance.

Finally, we perform a numerical example of through-thesthiess crack propagation in a
double clamped beam to validate our method and demondisatepabilities.

3.1 Balance equations of beams

We present herein the set of equations governing a beamhwraitional theory consid-
ers only the bending mode. Nevertheless, as we are intdresgtudy fracture in the case of
tension-bending coupling, we add by linear superpositiemtembrane contributidnThese
equations can be rigorously obtained from the linear sihelbty presented by F. Simet
al. [233] as we report in Appendix_Al.2. But to simplify this chapteith the aim of introduc-
ing the main concepts in a more comprehensive way, we useullee-Bernoulli beam theory
to obtain the balance of angular momentum and the equitibaquation to derive the balance
of linear momentum. Furthermore, as the main idea of F. St&. is to integrate the stress
on the thickness, we introduce this idea here to facilitagettansition to the shell theory.

In the following, we consider by convention that the bears lie a orthonormal frame
(E1, E», E3) with its neutral axis corresponding #; and the thickness of its rectangular
cross section oriented alonBjs. The coordinate alond@s is noted&3, and the unknown
displacement field is written (see Fig[(3.11).

The balance equations alodgs of a beam are written

(MB)’;L_VB = 0 and, (3.1)
Ve1+bpe(Eh) = pbhis, (3.2)

where the rotational inertia is neglected, wheris the density and whergg is the applied

2This linear assumption holds as the beam has initially neature and as only first order terms are consid-
ered.
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h/2

—h/2le

(a) Axes and geometry. Nﬁ/ (b) Efforts.

Figure 3.1: Configuration of the beam in the reference framaiat in this chapter.

load on the beamMg andVg are respectively the moment in the beam and the shear loading
defined by,

Mg = / o1&3dAand, (3.3)
A

Ve = / o3dA, (3.4)
A

whereA = b x [-h/2;h/2] is the area of the cross section, whithe width of the beam
and whereo!! ando3are respectively the axial and shear stress distributiorth® section.
Euler-Bernoulli beams theory assumes a negligible effeth@fthearing on the bending de-
formation, but in order to develop the full-DG formulatidng convenient to keep it, as it will
be shown later.

Furthermore as it is also convenient in shell formulatiomsansider the moment and
shear by unit width we define,

h/2
it — [ ote3de? = M8 ang, (3.5)
—h/2 b
h/2
gl = / ol3zd = VB (3.6)
~h/2 b
as well as the density by unit width,
o, = [ dg3 3.7
Pg = pdg”. (3.7)
—h/2

It has to be mentioned that for further compatibility witletbhell equation, we consider the
stress components in the conjugated bd®if E; defined by the identityE' - E; = &3,
although both bases are identical for an orthonormal frame.
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Finally, using both definition$ (3.5) and (B.6) in Eds. [B.2), it comes,

Mgl —1g! = Oand, (3.8)

(I8%) 1+ Pe(E) = Pglis. (3.9)

Note thatlg! in Eq. (3.9) corresponds to the shearing along the neutislveile Izt in Eq.
(3.9) corresponds to the shearing along the beam section.
The membrane behavior of the beam is governed by the equation

NB’]_ - pbhl'j1 = 0, (3.10)
whereNg is the tension in the beam which reads,
Ng = / olldA. (3.11)
A
Then, exactly as for the bending equations, we can define,
h/2
it — / otide3, (3.12)
—h/2
(3.13)

the tension per unit width. With this definition, the govegniequation of the beam in tension
reads,

ng'y = Pglin, (3.14)

This equation constitutes with the Eq§._{B.8}3.9) the setqufation formulating the strong
form of Euler-Bernoulli beams considered herein. The previcelations involve two un-
known fieldsu ando which can be related using a constitutive model. Under tieéssticity
assumption, the Hooke law is used.

The deformation of the section alogd results from the curvature of the neutral a§j§
and from the extension of the neutral adis; with,

€11 = Uupg+048%. (3.15)
The deformation in shearing of the section is assumed to bstaot and reads,

Us1+0
ey = LT (3.16)
2
where(us,1+§) is the angle between the neutral axis and the cross sectiectidn. Euler-
Bernoulli assumption consists in neglecting this angleiteatb 6 = —us ;.
Finally, the stress field, using the unit metric relatedoreads,

oll = Eein = E (Ul,]_ — U3711€3) and, (3.17)

31 A/ A/ _
0 =prgan = Hp (uz1+8) ~0, (3.18)
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where%’ takes into account the reduced section for the shearingsltdibe noticed that!!
results from the linear superposition of membrane and Imgnaiode which are uncoupled
under the assumptions mentioned at the beginning of thistehdndeed, using Eq. (3117) in

Egs [3.12) and (3l5) it comes respectively,

h/2 h/2

el — / Euy 1dE% — / / Eg1:63d€% = Ehu 1 and, (3.19)
—h/2 —h/2

~ 11 h/2 3423 h/2 32 123 h3

mell = / Euy 18383 / Etg 11832083 = —E-Lugas. (3.20)
~h/2 ~h/2 12

Therefore, the membrane contribution has no influence oartlgalar momentum and recip-
rocally the bending contribution has no influence on thedimaomentum.

3.2 Full-DG formulation of Euler-Bernoulli beams

In this section the full-DG FE discretization of the set oBEB.8E3.9) and (3.14) is intro-
duced under the assumptions given at the beginning of tlaisteh Once the weak formula-
tion of the problem is established, the numerical propgxighe presented method are stud-
ied and illustrated on a numerical example. In this examipéeftill discontinuous Galerkin
formulation is compared to the%/DG formulation introduced by G. Enget al. [91]. It is
observed that the full-DG formulation gives the same resadttheC%/DG approach, and has
the same advantagdss. one-field locking-free approach. Obviously the purposeexfed
oping the full-DG approach is to take into account a prettrecstage when combined to the
ECL.

In this section, all the terms are per unit width of the beam.

3.2.1 Weak bilinear form of Euler-Bernoulli beams

For the particular case of beams of lengitin small deformations and linear elasticity,
illustrated on Fig[3l1, the weak form is obtained by mujtipy Eq. [3.8) byd(—us1), Eq.
(3.9) bydus and Eq. [(3.14) byu; and integrating on the beam length. In EQ. (3£) is
omitted as the shearing is neglected. However it is kept ¢earjly in Eq. [3.8) to establish
the full-DG formulation. Proceeds this way gives,

L L
/ Pt -dudx = / [nB.1115u1 + rﬁB.1115(—U371) — |516(—U3,1)] dx. (3.21)
0 0 ' ’

As a reminder, we omit the external loading to simplify thei@ipns but it can be added in
a usual way. This equation can be integrated by parts on daweteet of lengtH. of the FE
discretization,

> /. Ppit-Sudx = _Z{ /| [ng**duy 1 + Mgt ?d(—us 11) — 1848(—us)] dx
e e e e

+ <n5116u1]|e+ rﬁglla(—U&l)Le— |316(—U3)]|e>} , (3.22)
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where an unusual integration by parts was applied@nuz 1) instead ofig! for the third
term of Eq. [3.21). In the EqL{(3.22), the terqgng''du], , S l8*3(—us)], and the term

5 e Mgt1d(—us 1)L are related to discontinuities in the polynomial approﬂmabetween
two elements. For a continuous Galerkin formulatlon thetiowiity of the test functions
allows to simplify the two firstterms g o], = ']o =0, since the test functions or the strains
are null in 0 and. (assuming pure Dirichlet boundary conditions). For the D@riulation,
the test functions are discontinuous and these three teambesrewritten as a sum of jumps
over the interface elemerngs

> nglléul}le = -5 [ne**oua], (3.23)
z I’ﬁBllé( us 1)L = — z [[I'ﬁBllé(—UgJ)ﬂ Sand, (3.24)
Z |B 5U3 = — Z [[||3 5U3 (3.25)

with the jump operatdr[e]; = [+ —e~];. The sign at right hand side of Eqs. (3[23-3.25)
depends on the convention chosen for minus and plus elefdentin, we consider the con-
vention shown on the Fig._3.2 with the minus element at theolethe plus element yielding,

Z nglléul\le = ZVBTHB]‘:H&JT +VB; nB“’éuI = — Z [[nglléul]]s, (3.26)
€ € S

as normalyg] = —1 andvg; = 1 (see Fig[:312). The Eqd.(3124) ahd (3.25) are obtained in
the same way.

B Vey | Vey N
‘E © .—»p—CE © o
0 1 - 0 1

Figure 3.2: Sign of interface contributions depends on ti@ae of the minus and plus el-
ements. lllustration for second order elements, the filiecless are nodes on the elements
boundaries and the other circles are internal nodes. Fdincmus elements the node located
in & = 1 of the minus element corresponds to the node locatéd-=in-1 of the plus element.
For discontinuous elements these two nodes remain verg fiios the interface (dotted line).

In DG formulations these jumps are commonly replaced by Hunehich must be con-
sistent. The developments are exactly the same for the jilmges, so in the following, only
the equation[(3.23) is developed and the two other teim<l&8ad [3.25) can be derived
in the same way. Using the mathematical idenfay] = (a) [b] + (b) [a], relation [3.2B) is
rewritten as,

Z [nsttoui], = Z [(ng™t) [Bu] + [ng™] (dua)]., (3.27)

3To be rigorous we should add the contribution§’at= 0 andé! = L as it will be done for shells
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with the mean operatofe) = %(o*-l—r). As for the exact solution there is no jump in
the stress tensor between two elements, the second tefn2d) (&an be neglected without
altering the consistency of the method and the flux relatd@.&8) becomes,

[[nB”éul]] — <n311> [[éul]]. (3.28)

Nevertheless if the numerical flux (3128) ensures the ctarsiy of the formulation, the
compatibility (continuity) between elements is not guaead. This requirement can be ob-
tained in a weak way by the introduction of an extra term infline,

<E|’16U171> [[U]_]] . (3.29)

As the exact solution of the problem is continuofig; [ = 0), this term does not modify the
consistency of the problem. It has to be mentioned that akpressions can be chosen to
ensure the compatibility but the terin (3.29) allows to abtaisymmetric formulationi.g.
stiffness matrix is symmetric) and an optimal convergeiate.r

Finally, as it is well known that, for elliptic problems, sua formulation is unstable, the
method is stabilized by introducing a quadratic term in thearical flux,

ot P27 ) foun] (3.30)

For the exact solution this term is equal to zero so conssgteinot modified. In this ex-
pressionh® is the characteristic dimension of the element allowingréepect of the dimen-
sions. Furthermord, is a non dimensional constant, whose value has to be sufficiarge

to ensure the stability of the problem as presented heravbielGection 3.22. Pratically,
the stability is generally ensured as longfasis greater than 10. Such an introduction of
interior penalty term is usual for discontinuous Galerkiethod applied to solid mechan-
ics, [16/97]. 140, 182] among others, and allows ensuringlgga Although the DG method
is now slightly dissipative, this does not impact on the nuoad accuracy as the method re-
mains consistent and converges toward the solution withpdimal rate, see Sectidn 3.2.2,
contrarily to methods using only a penalty coefficient. Tussr parametgs, is independent
of the mesh and material properties and is without dimengtotlowing these developments,
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the mathematical fluxes related to the E@s. (3.23), (3.2d)(225) are,

> ng'1du | L
Bzhfh> ﬂéul]]> . (3.31)

- Z <<rﬁsll> [3(—uz1)] + <%5(—U3,11)> [—us1]

=3 ( (ne™) [Bus] + (Ehduy 1) [us] + [us]
2

z 115 —Uu3 1 —>

e

+[~uga] <311§f> [8(— u371)]]> and, (3.32)
z IBl (—5U3)} le —
- (1ol (5 e ) K300 ) 339

aslg! = 0 (Euler-Bernoulli assumption) in the relatidn (3.33), whicplies that only the
stabilization term remains in this equation. Let us note tth@asymmetry in signs of relation

(B:33) results from definition (3.6). Finally, after intnacing the Eqs.[(3.31). (3.82) arid (3.33)
in (3.22), the weak discretized form of the problem becomes,

a(u,du) = Z/l [ﬁde-6u+n5116u1,1+rﬁ3116(—u;5711)} dx
e e

h
) fou

+ (g™ [3(—us1)] + <%5(—U3,11)> [—uz1]

The relation[(3.34) shows that a DG framework can be easiggnated in a CG FE code.
Indeed the integral part of (3.84) is exactly the same as tigead a CG formulation of the
problem with, as differences, the computation of a sum oerfate elements which can be
easily added in the FE code. For more convenience in furtaegldpments the relation (3]34)
can be expressed in the form,

+ Z (<n311> [dus] + (Ehduy 1) [us] + [ua] <

(3.34)

Structural terms- DG terms= 0, (3.35)

with "Structural terms” and "DG terms” respectively theegtal part and the interface sum

part of (3.34).
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Furthermore, if continuous test functions are used forldcgment (ie the elements are
continuous)[du;]] = [dus] = 0, and the equation (3.84) can be simplified as,

a(’u,75’u,) = Z/I [551'1',5’11, + I’]Blléul.,l + rﬁallé(—U&ﬂ)} dx
e e

+ Z ( gt [8(—uz1)] + <¥6(—U3,11)> [[—u371]]>
+ [~ug] <[311§23>H du3 1]]) (3.36)

The pending part of this last equation is identical to thevipiesly C/DG formulation sug-
gested by G. Engait al. [91]].

3.2.2 Numerical properties

In this section the numerical properties of the weak formoia(3.34) are studied in the
particular case whena,; andupz are polynomial approximation of degrke> 1 in each ele-
ment and are discontinuous between elements. The assbeidteal displacements have the
same properties. It is demonstrated that the frameworkfesitwo fundamental properties
of a numerical method: consistency and stability. This des is demonstrated if the param-
etersf1 andf3, are large enough, and 8 is non zero. The convergence rate of the method
in the energy norm with respect to the mesh size is proved teqgoal tok — 1, with k the
degree of the polynomial approximation. Finally, optinsahvergence rate in tHe?-norm is
demonstrated for at least cubic elements. Afterward, saimgenical examples are presented
to illustrate these properties. In this section we assdume- duz ; = 0 at the beam extremities
as we consider Dirichlet boundary conditions.

Consistency

To prove the consistency of the method, the exact solutiohthe problem is considered.
As this exact solution ig2([0; L]), this implies[u;] = [us] = [us1] = 0, and relation[(3.34)
becomes,

> /| [Pgi - Su + ng™duy 1 + Met?(—ug 11)] dx (3.37)
e e

+3 ((ng™) [Bus] + (mig™) [8(-us.1)]) = O. (3.38)

Integrating by parts on each elementnad! andnig!! of the exact solution are continuous,
leads to,

L
/F)Bii-éudx—/ nBléuldxand /mB —Ouz1)dx = O. (3.39)
0
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The arbitrary nature of the test functions leads to the tvloviong equalities,

ngl = Pgli1in[0;L] and, (3.40)
Mgy = pglizin [0;L]. (3.41)

These two equation§ (3140) ard (3.41) correspond to thagsfarmulation of the problem
where the shearing is neglectdg'(= 0). Thus the consistency of the method is demon-
strated. This property implies that the exact solutiosatisfies[(3.34), which provides the
orthogonality relation,

a(up—u,du) = a(up,du) —a(u,du) = O. (3.42)

whereuy, is the FE solution.

Stability

The demonstration of the spatial stability is performedarmal quasi-static assumption.
Therefore the inertial term is not considered in the follogvi To study the stability and
convergence rate with respect to the mesh size of the frarkewn energy norm has to be
defined. If constrained displacememtsind directions of the mid-surfacg; are assumed to
be equal to zero on boundaries then the following energy reambe considered for a field
u discontinuous between elements,

BzE

Il o, Y o[
L2(|e) S L2(S)
2
ER? ER
+> 6(—U3,11) +> Bl < [(—uz1)]
€ L2(g) S L2(9
BsEh
+Z ST , (3.43)
L2()
where,
J_ Ha — [ #a?dl and, (3.44)
L2(le le

Z‘ H\/_[[ ]]‘ L2(dle) (3.45)

The expression (3.43) defines a norm|ga||| = 0 only forw =0 on [0;L]. This is
demonstrated in the following way: jifju||| = O then each term is equal to zero. So on each
element the derivatives, ; and—uz 11 are also equal to zero, which implies thatandus 1
are constant on each element. Moreover, as jumps are eqeatd®n the interfacay;, us
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andug 1 are constant of0; L[. Finally, the boundary conditiong = 0 andtz 1 = 0 imply
Uy=U3=U3z1=0 on[0;L].

To demonstrate the stability of the framework an upper amaval bounds of the bilinear
form (3.33) are needed. Both bounds are established in AppBnd.1 and[A.3.2 and we
report here only the final results. Therefore an upper boditiaedinear form is given by,

a(u,du)|* < C"™(B1,Ba) ||leel||?]]3w]* (3.46)

whereC”%(By1,B,) is a number larger than mék (CX)2/Bq), with CX > 0 are constants de-
pending only on the polynomial degreewf In caseu = uy, the degred is the degree of the
polynomial approximation.

A lower bound of the bilinear form is given by stating thatrexist 0< €1 < 1 and
O<er<l,

alu,u) > (1-€2)) \/_hullH +(1-e)y Ell';usn
) © L2(le)
! (1_ Z(nggj))z) Z % " L2(ale)
2
" (1_ Z(Cell(fgll))z) Z EZThBS:L [[U371]] L2(dle)
2
%Z \/ﬁﬂ“ﬁ oy (3.47)

Taking into account the bounds, the spatial stability ofrttethod is directly demonstrated
from relation [(3.41). Indeed by definition of the energeticm (3.43),

2
2 ER ER
llull® =5 |[VERuw,| Lz<|e>+ZH‘/§u3’“ Bl s [u 31]]
€ e L2(le) L2(dle)
1 BZE 1 BsEh
22 il +52 W aa e 3]] (3.48)
L2(dle) L2(dle)

Comparing the right term of equatidn (3148) to the right tefraquation[(3.4]7) leads to,

a(un, un) > C(B1,B2) || Junl||?, (3.49)

where there exist€(B1,B2) > 0 as for given < €1 < 1 and 0< & < 1 there always exist

B1 > 2G)° andB > A 25)2. This shows that the stability of the method is conditiongd b
sufﬂ(:lently large constarft; and3,. Both depend only on the degree and type of element
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through respectivelyl'l‘ andC‘g which can be determined following the work of P. Hangho
al. [1186]. Note that Eq.[(3.49) does not imply stability conalits on the paramet@g as long
asfz > 0. Furthermore, in this equatioa(un, un) corresponds to the work of internal forces
while C(B1, B2) |||unl||? is the internal energy of the system. Therefore, due to thedd@s,
the internal energy is not equal to the work of the externadds, however the difference is
negligible when the FEsolution has converged toward thetisol.

Convergence rate in the energy norm

In the following the error between the FE solution and theypommial interpolation of
the exact solution is calculated to establish the convegeate in the energy norm of the
method. First some definitions and assumptions are givensi@amu the exact solution of
the problem and.X its FE interpolation defined bfb" (u—uX) - Supdx= 0. Furthermore, the
errors on the exact solution and on its interpolation arpeetively defined by = up — u
andek = u, — uk.

The demonstration follows the procedure described in AgpéA.3.3 so only the final
result is given here,

||| < C(B1.B2.Bs) Y ™ ulpeisg, - (3.50)
lisall )

Thus, the order of convergence is one order lower than theedegf the polynomial ap-
proximation, which is consistent with the presence of higtier derivatives in the governing

equations[(3.34).

Convergence rate in the [>-norm

The convergence of the solution in thé-norm is demonstrated under the assumption of
a proper elliptic regularity of the problem.

As well as the convergence rate in the energy norm, the deinatios of the convergence
in theL?-norm is presented in AppendiX A.3.4, so only the final resuifiven here,

S CH** fuf e if k> 2

_ ] 4 3.51
lellizgy =< S CH?[ulyay, if k=2 35D
e

The relation[(3.511) demonstrates that the method has amalptbnvergence rate kw1 for
at least cubic elements.

3.2.3 Implementation

This section describes the implementation, in a home-m&dRware written in python,
of the Eq. [[3.3¥). Although the shell element is implemernited C++ code-based on Gmsh
software [105], which allows to investigate industrial plems, we implement separately the
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beam elements to facilitate its understanding. The eleangstiffness matrix and internal
forces are described as well as the Gauss quadrature riddstasntegrate on elements.
Notice that in the case of beams the interface between twoddaeiments is just a node and
there is no integration on this interface contrary to pkdtell elements for which a Gauss
integration on a line is required on the interface.

The discretization of the beam in elements is representée@iB.3. To prove the inde-
pendence of the method to the elements order, we implemedtatic (3 nodes) and cubic (4
nodes) elements. It has to be mention that using linear elen®impossible with the devel-
oped approach as the second derivative of the shape fuasdctaeeded for the computation
of the bending contribution.

—~@—© 0 > @ > @0 0 0o o0 oo @ o0
X L X L
(a) Beam meshed with quadratic elements. (b) Beam meshed with cubic elements.
T @ © ® T @00
-1 0 1 -1 0 1
(c) Isoparametric quadratic elements. (d) Isoparametric cubic elements.

Figure 3.3: Beam meshed with quadratic and cubic elementscifties represent the nodes,
the filled ones are at element boundaries while the otherssept internal nodes. The Gauss
point used for the numerical integration are depicted bgses.

Isoparametric elements are considered (see Figs. 3.34¢3.8(d)) to perform the Gauss
integration. Therefore the displacement and virtual dispinent are approximated on each
element respectively by,

up = Néufand, (3.52)
dun = N&duf, (3.53)

where€ is a node of the element atdrepresents the traditional Lagrangian shape functions.
These functions of the curvilinear variatfez [—1; 1] are continuous on each element. The
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derivatives of the unknown and virtual fields are mandatory,

upy = &Néuﬁ, (3.54)
upyy = (§>2N§Euﬁ, (3.55)
Suny = %(Nééuﬁ, (3.56)
Supyy = (g—i)szizéuﬁ, (3.57)

(3.58)

Wherea = 0 is taken into account for the computation of second devizatindeed, as a
element of lengtlh is represented by an isoparametric element of length 2 itbescby,

X—Xeft

£ = 2 1, (3.59)

le
wherexett IS the position of the left nodes of the element if the origitaken at Ieft of the

beam (see Fig$é. 3.3[a) and 3.3(b)). Therefore the Jacobthe substitution:: az =t 2 and the
derivative of this Jacobian is equal to zero.

In the following we give the expressions implemented forhetzm of Eq. [(3.34) sep-
arately in terms of the general reduced stresses: (3.12) andmg!! (3:5). The thickness
integration to obtain these terms can be computed andlytita linear elastic material is
assumed, or can be evaluated numerically from a 3-point &muadrature rule. Such a
rule (in place of a Gauss one) is generally applied[[70[18%] ih thin bodies formulation as
it allows to have an integration points at lower and uppen skithe beam.

The three elementary bulk terms (inertial, membrane andlibgrterms) of Eq. [(3.34)
can be easily computed using (3[52-3.57), and an integratiocGauss pointg of weightwg
reads:

e Inertial term:

z/ ait- Sudx = | BN (N (- Su
= Jle

-3 { /_ 1580—)(N5(E)N“(E)diu£] - Suk

= 3 (M) sur, (3.60)
e
where,
N€ (£g)NH (&) 0 0
MPH — §p [ 0 NE (Eg)NH (£) 0 ] , 3.61
%psax 0 Y07 NeEEgNE(Ey) (361

is the elementary mass matrix per unit width.
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e Membrane term:

Z/I ngtt(x)8up 1 (x)dx = Z/ L(x)NAdxduf!
-3 / (8)dedut

= zF.E?n“ Sut, (3.62)
e
where,
be K 11 Ne (&)
Fptn = ) Wgng (&g) 0 ) (3.63)
g 0

is the elementary membrane internal forces vector per udihw

e Bending term:

/ migt(x (—dug 1) dx = / g M (X) N, (x) dxdUfy
le
0¢ .
= _Z/lax 11 ;g(ﬁ)dE&in
= S Fy - Sut, (3.64)
e
where,
0¢& 0
Fiy = —YWog me''(Eg) | O | (3.65)
9 X NEE(EQ)

is the elementary bending internal forces vector per urdthvi

The implementation of the interface part of EQq. (3.34) reemithe computation of mean and
jump values at interface. This computation is performetb¥ahg the convention depicted
on Fig. [3.2 and the quantities are evaluated at interfacekthéo an interpolation of the
displacement field i§ = —1 and¢ = 1, respectively, for minus and plus elemerits.(the
guantities are not extrapolated from their values at Gaosgpof the elements). Defining
the interface virtual field as,

s ou~
ou> = { Sut 1 ) (3.66)

the different interface contributions ¢f (3134) are congglias follows:
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e Consistent membrane term:

1

Y (ne™00) (8w = 3 5 (ne' (~1)+ et (1))

(Nf”(-l)éu“+ - N“‘(l)éu‘l‘_)

= z Flnt consn 6usui (3.67)
S

where,
C R (1) ]

0

+ 1 + - 0
Flntconsnu = E(nBll (_1)+nBll (1)> NHF(-1) | (3.68)

0

0

is the elementary membrane consistent internal force®rpet unit width.

e Compatibility membrane term:
Eh _ _
Y [l (ERuy) = 3 = (NS (-Duf = NE (1)
S

S

N -
(ﬁ N"+(—1)6u’1‘++a— N”_(l)éuf_)

ox & ox &
= sztcompn 6usui (3.69)
S
where,
98~ i
0X N,Ig (1)
0
+ Eh _ _ 0
Flntcompnu = ?(N€+<_l)u§+_N£ (1)u§ ) 65+NH+ 1 , (3.70)
ox £ (_)
0
L 0 -

is the elementary membrane compatibility internal foraaster per unit width.

e Stability membrane term:
2 lu 1]]<Bth>[[6 ] = BZhEh(N€+( D" —NE ()
(N (—DBuy ™ N (1))

= ZFmtstabn -Su, (3.71)
S
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where,
—NH—(1)
0
pn=E Bth _ — 0
Entstabn = hs <N£+( 1)U§+—N£ (1)U§ ) Nu—i—(_l) (3-72)
0
L 0 -
Is the elementary membrane stability internal force vegasrunit width.
e Consistent bending term:
~ 1, . ~ 11
Z<rn311(x)>[[—5u:371]] = _Zi(m811+( 1)+m811 (1))
S S
oc " 0&‘ _
(5( N%™( 1)6ug+—a— (1)duy )
- ZFlgfc'consmui‘ Sus*, (3.73)
where,
_ 0 -
0
08 \ -
+ 1, . ~ 11— N (1)
Flntconsmu - §<m811+(_1)+m811 (1)) x 0E ) (3-74)
0
08 T\ u+
—a N (=1) |

is the elementary bending consistent internal force vgmounit width.

e Compatibility bending term:

En Eh® (08" 08~ ~
ZH—U371<—§5U311>H = Zﬂ(G_)E( N§+(—1)Ug+ ai NE (1)U§ >

2
0¢ _
( a—E ) N (— 6ug++<£( ) N (1)0u5 )

Fmtcompm '6 sHk (3.75)

/\
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where,

+ Eh® [ 0F 08~ o N
Flntcompm“ = <_ N£+(—1)U§+—— NF (1)U§ )

ox % ox <
] . _
0
(%) Ne )
o & : (3.76)
0
0
0
(&) Ny

is the elementary bending compatibility internal forcetee@er unit width.

e Stability bending term:

ER Eh?
Zﬂ_u&lﬂ@llms >[[_6u3’1]] N 811215
NF* s g_Ng(l)@)

7 ax 7E
= T sushE (3.77)

|nt stabm

/\/xm

az* 05~ . _
NET(—1)8u5™" — == N4~ (1)3uf )

where,

- B:ER® [0E™ 08~ e o
Flntstabmu = 1o <0_X N§+(—1)U§+—a—x NE (1)u§

0
0

08~ \jH—
— N (D)
O Y
0

08 T\t
6_x NE ( l)

(3.78)

is the elementary bending stability internal force vectar ynit width.
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e Stability shearing term:

h h _
ZH 3H< fiEv)hS>[[6u3]] - Z 2 fiEv hs( DU N )
<N“+(—1)6u’3‘+ - N“—(l)aug“)
= Z Flnt staba 5usui (3.79)

where,

0
0
pt BsEh _ _ —NH(1
Flntstaba = m<N€+<_l)u§+_N£ (1)U§ ) 0 ( )
0

(3.80)
is the elementary shearing stability internal force veptarunit width.
The assembled form of E4._(3134) can be obtained using Eq&I{E80),

0 = Z Z < |ntn"f‘ int b) + Z <Entcon5n+ ntcompn+ Flntstabn

+ Fmt consm™ Flnt compm"’ Fnt stabm
+ Fmtstaba) : (3'81)

If the inertial forces are equal to zerbeg( w = 0 and the problem is static), the statement
(3.81) can be solved alternatively from the expression,

KM = 0 (3.82)

with an appropriate application of boundary conditionghwk * the ! line of the matrix.
This last form considers the stiffness matrix of the probtkat can be computed in the general
case from internal forces by numerical perturbation or @ sammputational time determined
analytically from the material law. Therefore we presenthe following the expressions of
elementary stiffness matrices relying on the linear planess elastic behavior presented in
Sectior3.1l. To achieve this, we first formulate the valuénefresultant stresses as,

aE NE(EQ)
(&) = Ehuwi(8g) = Eho 0 -utand, (3.83)
0
0
. Eh3 ER /0
mgll(zg) = —§U311(Eg 17 —i) HO ~ut. (3.84)
N% (Eg)
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Then the elementary bulk stiffness matrix can be computenh ftheir respective internal
forces as,

e Membrane term from Eq.[(3.63}>¢, is the elementary membrane stiffness matrix
per unit width):

g
[N‘g@g)] [N§<zg>]
= ngEh— 0 ® 0 (3.85)
0

e Bending term from EqHBBSKmtb is the elementary bending stiffness matrix):

ane I E 0 0
Klkr)](tabuﬁ _ intb  __ ( — < ) |: 0 ] u’ |: 0 ])
ot~ AN N% (89) N% (o)

0 0
_ & 0 ] & [ 0 ] . (3.86)
Z 9 12( ) [Nfgz(ig) NS (Eg)

The implementation of the interface stiffness matrix is emoomplicated as we have to
compute"% To perform this operation and defining = { Z+ } , We suggest to divide the

matrix in four blocks,

KsH & Ksm&r
s _
K = [ KSIJI+£7 KSIJI+£+ . (387)

e Consistent membrane term from Eq__(3.6&% .. is the elementary membrane
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consistent stiffness matrix per unit width):
bs n*
K_bs prEr _ aFintconsn
intconsn a’U,Ei
I N
o [en[|&xNg (D
T o |2 0 o
0
—NH— (1)
08~ N 0
x Ng (D | - 0
B '“ NH+(—1)
0 0
- O -
_ - [ 9\, T
—NA~ (1) a—f( Né (1)
0 0
Eh 0 0
= — 3.88
ox 8
0 0
. 0 ] 0
e Compatibility membrane term from Ec[(EI?CK'ﬁfcompnis the elementary membrane

compatibility matrix per unit width):

+ v+
Kbs I S aFiE?compnu - 0 E_h N (g
intcompn out” T uE 2 0
Gt
o N
Nv=(1) o
O "U;V_ + O
o0& +
0 o N
0
0
08—\ p— T _
& NET(1) CNE(1)
0 0
- E_h 0 2 0
70 O

(=1)

(3.89)
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e Stability membrane term from Eq_(3172PS ., ,is the elementary membrane stabil-
ity matrix per unit width):

* N¥* (-1
Kbs prer aFigtsstabnu _ 4 B2EN (() ) Luvt—
intstabn oué” ué* hs 0
CNE(1) T
Nv=(1) ] X
o | ) [ty
- 0
- o -
N ] [N ]
0 0
_ B2Eh 0 0
- hs NA+(-1) ® N€+(—1) (3.90)
0 0
- O - _ O -

e Consistency bending term from Eq_(3. 78 ... miS the elementary bending con-
sistency matrix per unit width):

_ 0 a
+
Kbs prer aF’igtsconsm“ _ 0 _Ehs 0 v
Intconsm au£i augi 24 aa+ 2 V+
i (& ) Nge (=1) |
- 0 i
0
0 _
i -
+ 0 ‘uuf ox NE (1)
N2 0
0¢
(% ) Nz 0
0F Tt
| Ne (D)
. 0 - 0
0 ?
N &~ '3
ER | % NET(Y) (& ) NS (1)
= = / ® (3.91)
24 0 0
0 0
_ N () oE T\ % &
L ox ¢ 0 (& ) Ngz(_l) |

e Compatibility bending term from Eq.[(3I76)KP3

ntcompm

is the elementary bending
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71

compatibility matrix per unit width):

bs pE
Kbs prer _ aFintcompm _ 0 Eh?
Int compm augi augi 24
0
0 e
a_ —
& NY (1)
_ 0 .
0
N2
a _
_Er] (&) Ng@ |
24 0
0
252
(&) N

0x

g-ﬁ-NEwL

3

(=1)

(3.92)

e Stability bending term from Eq.(3.V8HPS .o miS the elementary bending stability

matrix per unit width):

BER

+
bs Migi _ anS 124 B a

intstabm
Kint stabm - ausi

oué” 12ns

5 Ny

_ B.ER —&_Ng_(l)
12hs 0

98t ut
TN (-)

08 T\ v+
x N

_0g
o0x

9t
» N

0€

0x

0
0
3

0
0

&+
75

0
0

€

0
0

72
0
0

’E

: (1)

(=1

(=1)

N (1)

0 +
EINET(-1)

(3.93)
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Figure 3.4: To prescribe boundary conditions on rotatiotual elements (dotted line) are
used.

e Stability shearing term from EqﬂEBOKﬁ,?stabais the elementary shearing stability
matrix per unit width)

KDs pEEE _ (‘,Fiﬁtsstabalii _ 0 BsEh 8 uvVt—
intstaba duEs oué” | 2(1+v)hs N¥+(—1)
. 0 h
0
0
NI
0 ub™ N 0 (1)
N (1) :
[ et () |
_ O - - O =
0 0
_ BsEh —N#—(1) —N&— (1)
2L )P 0 ® 0 : (3.94)
0 0
| NFF(=1) | [ NSF(=1) |

To finish this part on the implementation of the full-DG forfaion of beams we briefly
discuss the application of boundary conditions on rotattosimulate e.g. a clamp. Indeed,
the one-field (displacement) formulation suggested heteas not allow to apply strongly
such a condition. Therefore, we prescribe the boundaryitond on rotation weakly using
an interface element. This interface element considerstaaVielement situated in the con-
tinuation of the beam as shown on Fig.13.4. The rotationahdaty conditions can then be
applied by prescribing the displacement field of the virelament. For example a clamp can
be simulated by fixing all the displacements of the virtuahetnt to zero. It has to be men-
tioned that for more efficiency this last case is implemenmtetthe software by removing all
nodes of the virtual elemenité. only the components of the interface element corresponding
to the "not virtual” element are computed and assembled).

Finally in the vectorial and matricial equations presenteds fixed to zero.
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3.2.4 Numerical benchmarks

Some simulations are performed with the weak formulaficB4Bto demonstrate its abil-
ity to simulate continuum mechanics. In particular we corahis full-DG formulation with
theC%DG one presented by G. Engat al. [91] and with analytical values. The results of
both formulations are in agreement with the analytical ceas the full-DG formulation is
as accurate as th@’/DG one. We study first a double clamped beam loaded uniformly
a quasi-static way. Then two dynamic examples focus on tlesstvave propagation as it
is an issue of the recourse to intrinsic cohesive law. On timdrary, it is proved herein that
the full-DG formulation developed above does not affectdiness wave propagation and can
thus coupled to an ECL.

Double clamped beam with uniformly distributed loading

The numerical properties demonstrated in Sedfioh 3.2 lsrihited on this example. It
shows that the convergence rate of the solution with respegbe mesh size is in accordance
with the theory and that the results are as accurate as tiseotm@ined with th€°%/DG  for-
mulation previously developed by G. Enggtlal. [91]).

The example consists in a double clamped beam (DCB), whoseiat@ed geometrical
properties are given in Fig._3.5 and Tdb.]3.1 respectivelpnstted to a distributed force
p =4 [kN/m|. This force induces a displacement field described analjjtiby (seel[158]),

w(Eh) = — 24E_| (3.95)
=3
= @6 66
s K p 3
T bt daalababab il el] o
< A T L L T T //»\‘Q
i L = 1000 [mm] °©

Figure 3.5: Geometry of the numerical benchmark used to dstrette the numerical proper-
ties of the full-DG method.

This case is simulated with quadratic and cubic elementslifterent mesh sizeshf)
ranging from 1000/4 to 1000/256 [mm] and different stalbilian parameter values ¢
ranging from 5 to &°

The choice off33 results from a study of the convergence of the normalizecedédin
with respect toBs, which depends on geometry, as illustrated on Higl] 3.6hfor 1/64,
B1 = B2 =10. On Fig. [3.6(a), the benchmark presented herein is afsolaied with a
thickness of 100 [mm] (in place of 10 [mm]). It appears thathbconvergence curves are
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Property Value
Young modulus [GPa] 10
Poisson ratio [-] @1

Density [kg/m?] 10000

Table 3.1: Material properties of the numerical benchmaeduto demonstrate the numerical
properties of the full-DG method.

10° ‘ 10 o— ‘ :
O h=10 [mm] O L=100 [mm]
% h=100 [mm] % L=1000 [mm]
T — Analytic T — Analytic
— 2 —
v_'x 10 * v_'x
© © 1
35 35 10'% (@)
=R o)
w 100 * i}
< <
[ee] [ee]
™ ™ * o
O *
10° Qo % ® R 9 10° i&%;
10" 107 ° 10° 10° 107 107 ° 10° 10°
4 4
(a) Effect of thickness. (b) Effect of length.

Figure 3.6: Convergence of the normalized deflection witheestofs for different geomet-
rical parameters.

exactly the same but are scaled by a factor 100. Therefaresahvergence witBs depends

on the geometry. To remove this dependerfiyhas to be multiplied by a factdih/L)?.
Indeed, when the height is divided by 10 the minimal valu@pfvhich gives a converged
solution is divided by 100. Furthermore, the same study earehlized by varying the beam
length, as presented on Fig. 3.6(b), which shows than Whsrdivided by 10, the minimal
value off33 which gives a converged solution is multiplied by 100. Theslts show thgbs
should be equal t@;/(h/L)? to produce results independent of the geometry. In this work

unless specified otherwise, we chofse- %) (E)2 which avoids ill conditioned matrix. Note
that as this test is in pure bendfhdhere is no displacement alogg (i.e. u = 0) and the
value off3, does not modify the results in this case.

For illustration, the normal deformation, obtained fiar= 100, is plotted on Fig[_3]7.
This figure contains four graphs depending on the type of ehtsn quadratic elements and a
CY%DG formulation, Fig[3.7(&), quadratic elements and thledG formulation, Fig[3.7(h),
cubic elements and @/DG formulation, Fig.[3.7(¢), and cubic elements and thé R
formulation, Fig.[3.7(d). These graphs show that the cajamre (less than 1% error) is
achieved for respectively 100, 192, 128 and 168 degreesetiém for quadrati€®/DG ,

4As shearing is neglected in Euler Bernoulli beams
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384EIl5/P
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(b) Quadratic full-DG.
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max

384EI6/P
384EI6/P
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x/L x/L

(c) CubicCY/DG . (d) Cubic full-DG.

Figure 3.7: Convergence of deformation is the same for 888G and full-DG formulation
no matter the element type.

quadratic full-DG, cubic€®/DG and cubic full-DG elements. Therefore, it demonstrétas
the analytical solution is very well approximated for bottgcees of elements and that the
full-DG formulation gives the same results as @¥DG method.

The convergence of displacements with the mesh size is esizgladaby Fig.[ 3.8, which
plots the normalized maximal deflection of the beam: for gatid elements wittC%/DG
formulation Fig.[ 3.8(d), quadratic elements with full-D&@mulation Fig.[ 3.8(h), cubic ele-
ments withC%/DG formulation Fig.[ 3.8(¢) and cubic elements with fulG@ormulation, Fig.
[3-8(d). Furthermore, this figure shows that for any ordentsrpolation and fop; > 5, both
C%DG and full-DG methods are stable. However for valueBof 1€° (quadratic elements)
andf31 > 1000 (cubic elements) both methods suffer from locking lfer finer mesh, which
leads to low convergence rate in thé&-norms. From these graphs, it appears that as long as
the stabilization paramet@i remains in a rather wide range [5-1000], numerical accuc@cy
the method is ensured. Same behavior was observed foratitfapplications of discontinu-
ous Galerkin methods for solids [182,184] and for shell[185], which allows concluding
that this range is non-dependent from the problem underderadion.
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Figure 3.8: The accuracy of the method is ensured for a widgerd5-1000] of stability
parameter$ as illustrated by the convergence of the maximal deflectith Mspect to the
mesh size.

The convergence of results with the mesh size is demondtfiaten previous figures and
the convergence rate is studied on Figs] 3.97and 3.10 résglgdor theL? and the energetic
norms. Once again, this study is performed for differeninelst types: quadratic elements
with aC%DG formulation Figs[3.9(3) arid 3.10(a), quadratic eletmevith a full-DG for-
mulation, Figs[3.9(h) ard 3.10[b), cubic elements wit’DG formulation, Figs[ 3.9(t)
and[3.10(d), and cubic elements with a full-DG formulatibigs.[3.9(d) and 3.10(d). These
figures illustrate that both convergence rates correspoiitbse predicted by the theory, un-
less locking or numerical accuracy for low errors preveatheng this convergence rate. In
particular, the convergence rate in th&norm is less than expected for the thinnest meshes
due to the smallest of the relative error (around®@which is too small to continue to obtain
the same convergence rate. Moreover, the convergence thili>-norm is ink+ 1 even for
quadratic elements, while the theory predicts a convergeate only irk. This observation is
in agreement with what was shown by L. Noetsal. [185] and by G. Wells[[257] fo€%/DG
shells. One more time, the two figures show that the sametsesnel obtained by the®/DG
and full-DG methods.
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Figure 3.9: The theoretical convergence rate inltherorm is observed for the DCB numeri-
cal benchmark.

Finally, Fig. [3.11 illustrates the condition number of thiffrsess matrix with respect to
the number of elements and for different values of parare@di3> = B1 and3z = 1003,).
The condition numbers depict on the figure are divided by thedition number of the el-
ementary bulk matrix to be independent of the material arahgry. Moreover, they are
reported for bottC%DG , on Figs.[3.11(&) ar[d 3.11}c), and full-DG, on Fifs. @j}and
[3.11(d), formulations, as well as for elements of degreeids.3.11(d) anfl 3.11(b), and el-
ements of degree 3, Figs. 3.11(c) and 3.71(d). These grapksthat the condition number
is approximately the same for the two formulations and the degrees of element. Further-
more, for all the cases, the condition number increasesthétlfiourth power of the number of
elements and increases linearly with the paranf&te®o for large stabilization parametgs
an ill-conditioned matrix is expected. However, in the piced range 31 ~ 10), the condition
numbers remain satisfactory, which justifies the use ofilgiaparameters as low as possible
for quasi-static cases.
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Figure 3.10: The theoretical convergence rate in the etiengerm is observed for the DCB
numerical benchmark.

Stress wave propagation

The main drawback of an intrinsic cohesive approach (seedB&Z.2.1) is a perturbation
of the stress wave propagation through the elements duestertforcement of continuity
thanks to a penalty parameter. Despite of DG methods argdanigenalty methods, they
remain consistent and we illustrated in this section by twmerical examples that a correct
stress wave propagation is observed for our suggested Didoohet

The stress wave propagation is obviously a dynamic phenomand therefore we use in
this section the explicit central difference algorithm831to solve the set of Eqsl_(3.8) and
(3.142). Although another temporal integration can be usedelect this one for its simplicity
of implementation. Nevertheless, this one is conditignalaible and a time step lower than
a critical valueAtci; is required to solve the problem. The valueXif;i; depends on the
higher natural (numerical) frequency of the model. As the mé&thod uses discontinuous
elements, it introduces extra numerical frequencies g@eeby the stability parameters. L.
Noelset al. [184] studied the variation of maximal natural frequencyhwiespect td3; for
theirC%/DG method. They demonstrated that thtg should be divided bx/ﬁ to ensure
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Figure 3.11: Satisfactory condition number of stiffnesdriras observed for low values of

B1.

the stability of the algorithm. Such a study is performedeireon the stability parameters
to show the relation remains valid if we consider the maxinale of3;, 2 and33. We
focus on a beam depicted on Hig. 3.12, with the same dimesaioth material values than the
one studied in Sectidn 3.2.4 but with a different boundanydition as this time it is simply
clamped. We compute fd3; = 32> = 0.1 and different values dd3 the natural frequencies
of the beam meshed by 20 quadratic and cubic elements anthplataximal frequency on
Fig. [3.13. Obviously as there is more degrees of freedom thélcubic mesh, the maximal
frequency is higher but it remains constant ufigl= 1e* and andpz = 1€’ respectively
for quadratic and cubic elements even if very small valuescansider for other stability
parameterf; andp,. Therefore, in the practical range[®f, this has no effect on the maximal
natural frequencyie. the additional frequencies governed ®yare lower than the maximal
value of theC%DG method) and its influence can be omitted for the compnadif the
critical time step. Nevertheless, for large valueef> 1€>, the maximal frequency varies
with respect td33 with a factor close of\/@ and therefore the relation is the same as for
stability parameterf1, 32. Indeed, the variations of the highest frequency with resfe3;
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Figure 3.12: Beam configuration to study stress wave propmagat
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Figure 3.13: The highest natural frequency is independefg an the range of interesting
values.

and[3; are respectively illustrated on 3.14(a) dnd 3.14(b). Imezase, the values of other
stability parameters are fixed tol0 Therefore we suggest to adapt the criterion of L. Noels
et al. [184] by changing the facto\/% by \/m—;—xﬁq This study confirms our assumption to

chooseB; = B,. In the following we us@; = B, = 10 andBs = £ (E)Z

With this criterion onAtqit, ensuring the stability of the explicit time integratiorgad
rithms, we can simulate the impact of the beam, whose mapoaerties are given in Tab.
3.1, with a rigid plane. To avoid the contact modeling, we admantageously perform the
simulation with the simply clamped beam depicted on [Fig.23.Ihdeed the rigid plane is
situated at the clamp.¢é. the last node is clamped) and we just give an initial veloalgng
the beam axis in direction of the clamp.

This setup generates a stress wave propagating from the ¢tathe free extremity and
then reflecting to return toward the clamp where a new refieadiccurs. The speed of the
dilatational wavecy = % = 1000 [m/s] controls the velocity of the stress wave given by
pcqVi, with Vi = 1 [m/s] the value of the prescribed initial velocity. Themef the evolution
with time of the velocity the free extremity represented ag. IB.13 gives an image of the
stress wave propagation. As the beam’s length is 1 [m], thewakes 1 [ms] to reach at the
free extremity where its reflection induces a change of thecity sign. Then the wave comes
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Figure 3.15: The stress wave propagation is unaffectedéoydbk of a DG formulation.

back after 2 [ms], and causes a new change of the velocity sign

The theoretical behavior is well captured by the simulatutth height quadratic elements,
Fig.[3.15(d), and height cubic elements Ffig. 3.75(b). Ef/érere are spurious numerical os-
cillations, the transition of the velocity occurs at timeaid 3 [ms] as expected. Furthermore,
as the problem is also simulated witlC&DG method, we can conclude that the stress wave
is not modified due to the discontinuity between the elements

Finally, we suggest a benchmark to study the stress wavegabipn in a beam loaded in
bending. The beam has initially a displacement of 4 [mm] rection E’3 at the free extremity,
and equilibrium is computed by a quasi-static analysis.nTthe prescribed displacement is
removed to have an initial unbalanced configuration at tigenioéng of an explicit simulation.
As the material is elastic, the beam starts to oscillateratdbe undeformed configuration
with a frequency corresponding to the first bending eigenemdtiis value can be determined
by a spectral analysis and is equal to2B[Hz] for the considered beam. The oscillations at
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Figure 3.16: The oscillation frequency (at free extremisyhot modified by the use of the
full-DG method.

the free extremity are studied on F[g._3.16 for the beam ntkslih height cubic elements.
Despite of a small error in the amplitude (due to explicit muital integration), the frequency
of the oscillations is well captured by the full-DG methodhigh gives the same results as the
CYDG formulation. Therefore once again the dynamic behagioot modified by the use
of discontinuous elements.

3.3 Extrinsic cohesive law for Euler-Bernoulli beams

This section introduces an original extrinsic cohesive based on the reduced stresses
(3.3) and[(3.IR) dedicated to the thin bodies. Afterwardstuely the accuracy of the method
on a benchmark. This one proves that with the DG/ECL comlmnatie are able to simulate
the initiation and through-the-thickness propagation ofaeck while respecting the energetic
balancei(e. the dissipated energy is equal to the fracture energy of titenmmal) for different
tension/bending mixed loadings.

3.3.1 Extrinsic cohesive law for thin bodies

We develop herein an extrinsic cohesive law based on theegistresses (3.5) ad (3.12),
which can easily be coupled with the full-DG method presgémeSection 3.2 as these reduced
stresses appear explicitly in the formulatibn (3.34).

As interface elements have already been introduced in thenBtBod, it is not necessary
to modify dynamically the mesh in order to introduce the ce elements, which is the
critical step of classical extrinsic cohesive approachBse cohesive elements "substitute”
simply the interface elements where the fracture criteroreached. Mathematically the
equation[(3.35) can be rewritten, as introduced first by Ygklgimet al.[157], as

Structural terms+ (1—as) DG terms+ as cohesive term = 0, (3.96)
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whereds is evaluated at each interface element and is equal to oherné tis fracture and
is equal to zero if this is not the case. For Euler-Bernoularbs, only the normal stress
component is different from zero and a fracture criteriotemsion can be considered,

max(c't) —a. > 0, (3.97)
23

where the operatofe) represents the mean value on the interface element and whete

fracture strength, is a material parameter.

The cohesive zone concept, initially presented by G. Baedh|@4], is based on the exis-
tence of a residual traction while crack faces are still inose& neighborhood. In this model
of perfectly brittle fracture, the traction represents pigsical inter-atomic attractive forces
which are exerted between atoms. After a given distakcthis traction falls to zero and
there is no force exerted between crack faces. In more dereses, the traction-separation
law represents physical phenomena happening in the praoess The application of the
J-integral concept introduced by J. Rice [215] leads to theeg# form of the cohesive term,

5 — /T-é(A)dS, (3.98)

with T the traction forces exerted between crack faces Anthhe opening between them.
In this chapter the normal to the fracture surface is equdli@s the linear assumption is
madée. Therefore vectord” andA have a non-zero component only along axis 1, which are
respectively noted andA in the following. Moreover, as the cohesive tefm (3.98) isaq

to the J-integral the area under the TSL must be equal to thgenf ruptureG., a material
parameter[[109], if the crack grows straight ahead, whicthéscase herein as the crack
growths through-the-thickness. So the two parameterseol 8L arec; andGc, the critical
opening valué\; being deduced from the traction-separation law shape,ige@ B(D).

As the focus is put on thin bodies where the thickness is witjglimodeled, it is not
straightforward to take into account a through-the-thedsfracture. A solution is suggested
by F. Ciraket al.[70], where the traction-separation-law is integratedsaheSimpson points
describing the thickness. As the TSL makes sense only fatidrg this solution is difficult to
implement in the general case when bending can occurs anugamabapproach considering
a traction-separation law based on the resultant stressegygested. The cohesive integral
(3.98) is replaced by the application of cohesive law on dwiltant membran(anBll> and
bending<rﬁ511> stresses, which are denotgh, andMcqp respectively after fracture is initi-
ated, leading to,

T-3(A)dS
b
whereA* is an effective opening, and where we have stated the expngssr unit width.

— Neon(A™)8([us]) +Mcoh(A")8([—uz]) , (3.99)

5The normal to the fracture surfaggin the current configuration of the interface element candmeputed as
suggested by F. Ciradt al. [70] by, v = % with v equal tovE = 75 At , wheret andT are respectively
the normal of the neutral axis and the tangent vector at tieefate element. For beam elements these quantities
E1+(u31) E3 ~ E.

are equal tot = E3 — uz 1 F1and,m = E», which leads toys = >
l+<U3‘1>
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(a) Resultant membrane law. (b) Resultant bending law.
Figure 3.17: Linearly decreasing monotonic cohesive lagetan reduced stresses.

What remains to be defined is the shape of the new T&LEA*) andM¢on(A*), as well
as the definition of the effective openidg. The conditions that should be satisfied are:

L] Ncoh — Mcoh — 0 WhenA* Z Ac,
e LawsN(A*) andM(A*) must be monotonically decreasing;

e Continuity in resultant stressebetween unfractured and fractured stage\at= 0
should be ensured. This is the cas@&ifn(0) = Neong and Mcon(0) = Mcong, Where
Ncoro @andMcorg are respectively the values @itt) and(mtt) at fracture initialization.

¢ At the end of the fracture process, the work induced by thesTSNcon(A*)d([us]) +
J Mcon(A*)d([—uz1]) should correspond toGe;

¢ In case of unloading during the fracture process a lineatyehsing law is used to have
Neoh = Mcoh = 0 whenA* = 0 as suggested by G.T. Camadehal. [63] (see Fig[3.17).

The relationdNcon(A*) andMcon(A*) can be determined experimentally, but in the case of this

6t has been demonstrated by K.D. Papoelial. [196] that if the continuity is not ensured between unfrac-
tured and fractured stages, convergence problems can occur
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work a monotonically linearly decreasing law is chosenltgstrate the idea,

([ Neoto (1— g_) if A < AF < A

NCOh(A*) = NCOhO AeT*ax . 2_’;) if AF < A;fnax< AC and, (3100)
| 0if A" > A

([ Meor (1— %) if A < A < A

Meoh(&) = Meorp (- - %) if A < A < A (3.101)
0if A" > A

whereAy, .« is the maximal effective opening reached during the sinaafThese curves are
illustrated on Figd. 3.17(a) and 3.17(b).

In order to define the effective openidg the simple pure membrane and pure bending
cases are studied. In these cases, the vstlwan be determined easily as the energy released
must be equal thG; whereG; = ACZGC. If the beam is in pure tension the energy released is

given by,

NCOmAC o ZhGCGC o
2 20

Ac
0 Ncoh(Al)dAl = th7 (3-102)
with A; the jump of displacement along x-axifu{]) and whereNcy = ho¢ as fracture
initiates when the tensile stre@‘ﬁg = %“ reachew.. This shows that in pure tensidyi = A;.

In the case of pure bending this energetic consideratiatsleathe following choice for
the opening,

N h
A* = éA,, (3.103)

with A, the opening in rotation given bf—uz 1] if the fracture is initialized for positive
bending Mcon > 0) and by[us 1] otherwise Mcom < 0). Indeed,

Are N q A 6 A* g )
/0 Mcon(A™)d [—ug1] = 0 iﬁMcoho(l_A_c) A
6 h%oc A¢
= 75 2 NG (3.104)

asMcong = ihzbf’c if the fracture is initialized for positive or negative bemgl respectively.

Indeed, fracture initiates when the tensile stress at b&amresache®.. For elastic behavior,
this is obtained whew = iﬁ—mﬁ = 0c. In the non linear case, ratly/6 can be computed,
assuming that the bending stress is equivalent to a tertsdsssapplied on an equivalent

thickness defined by,

Meconh|
hd = |L. 3.105
! hoc — Neon ( )
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Figure 3.18: The two components of the opening. The neutraisidrawn with a dotted line.

In elasticity, at fracture initiatiomski" = W + Neod — g, Thus, M = hoc — Neoh =
Mhlg%“—'. This implies that in the elastic cabg’ = 1, which is the value used in Eq.(3.03).

For combined cases (see Hig._3.18 for a view of the two opsiitige application of the
superposition principle gives the value st,

N = (1—n)A]+nihiay, (3.106)

where the parameter, has to be equal to zero if the loading is in tension only andcakqu
to one for a pure bending problem. This is ensured by choasiras the ratio at fracture
initialization between the bending part of stress and taetiire strengtlo,

|Mcoh’ /h|eq . Ncoh

ho. ho. (3.107)

In case of bending rupture, for a beam under tensipnyill be between zero and one, but in
case of a beam under compression, fracture can still happéngher bending stress. In that
casen, is larger than one. This definition & allows releasing an energy quantity equal to
hG for any coupled loading.

Nevertheless, as the DG method ensures weakly the contitiuére is an initial jump
before fracture and so at fracture initializatip = 0. To guarantee the continuity between
pre-fracture and fracture stages, the initial jump at frectnitializationdq is subtracted from
A,

1 = DA1—Agand, (3.108)
A = A —Do, (3.109)

which is the values considered in EQ. (3.1106) .
Finally, the use of relation$ (3.84) arfld (3.99) leads to the weak formulation of the
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problem

= 5 | [Pgii-Su+ngBur s+ Mgt '3(~uz11)] dx

le

+Z{ (1—as) (<n311> [du1] + (Ehduy 1) [[Ul]]+[[ul]]<

h
e o]

<rﬁBll>[[5(—U3,1)]]+<%5(—U3,11)>[[ U] +[— U31H<BlEh3>[[ 5U31]])

wldel (5 0l
+ Z ots (Neon(Atrue) 8 [Ua] + Meon(Afrue)d [—Uza]) - (3.110)

_I_

In this relationas is equal to zero before fracture initiation and is shiftecdbte when the
fracture criterion[(3.97) is met. Alsg is equal to one during fracture procesg.( while
A" < A¢). This DG term has to be kept until the end of fracture as tle@asghg continuity has
to be constrained even during the fracture.

3.3.2 Implementation

The implementation of the full-DG method presented in $&¢8.2.3 has to be slightly
adapted to integrate the cohesive law in the scheme. Indeedwtake advantage to the fact
that the membrane and bending cohesive tefms](3.99) haweilarsiorm than respectively
the membrand (3.81) and bendifig (3.32) consistency icetErms. For each time step the
fracture criterion[(3.97) is evaluated on each interfaqggén and lower skin). As long as
the fracture criterion is not verified nothing changes buewfracture is detected the initial
opening Q) is computed from Eq[{3.106) with,

= OE £+ £+ ¢ &— &
Bro= o Ne (=Dug =50 N (Dus | (3.112)

with the convention of Fig[_3]2. These initial values areestioto be used in the following
time steps. The initial effortdlsong and M¢org can also be computed from Eq4._(3.5) and
(3.12), respectively, and stored. After initializatiometvalue of\* is still computed from Egs.
(3.106) and[(3.108) and the valuesMfn andMgh are directly obtained from the cohesive
law (3.I00E3.10). These values are then integrated initesiway as the consistency internal
forces expression§ (3168) arld (3.74) where they replacenttan value ohg'! and nig!!
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leading to the expressions,

0

+ . 0
Fiﬁtscoh n” = Non(4") NHF(—1) | (3.113)

0

0

0
0

x NE ()
+

Ftconm = Meon(@) | & 5 , (3.114)
0

At ut
— 3 N,E (—1)

respectively the membrane and bending elementary inteotasive force vectors per unit
width. Notice that the similitude between these terms apd tonsistency counterpart, Eqs.

([@.68) and[(3.74) leads to a straightforward implementatidsing, Eqs.[(3.118-3.1114) in Eq.
(3.99) gives the implemented form of the cohesive term, tvhéads,

bs  HE b pt +
Z(Fintscohn + Fintcohm )'&UJSH : (3.115)

S

The values of other interface terms are not computed thartke Boolean values except
in case of negativA]. Indeed, a negativ&] means an interpenetration and the compatibility
and stability components can advantageously be used asctostms to ensuré; = O.

For a static case, the stiffness matrix of the cohesive tbamgo be defined. This one can
be computed analytically for the monotonically linearlycdeasing law (Fig.[(3.17)):

e Cohesive membrane ternk®S . _is the elementary membrane cohesive stiffness ma-
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trix per unit width):
pt
K_bs negr _ aFi?]fc'cohn
intcohn - duét
[ —N#7(1) [ NS (1) ]
0 0
0 0 .
- kNN N”+(—l) ® —|—N€+(—1) +S|gn(McohO)
0 0
0 0
_ NS
—NH—(1) > Ng (1)
0 0
0 0
XkMN N“+(—1) X _g_E+N£+(_1> (3116)
0 S
0 0
i | 0 |
with,
N .
. ( (12— COT:O loading : )
NN = _ 3.117
1-n)——_ ynloadin
\ ( m)Aﬁqax—Ac g
N .
( nihy Z’ho loading
knm = - (3.118)
nhe®——°C_ nioading
A?nax_AC

e Cohesive bending termi;

bs
intcohm

is the elementary bending cohesive stiffness matrix



90

DG/ECL framework for Euler-Bernoulli beams

per unit width):

pt
K_bs prer _ aFirt:fcohn
intcohm dué+t
_ 0 _ )
0
0 0
. —% NET(1) CNE(1)
= sigN(Mcoto) | kmn o8 ®
0 0
0 0
9+t N&+(—1
& ONET(-1 | LD
_ 0 ot 0 _
0 0
e % NE (1
thkum | X 075 @ ®| * 65 1) (3.119)
0 0
9 Tyt 08 T &+
x NET(-1 | | —& NE(-D)
with,
( M .
. (1—n) 2;:0 loading 120
MN = = :
1) —  ynloadi
\ ( m)A%aX_AC unloading
( mhleqMcom loading
kuv = L (3.121)
N he9-——°0_ njoading
\ A’rﬁax_AC

3.3.3 Numerical benchmark: Double Clamped Beam

To demonstrate the ability of the presented framework toehfvedcture phenomena, stud-

ies are performed on a double clamped beam, whose mateszeies are given in Tab.3.2.
The beam is firstly loaded only in bending before the invesiton of membrane-bending
coupled loadings. For all the following tests, the beam isimed with 16 full-DG cubic ele-
ments, so there are 128 degrees of freedom in the model, apdthmeterB;, B2 andf3s are

respectively fixed to 10, 10 arfa} (E)2

Pure bending fracture test

This benchmark, presented in Fig._3.19, consists in applgimlownward vertical dis-
placement at the middle of the beam. This introduces a @displacement field symmetric
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Property Value
Young modulus [GPa] 71
Poisson ratio [-] @1

fracture strength [MPa] 400
energy strength [J/fi 8800

Table 3.2: Material properties of the double clamped beam.

O L >
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Figure 3.19: Setup used to show the through-the-thicknessk énitiation and propagation
by the suggested DG/ECL framework.

with respect to the center of the beam described by|[153]

1241 szl
4%@5) slcio:L/2, (3.122)

us(8h) = >

whereU3(§) Is the applied vertical displacement. Stress is maximdbatping (at upper skin
of the beam) and at the middle of the beam (at lower skin). magimal value is given by,

12Eh L
Omax = TU3<§) (3.123)

In this example, fracture at clamping is not allowed so it W localized at the center of
the beam. After fracture, the double clamped beam (DCB) ofttebhdecomes two simply
clamped beams (SCB) of length2. Note that in the simulation the vertical displacement is
applied on both nodes of beam’s center. Consequently, agploeted force is measured at
one of the two nodes, in the pre-fractured stage it is equiahtiothe force corresponding to
the prescribed displacement and the energies computedricaityewill have to account for
this too.

The energy release ra&occurring during the transition can be computed by,

GAa = Wext—Wnt , (3.124)

where in this last equatiofia is the length of the crack at the end of the simulatiares (),
whereWey: is the work of external forces until complete fracture of bleam, and wheré/;
is the internal energy of the beam, see Hig. 1.20. In theViafig simulations the relation
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Figure 3.20: Different energetic quantities can be exé@dtom the forcess. displacement
curve to compute the energetic balance.

force-displacement is archived and the different areasgpfEE20 are computed numerically
at the end of simulation. Furthermore, the fracture enéfgycan be computed by,

th = Wextafterfracture_Wntaﬁerfracture (3-125)

Another useful quantity is the difference of internal erye®\;) between the fractured
and unfractured cases. Indeed this quantity can be useddapif there is a need of external
energy to achieve a complete fracture on the beam thickife®8.; > hGc, once the crack is
initiated, the unique solution of the problem is a complefature of the beam, while, on the
contrary ifAW; < hG, energy from the loading, and thus a further displacemenément, is
required in order to achieve complete ruptuké,; of the beam can be computed analytically
(see Appendik’AM)

hLpcs
AWintpending = EOC%endingp (3.126)

whereac pendingis the bending stress at the skin reached when fracturetisted.

The simulation is first performed for a beams of 200 [mm] irgigrand 20 [mm] in height.
The AWintpending Of the beam computed thanks to equation (3.126) is equal $b8[d/m]
while the fracture energy is equal to0QG. = 176[J/m]. AsAWntpendingiS larger than the
fracture energy, the fracture happens in one incrementsplatement as illustrated on Fig.
B.21.

Fig. [3.21(d) plots the maximal stress at the center of thenieaerms of the prescribed
displacement. The stress increases until it reaches the wdlthe fracture strength (400
[MPa]). It then falls down to zero as the center of the DCB beesm free extremity of a
SCB. Fig[3.21(H) gives the relation between the force andiscpibed displacement at the
middle of the DCB. This curve is in agreement with the pictunea@the force follows the
analytical value of a DCB and a SCB respectively before and #itefracture. Moreover
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Figure 3.21: Unstable crack propagation for a DCR.ef 200 [mm] andh = 20 [mm].

AWinthendingCan be computed by numerical integration of this curve. Tdleutation gives a
result of 381.47 [J/m], which is very close of the analyticalue. Figs[3.21(¢) ar{d 3.21(d)
represent the deformation map respectively before and fafteture. Again before fracture
the deformation map is the one of a DCB and after fracturetltasone of two SCBs. Finally,
Fig. [3.21(€) depicts the relation between the angle at the center of the DCB versus the
prescribed displacement. This picture shows that befarure the angle is equal to zero and
it is equal to the analytical value of a SCB after fracture.

Another simulation is performed on a DCB of 50 [mm] in lengtidasf 25 [mm] in
height. For this DCB the application of formula_(3.126) y&etMntpenging= 11.737 [J/m].
As AWintbending!s lower than the fracture energy of 22 [J/m] there is a fracfrocess. This
process is illustrated on the pictures of Hig, 3.22. Pidu&(a) depicts the maximal stress at
the middle of the beam. As for the previous case, there isuraevhen the stress reaches the
fracture strength, but this time, the stress decreasearlineith the prescribed displacement
after fracture onset. The same conclusion is valid for tmeefalisplacement relation plotted
on Fig.[3.22(0). This picture shows that after fracture red decreases linearly with the
displacement until it reaches the force-displacementecof\a SCB. The numerical integra-
tion gives a value of 133 [J/m] for AWintpending Which is in accordance with its analytical
value. Moreover, the use of equatidn (3.1124) yields an gnesigased equal to 298 [J/m],
which is very close to its analytical value. Fi§is. 3.2R(c)@22(d) show, as for the previous
case, that the displacement field is equal, before and anthefehe fracture process, to the
displacement field of a DCB and of a SCB respectively. Finalily, depicts the value
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Figure 3.22: Stable crack propagation for a DCB.cf 50 [mm] andh = 2.5 [mm].

of the angleuz 1 in function of the prescribed displacement. As for the staggsd force fields,
the value ofuz 1 increases linearly after fracture initialization to reaahthe end of fracture

process, the analytical value of a SCB.

Combined tension-bending fracture test

In order to demonstrate that the model

of fracture presemfedses the right amount of

energy for any loading conditions, a test involving combitension and bending is presented.
The benchmark is the same as for the pure bending test ekeg¢pt¢onstank-displacement

e
Q> = Q>
& & won s
S IS b &
l Y w5 g
L =50 [mm]

Figure 3.23: Setup to illustrate a through-the-thicknesaslcinitiation and propagation with

a coupled membrane-bending loading.

is added (see Fig._ 3.23). The simulations are performed o8B & 50 [mm] in length and
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2.5 [mm] in height.
The characteristic quantiWM,; has now to consider the internal energy in tension, which
gives the relation (see AppendixA.4),

AW hLocs (13 )

= | N 2 +1) 02, (3.127)

wheren), is the coupling parametdr (3.107). The force-displacemaation depicted on Fig.
illustrates now the energy released in bending Miydenging- The total released energy

is obtained after adding ¥ntpendingthe energy released in tensioNimembrand. This last
contribution is given by,

Eh ,

Wintmembrane = AWintmembrane= Zul prescribed (3.128)
as there is no work of external forces in tension.
U1 prescribed n AWint VVlntbending Wintmembrane NG
[mm] [-] [J/m] [J/m] [J/m] [J/m]
—2e? 1.0692 14.8043 21.26 0.71 21.98
0 1 12.33 21.98 0 21.98

2e? 0.93  11.39 21.26 0.71 21.98

4e~? 0.86  11.99 19.14 2.84 21.98

6e 2 0.79  14.11 15.59 6.39 21.98

8e 2 0.72 17.76 10.63 11.36 21.99

10e 2 0.66 22.95 - - -

Table 3.3: Double Clamped Beam with combined loadings: Vabfedifferent energetic
guantities for different prescribefl;-displacement. For stable casé ~ hG..

The energies obtained for different loading conditionscar&ected in Tab_313. This table
shows that the total energy releasé®) at the end of the fracture process is equal to the
fracture energy for anys prescribed the small differences being due to the application of the
prescribed displacements by step increments Urgfescribed= 10e>, the difference of inter-
nal energy between unfractured and fractured case is ldtigehG. = 22 [J/m]. Therefore
for this prescribed displacement the fracture occurs iniocrement of displacement and the
computation of the energies released in tension and in bgnsimeaningless. Furthermore
the simulation is performed for a negativgprescribed™ —2e~° to show that the method re-
mains valid in the compression case. As no contact is takeragtount during the simulation
an energy quantity equal WintmembranelS released in compression and so the energetic bal-
ance is exactly the same as tQryrescribed= 2e°. The difference between the two cases is the

value of the prescribeds leading to fracture (see Fig._3]124), which explains theedéfhce of
AW between both simulations.
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Figure 3.24: Double Clamped Beam with combined loadings ftier@int prescribed®;-
displacements.

Fig. illustrates the results for the different presed displacements. Fig. 3.24(a)
depicts the maximal stress at the center of the DCB and shavddhevery value of the
prescribed displacement, the fracture begins when thessteaches the value ot. Fig.
[3.24(D) represents the relation force-displacement inBgeirection. It can be seen that as
U1 prescribediNCreases the value of thiBz-force decreases and the complete fracture happens
for a lower value olus. This result is consistent with the fact than wherrescrivednNCreases
the bending part of the stress is lower at fracture initalan, which implies a lower resultant
bending stress at fracture initialization (see picfuref@} and therefore a lowels-force.
Finally, Figs[3.24(d) and 3.24(d) represent respectitteyrelationsVlcon(4y) andNeon(AY).
These graphs show that, wheq prescrivedinCreases, both the resultant stress at fracture ini-
tialization N¢on and the value of\; reached at the end of the fracture process increase, which
is physically explained due to the fact that there is moregn®® be released in tension.
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3.4 Conclusion on the full-DG/ECL framework for Euler-
Bernoulli beams

This chapter describes the two main concepts of this wotkk G formulation for thin
structures and extrinsic cohesive law for thin bodies) enghrticular case of Euler-Bernoulli
beams. It allows presenting both concepts in the most cdmepsable way. Indeed in the next
chapter, the non linear shell formulation is tackled andhia tase the integration on interface
is required with special care to formulate all quantitiethia basis of the interface.

First we developed a full-DG formulation of beams, which Haestraditional properties
of a numerical method (consistency, stability, optimah@ygence rate). The full-DG method
provides results in good agreement with theory and wittG#®G method previously pre-
sented by G. Engadt al. [91]. Compared to this method our original method considés d
continuous test functions and so provides a discretizatitim discontinuous elements. This
discontinuity can be exploited at onset of fracture to inaerohesive element without mesh
modification. Indeed, the terms ensuring weakly the coitiirare just replaced by the cohe-
sive ones.

Secondly, we develop an original cohesive law based on eztisiresses to account for
the implicit thickness discretization of the beam. This laas been shown to respect the
energetic balance. This property of the framework is itlaigtd through a numerical example.

In the next chapters, we suggest an extension of this framkaiv¢he non linear Kirchhoff-
Love shell formulation.
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Chapter 4

Full discontinuous Galerkin formulation
of Kirchhoff-Love shells

The aim of this chaptéris to extend the discontinuous Galerkin formulation of thief
Bernoulli beams, presented in the previous chapter, to KotfH_ove shells. The combina-
tion of this formulation with an extrinsic cohesive law whle discussed in the next chapter.
In the following, we first introduce the J. Sined al. [235/236], 2313, 234, 237,238] shell theory
to obtain a strong form of the problem. Nevertheless, cortb&w the previous chapter, we
remove several assumptions to keep only the hypothesisanti® Kirchhoff-Love shells,

() The effect of the out-of-plane shearing on the defororats negligible;
(i) Plane stress state.

These assumptions are general as they are related to thet esti@ of the structures that
present one dimension (the thickness) smaller than the ther ones. Although the for-
mulation is established in the general case of finite defoaons, it is then particularized to
small deformations and linear behavior as some benchma#d to validate the framework
are computed under these assumptions. Although, durinthéses, we developed first the
linear formulation before its extension to the non-linearge, we introduce directly the most
general case leading to a more fluent presentation.

Once the strong form obtained from the J. Sisgtcal. theory, the original full discon-
tinuous Galerkin formulation of non-linear Kirchhoff-Lewshells is presented. This one is a
generalization of the formulation presented in the previchiapter for Euler-Bernoulli beams
(see Sectioh 312) and thus the out-of-plane shearing is agaisidered to weakly ensure the
continuity of normal displacement.

Then, we introduce the three constitutive behaviors tratiaed to perform the numerical
benchmarks. These examples come from the literature angacdeto prove the ability of the

1The main results of this chapter are publishe@amputer Methods in Applied Mechanics and Engineering
[31] for the linear formulation. The non linear formulatipresented in a paper submitted for publication in
International Journal for Numerical Methods in Engineegif83].

2We will discuss later the validity of both assumptions ineca$fracture at the begining of the Chagter 5.

99
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original discontinuous formulation developed herein tovle results as accurate as other
continuous shell formulations presented by other authoithe case of Galerkin methods.

Furthermore, the benchmarks cover different loading dan and quasi-static as well as

dynamic cases.

Finally, although the full discontinuous Galerkin formiten seems prohibitive in con-
tinuum mechanics, as it considers more degrees of freedamith continuous counterpart,
a mix between continuous and discontinuous formulatiomsbeaused to obtain an efficient
parallel implementation. Indeed, in a parallel computatithe mesh is partitioned between
different processors. On each partition a continuous féatimn can be used and the continu-
ity between them can be ensured thanks to the discontinwoosifation. In the following,
we present an original implementation of the explicit Hutb@hung algorithm[[123] using
this mix formulation to demonstrate its efficiency.

4.1 Continuum mechanics of thin bodies

The basic equations of the shell theory are the linear andlangmomentum equilibrium
balance equations of the continuum mechanics. Both equai@developed in the particular
case of thin bodies. In fact, compared with the classical [3&bty the integration on the
thickness is treated separately. This is realized thanksetparticular kinematics developed
below for thin bodies. This kinematics is then exploited tdain the strong form of the
continuum mechanics of thin structures.

4.1.1 Kinematics of thin bodies

We base our thin bodies formulation on the one first introdumeJ. Simcet al.[235/2386,
233[234,237,238]. The particularity of this formulatiertd formulate all the equations in the
metric of the shell description in place of the inertial @tlormal frame. So, three different
frames are introduced:

() The inertial orthonormal reference basis denakgd
(i) The convected frame denotegl, which is linked to the shell (and thus moves with it);

(i) The conjugated frame to this convected basis dengteavhich verifies by definition
the relationg, - g° = & 3. This basis has to be introduced gsis not an orthonormal
frame.

As the thickness is small compared to the other dimensiotiseo$tructure, by definition of
a thin body, it is generally differently covered in the datien of the equations. Therefore
J. Simoet al. [233] suggested to represent the shell by its mid-surfage @osserat plane
4, and by a third coordinate describing the thickness betantp the intervalhmin; hmax]-
As depicted on Fig[“4l1, the shell is therefore consideretiérreference frame as a plane,
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Figure 4.1: Description of the different configurations o shell (courtesy of [185]).

included in the plandZy, E». The thickness of the shell is described in this frame by liivel t
coordinate varying alond’s, which is mathematically formulated as,

¢ = €Eax [Pmin; hmax] — R3, (4.2)

wheret! are the coordinates of the shell in the reference frame. Tdrgnconfiguratiors of
the shell can be described in relation to the reference fiantee mapping,

which defines the manifold of positioasof the shell,
r = B(E)=¢ ") +ENt(E"). (4.3)

The last relation follows from the representation of thellshehe reference frame dividing
the mapping® as a mapping of the mid-surfa¢g&®, &%) : 2 — R® and the value of the
director of this mid-surface : 2 — S* = {t € R3| ;1 }, with S° the unit sphere manifold.
Finally in this relation\, describes a change of thickness due to the deformations.

As any configuration of the shell can be describedbyts initial configuration is formu-
lated by dng = 1),

zo=Po(E') = 0o(E")+E%0(EY). (4.4)

If jo = detl®q we can define the mid-surfade to verify,

hmax
/ £3jopode® = 0. (4.5)

min
Thus the mid-surface is not necessarily the geometric cehtbe cross-section.

Therefore, the transformation between the initial andenirconfiguration o — ) is
described by the two-point deformation mapping,

x = ®od,t. (4.6)
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This mapping is characterized by the two-point deformagiadientso — GL (3,R),
F = O®o[0®g *, (4.7)

whereGL, (3,R) is the invertible Lie group of dimension 3 with a positive daianJ = detF.
By definition of the gradient operatér

0 = ¢10E +¢,0 E> + 8 (Mit) 1@ E* + 83 (Mit) 2 @ E?
(An+&An3)t @ E3,
= g ®E, (4.8)

after neglectingﬁ3)\h73. As we considein equal to the value at mid-surface, the convected
frameg, linked to the shell is defined by,

ga = bo+&3(nt)qand, (4.9)
g3 = )\ht(za). (4.10)

Furthermore, calling = detJ®, we can compute the Jacobian of the deformation as,

J = 2. (4.12)

Finally, as the shearing deformations are neglected byhvgstson in the particular case of
Kirchhoff-Love shells, the unit vectar remains perpendicular to the convected basis at the
mid-surface leading to,

d11Nd>

b= 112

. (4.13)

Thus for Kirchhoff-Love shells,

i=@1/02) Mt=Anld1Ad2] . (4.14)

The gradient of the unit vectdrcan be derived a5 [181],

€ Ant
tg = )\h%d’ﬁa/\qlv_Tr-]an(q’,Ba/\q’,v)‘t7 (4.15)

with ¢gjj the Levi-Civita permutation tensor.

Sfor a n-order tensox, Ox = X ® E'
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4.1.2 Governing equations of thin bodies

The governing equations of thin bodies are establishedtiegiation on the shell volume
of the linear and angular momentum balance equations, ctxaply

0.0 = p®-B, (4.16)
®AO-0" = ®A(pP)-2AB, (4.17)

whereo is the Cauchy stress tensor aBdare the external applied forces per unit volume.
We first investigate the integration on the shelbf the linear momentum Eq.[(4.116).
Applying the Gauss theorem for the tefino T , we have

/aSO'-ndOS = /S(prS—B)dS (4.18)

with n the outward unit normal to the body in the current configoratiThis value can be
formulated in the reference inertial frame by using the Marfermula,

dosn = jdro® - miner, (4.19)

Thus Eq. [(4.1B) can be formulated in the reference frame,
/ jo (08) T - miperdlr = / i (p®—B)av, (4.20)
r 2 % [Pmin;hmax]

wherel the external surface in the reference configuration,7apg its unit normal.

Then, the main idea of the thin bodies formulation is to safgathe integration on the
inertial volume in an integration on the Cosserat plane sspreéng the mid-surface and on
an integration over the thickness. Toward this end, theaseff = 0 (2 x [hmin; hmax) can be
divided into three terms (the top and bottom parts and tleedbsurface), as depicted on Fig.
4.2 leading to,

jo (D@)—T Ninerdl = /ﬂ /hhfnaxj (p (qs + &8 ()\}']t» — B) de3da
v (4.21)

/0(}4 % [Nmin;hmax])

or again,

hmaX
/ jo (0%) T . vdaade®
Pmin /04

hmax

+/ﬂja(DcI>)_T-E3d4 - /h::aX/ﬂj(ptli—B)dﬂld?, (4.22)

hmin

where identity[[4.6) has been used and wheiie defined as the outward unit normal of the
shell in the inertial frame.
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Figure 4.2: The choice for the normalfas illustrated on a 3D representation of the shell in
the inertial frame.

Furthermore, the value dii® T can be determined by the definition of the conjugated
frame:g' - g3 = &3, which givesg' = 0® T E'. Indeed using (418),

g'-gs = (0@ TE'") (09)E; =09 E\O0®ipEsp= EyEsp=383. (4.23)
Thus,
0% T-v = (0% "E')(E v)=g"a, (4.24)

asv is in the plané E;, E». Finally, Eq. [4.2P) can be rewritten, by taking into accoHq.
(@.24) as,

/ inSvgdoa = / (o6~ jn")da, (4.25)
04 a

4asv is in the middle planegl = jTJILgT‘vq and thereforer = gdvy. Thus,vg can be computed as-¢ g =
6QBVQ =Vp
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with the following definitions,

Pmax
nd = ?—/ jog®de3, (4.26)
hmin
Pmax
5 = T—/ ipde3 and, (4.27)
hmin
nﬂ B 1_ hmaxB.dE3+ . 37 hmax 428
= 7). BI jog’] (4.28)

Termn® is the resultant stress and represents the force per urtt widthe shell sectiop
is the density per unit surface of the shell, an®l represents the membrane external loading
per unit surface on the shell.

Applying the divergence theorem on EQ. (4.25) leads to,

/ﬂ[(jno‘)’aﬂLj_nﬂ]dﬂ _ /ﬂj‘r)q,dq, (4.29)

and due to the arbitrary choice of the part of the Cosseraepldrere the integration has been
performed, the resultant strong form of the linear momenggomtion reads,

(%) g +n? = . (4.30)

)

The angular momentum equation can be obtained with the seguenantation. Integra-
tion of Eq. [4.1¥) on an arbitrary volume with applicationGduss theorem dii- o yields’,

&A(on)ds — /E(Mp«i))ds—/@ABds. (4.31)
as s dt S

5By definition of vectorial product,

(/@/\(D%TT)dS) = /Eijkq3j|:||0'k|d5
K i K
This last relation can be integrated by parts,

(/‘I>/\(|:|-O'T)d.5> = /SijqujOkmde—/D|(Dj8ijk0k|d5,
S i S S

and, using the Gauss theorem for the first terniJ&@8; = §; and due to the symmetry of one has,

/<I>A(D-aT)d5 = [ ®r(o-n)dov.
S as
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Then, Eq.[(4.19) is used to formulate EQ. (4.31) in the refeeenertial frame yielding,

/a(ﬂx[hmn hmax] (¢ + Esxht) A [O’] Dq)_Tniner} dr =

/ / ™ d [ip(@+&%t) A (6+8° (hat) )| dePda —
/ﬂ /h hr_"axj ( +E3Ant) A BdE3da . (4.32)

Furthermore, dividing the integral of the first member adewg to Fig.[4.2 and taking into
account the identity (4.24) this first term can be written,

hma hmax
/ oA [ /h Jag“daﬂ vadda + [ AntA [ / £3 jag“d?] Vodda
min 04 Pmin

+/ ¢/\ Jag } max—f— Ant A (E3Jag )] max} da. (4.33)

Moreover, the inertial term of Eq[(4.82) can be rewritteteatlistributing the vectorial
product as,

//:md Jp ¢A¢)+Jp23(¢A(Aht)+>\htA¢)

ip(E3)2 ()\ht/\ (m)ﬂ de3da . (4.34)
Then, taking into account Ed._(4.5) and the fundamentalgmags of vectorial product,
/ / " ipd&3 Adda + / / )2ipdehnt A (Wit ) da (4.35)

Then terms[(4.33) an@ (4.35) can then be substitued in[E8@)#ielding,

/a [0 An® + At Am®)vedda +
A4
[ en(iog?)]ida+ [ Mtniinda -

//mm oA (ipd) dégdﬂl+/ jlpwida — /¢/\/m | Bdg3da (4.36)

with the definitions,

hmaX
Ml — i/h €30 g%de3, (4.37)
1 H maX max
it = Ui [eiBa] (4.39
1 hmax mln
lp = j—/h ipE¥%dg3and, (4.39)

Wy = AtA (x.;t) . (4.40)
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Termm? is the resultant torque and represents the moment per udiih wn the shell sec-
tion, m” represents the bending external loading per unit surfadeeshell I, is the polar
moment of mass inertia and; is the rotational inertia of the shell.

Finally, using the divergence theorem, the definitigns@#28) and taking into account
the linear momentum equation (4129), we obtain the exprassi the angular momentum
equilibrium,

1 —. . .
j—()\ht/\ Jm®) g +0a AR FAtART = gy, (4.41)

as an arbitrary part of the Cosserat plane was consideredhisiequation the inertial term
lpw; can be neglected. Indeed, thin bodies have by definitionckriess small compared
with the other dimensions and thus the inertia of eccenyrisi generally negligible. This
assumption is used herein. Moreover, EQ. _(4.41) can beenrithder another form with
regard to the symmetric nature of the stress tewmsof his tensor can be formulated in the
convected basis as,

o = d’(g®og). (4.42)
Multiplying both terms bygX one has,
o-g¢ = d(g®g) gd“=0"g (9 6°) =0"gd=0"g. (4.43)

This last relation can be vectorially premultiplied g§yleading to,

1
gk A (og") = OlKgK/\gl:§0|K<QK/\9I+QI/\QK):07 (4.44)

aso'® = oX!. Then, using the definition of the convected basis Hgsl44L0) the Eq.[(4.43)
reads,

<¢7a +E3()\ht)7a> A(og®) +Apt A (0'93) = 0. (4.45)

Afterward, this equation is multiplied byand integrated on the thickness,
hmax . 3 3 hmax . 3 3
L5 (0a+E ) o) A og?) a8+ [ hntn (0g%) 68 = 0. (4.46)
Finally, using definitions(4.26) an (4137) and the invaci of¢ o andt with the thickness
one has,

b Ajn®+ (Ant) g AjS + At Al = O, (4.47)

with the following definition of the resultant out-of-plas#&ess,

1 hmax_ 3423
| = j—/ jog?de3. (4.48)
Pmin
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Finally, Eq. [4.4Y) can be incorporated in Elq. (4.41), wHielcomes,
MEA (J®) o —Ant A JLHAREA ji7 = 0, (4.49)
or again, ifA is an undefined pressure,
(ji®) o — L+ jm* + At = 0. (4.50)

The set of Eqs[(4.30) and (4]150) constitutes the strongdtation of the problem, which
is the starting point to derive the full-DG weak form presehin Sectio 4]2. This set of
equations has to be completed by appropriate boundary tcam&li Toward this end, the
boundary of the mid-plan@a, where the boundary conditions are applied, is decomposed
into four parts verifying,

oranNdya =0 and draUdya =04, (4.51)
uanNonya =0 and dyauona =04. (4.52)

These four parts are,
(i) 0m4, the part o2 where the applied torque is constrainedito

mivg= m V(ELE) coma, (4.53)

(i) on4a, the part ofda where the tractions are constrainedito

n®vg= n V(& &) cona, (4.54)

(iii) 974, the part o2 where the direction of the mid-surfatés constrained ta :

t=t V(L&) cora, (4.55)

(iv) dya, the part ofda where the positions are constrainedpto

b= ¢ V(ELE)ecaa. (4.56)

4.2 Full-DG formulation of Kirchhoff-Love shells

In this section, a framework for the numerical approximatad the shell equations de-
scribed in Sectioh 4.1.2 based on a discontinuous polyd@pgoximation of the unknown
field ¢ is suggested. In this formulation, the resulting discaritias in the surface mappirgy
and in the surface directerare accounted for using a new full discontinuous Galerkimfe
lation. Let us remind that &=t (¢) through Eq.[(4.13) the developments leads to a one-field
formulation.
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_ The mid-surfacez is approximated by a discretizaticry, into finite-elementsze. Given
4e as the union of the open domaim: with its boundarydae, we havea ~ 4, = Jg 4e.
Furthermore, the boundadyze of an elementze can be either common with the boundary of
An

oyde = 04¢MN0yAan, 074e = 04N 0T 4,
OMAe= 04¢N0mAn, andodnAe = 04eNONAn, (4.57)

or shared with another finite element and is then part of tteior boundary, 4y,

01Ae =07c\ga, = 04eN 0 An, With 0y an = J04e\oa, - (4.58)
e

Then, instead of seeking the exact solutfgra polynomial approximatiogy, constitutes
the solution to the finite element problem. In this work, acdiginuous polynomial approx-
imation is considered, leading to a discretization witlcdiginuous elements. Therefore the
continuity of the FE solution has to be ensured weakly.

The purpose of this section is to establish a weak form of tbblpm stated in the strong
form by the set of equation§ (4]30) arid (4.50) for an apprakion ¢,. Multiplying Eq.
(4.30) by a test functiond and equatiori (4.50) by the corresponding variation of uedter
Andt = Ant (&), adding both equations and integratingmnstate the problem as findirgg,
such that,

Z/ﬂ;ﬁtli-h.aquﬂ — Z/ﬂ}(j_na On) o -3+
S [ [ @)~ ] -5thad

+ [ n?-dpjda+ [ m*-dthqjda. (4.59)
An Ah
The kinematically admissible virtual field$ andot are belonging to the same manifolds as
¢ andt respectively, but they satisfy the essential boundary itiongd 6¢ = 0 ondy 4, and
ot = 0 onodt 4.

Notice that the chosen variation of the unit vector omitsvdugation ofAy,. This equation,
governing the change of the thickness, is replaced by tre@srhent of the plane stress state
when solving the material behavior as described in Settidn 4

Integration by parts of these integrals, followed by theliapgion of the Gauss theorem
in the Cosserat plane, leads to

> aG(n,0b) = —Zaﬁ(¢h,5¢)+2/6ﬂ in® () - dpvada —
> a60n30)+ Y [ i (Bn) - Bthnvada +

e

> on.50) =y [ ji- [ sthnda'veda + (4.60)
bexi($n, ).
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with the following forms,

Dex(On, 50) = /ﬂhn”-&pj—dﬂw [t siwjda, (4.61)
ag(én,00) = ﬂe5¢'h-5¢dﬂ7 (4.62)
a0 50) = [ jn®(@#n)-3ad, (4.63)
am(6n, 00) = ﬂ_ej_ma(¢h)-(6t)\h)ﬂdﬂ,and (4.64)
2E(0n,00) = /ﬂ_e(j_l)ﬂ-/(lét)\hda/dﬂzo. (4.65)

In the last Eq. [(4.65), the integration by parts of the resulbut-of-plane stress is written
in an unusual manner. Indeed, it is performeddh, in place of(jl) , to ensure weakly
the out-of plane continuity at the interfaces as discussechiat follows. Also, the notations
a(¢n,09) reduce to bilinear forms on the case of small deformationdiaear behavior as it
will be shown in Section 4.412. Finallyexi($n,0¢p) depends oy, throughAy. In the linear
case, this term reduces Ibay(éu) as shown in Section 4.4.2. For the time being they are
non-linear expressions.

As continuity is not ensured across the internal boundamypj[e] and mear{e) operators
are defined, as

[o] =" —e, and (o) =

NI -

(.++o*) . (4.66)
In these relations the bullets represent generic vectaisfiermulated in the inertial frame as,

ot = Iir&o (8t el g2 +el?) , (4.67)

where(® are the components of the outer unit norrdabf 4. in the basis(E1, E»). If
definition [4.66) of the jump operator is not independenthef ¢hoice of thet and — sides
of an element edge, when this jump is used in combination thizghoutward unit normal of
the — elementv—, the formulation becomes consistent and independent srchitice. The
extension of these definitions to the boundawyae is straightforward,

] =¢—¢, []=-3 and (n®)=n%ondya, (4.68)
[t]=t—t, [5t] =8t and (W) =m"ondra. (4.69)

From these definitions and & = 0 ondy 4, anddt = 0 ondy 4y, the boundary terms of
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equation[(4.600) are rewritten
S [ (@) Sbvada =
| in®@n)-8vada— | [in® @n)-5]vg0a, (4.70

a|/'4h

Y [ i (@n)-Sthvada =

e aﬂe

/ i () - StARVada — / [/ (n)-0tAn]vyda, and  (4.71)
oM An

a|ﬂh
-y / i / StAnda'vada —
e J04e a

_ / il / StAndovada + / |[j_l- / 6t)\hda'ﬂ voda. 4.72)
OMAn a 01 4n a

At this stage, the main idea of DG methods, which consistiénsubstitution of the jumps
by consistent numerical fluxds, can be applied. Following the same argumentation as for
the beam case, see Section 3.2, as the stress tensor isucoistinetween two elements for
the exact solution]jn® (¢pr) - ] v, can be replaced bk [6$], and similarly for the other
terms. The traditional average fluxes are considered herein

B((in")", (in%) " va) = (in%)Vq, (4.73)
B ((w®)", (i®)”vg ) = () Vg, and (4.74)
(D (D7 va) = (ibva. (4.75)

These ones can be injected in equatigns {(4[70 4 4.72) and (&B3F4.54), Eq.[(4.60) be-
comes,

> aG(Pn.00) = — a5(dn,0b) — > an(dn,50) + > aS(dn, o) —
> a2 (®n,50) — S a1 (9n. 0) + > a5 (n, o) +

Dext(®n, 5 ) + bbound b, ) - (4.76)
with,
B 0n.3) = [ (in)- [5h]vgdoe. (@.77)
s (0. 38) = [ (IAnrm) - [8¢] vg doe. (4.78)
a3 (0 50) — /s <ﬁ>-ﬂ /G 5t>\hda’ﬂ v;d07e ~ 0, and (4.79)

Boound ®n, 50) = /a ) 7 50da + /a ) - StAnda (4.80)
N-Ah MAh
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The identity [4.7B) results from the Kirchhoff-Love andtispic behavior assumptions lead-
ingtol ~ 0.

Equation [4.76) describes a consistent weak form of thelgmolbut as a discontinuous
polynomial approximation is considered, the continuitpas ensured at element boundaries,
and the solution is not unique. The weak continuit@sgndCt) enforcement can be achieved
with the same argumentation as for beams see Sdctibn 3.@hwdsults into a compatibility
equation,

0 = [ o WIR(3(n%)"8(n%) " v ) da

+ [t @n)]-h (3(IAwn®) ", 3(Anm®) ", vg ) da
0, ARU0T 4h

+/ |[/G)\htd0(/ﬂ .h(a(ﬁ)ﬂa(jl)*,v;)dz. (4.81)

In this last expressiony(jn®), 5(jAn®) and d(jl) have to be defined. As it has been
demonstrated in previous works for non-linear solid meats181/182, 183, 184], these ex-
pressions would actually depend on the tangent moduli ottmestitutive models adx =

g%f 0. But, since the purpose of this term is to enforce continuitylevbeing energetically
consistent with[(4.16), another form of the flux can be chpssnlong as the consistency
condition remains satisfied. Ideally these terms shouleniimearized, lead to a symmetric
formulation as suggested by L. Noels [181] for BY¥DG formulation. Thus, the compat-
ibility fluxes are obtained by linearization &f jn®) andd(jAnm?®) (see Appendix Bl1 for
details),

3(in%) = Do (3, Gns+ny 35) bnp+ in® onPod g

2
o
+ )J\—h)\ﬁﬂrﬂwé <6¢7V't,6+¢h,y‘6t,6> bnp
_ AS
+ JApme 6t,u-¢h75—A—:¢h>B-6¢,< Onp. (4.82)
3(jAnm®) = j_O}[anya<5¢,y‘t,6+¢h,y'6t,6>¢h7g+j_)\h"”ha'd)h’saq),& (4.83)

where® M = m . ¢H is the component ofn® in the convected basiﬁyﬁ = Aty OP
characterizes the curvature of the shell and where therlmegamembranes,, and bending

SNotice thath* is the conjugated basis g, with an abuse of notation ag" = g¥.
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H stiffness result from an isotropic assumption,

b Elme ) {V%“- § oy 0 +51-v)05 -0 0708+
3100508 008 489
E hmax_hmln

Hiot = (12(1—v2)) [V‘I’o' S oy-65+ (1 V)05 03 6545+
S-v08 4F o0 (4.85)

Finally, as by assumptioh~ 0, we can také (jAnl) = 0 in order to keep a linearized sym-
metric formulation. However, doing so remove the constramthe continuity oy - ¢, which
will be enforced using the quadrature stabilizing terms.

Introduction of equation$ (4.82) arld (41.83) in equatiod@}tleads to

aj(®n.09) = — an(dn, ) — > an(dn o)+ as(én, o)
N Z a11(n, 59) — z a1 (Pn, Ob) + Z a31(bn, o)
_ Zaﬁm@ha&l’) - Za?mz(q)h,&l)) + Z aSo(0n, 50

D@, ) + Doound o, 30), (4.86)
with the forms,
Bo0n.3) = [ 10n]- (8(jn®))vgdoze. (4.87)
o @n.50) = [ [£@n)] - (B(}Awin)) Vg doze, and (4.88)
&S (0n, 50) — /S H /a )\htda’ﬂ-(é(j_l))vadaﬂlezo. (4.89)

Although this formulation is consistent (consistency tessfiom the introduction of con-
sistent fluxes) andy, - ¢ o as well ast - ¢ o continuity are weakly ensured, the stability and
continuity ingp - t are not ensured. Moreover, for elliptic problem DG formigas are unsta-
ble without the introduction of stabilization term. Thusg wtabilize the formulation thanks
to extra quadratic terms as it is suggested_in [181, 185] anpresented in Chaptel 3 for
Euler-Bernoulli beams. Such an introduction of interior @gnterms is usual for the DG
method applied to solid mechanics (se€ [16.97|[139/T40TB#} among others). Although
the DG method is now slightly dissipative, this does not iotgan the numerical accuracy
as the method remains consistent and converges toward lit@sowith an optimal rate.
These terms depend on dimensionless stabilization pagas@gtwhich are sufficiently large
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constants, and which are independent of the mesh and mateneerties. The mesh indepen-
dence is ensured by the introduction of the characterikiment sizeéh® in the stability terms.
By inspection of Eqs[(4.1[7-4.779) arid (4.81) the quadratimsecan be deduced as,

a By6

ay3(dn,00) = /S[[¢h]]'¢h,y\)5<BZT>[[5¢]] ~bn Vg doae +

opyd i

/S[[¢h]]'¢h,yvg< w>ﬂ6tﬂ +bn Vg d0ae+

auyé
/[[t]] “bn Vv <)\BBZH >[[5¢]] ~On pvq doe, (4.90)

0( ByES

amiz(dn, 0) = /[[t (@n)] - dn V5 <Bl rs >[[5t(¢h)]] -bn Ve dode, (4.91)

B0 8) = [ [0n]-t(On)v <3”S >[[6¢]] E@nveddze,  (492)

with the shearing stiffness,

A/
#P = W(Pmax— bmin) 2505 - (4.93)

In this last expressio®\ /A characterizes the reduced shear area. The expression® of tw
first terms [(4.90-4.91) result fron_(4182-41.83). Note tH&BQ) remains symmetric. The
third stability termag ;(¢n,5¢) (4.92) is obtained by considering a quadratic form coming

from expression o&Z; (¢n,0¢) (A.79) andas,($n, o) (4.89) before assuming Kirchhoff-
Love state, yielding

&i3(dn,o0) = /{H/)\htlghdu'ﬂ “Oh oV <B3ﬁ;+>
bng- [[/V )\hétagf,dvlﬂ Vg}ddﬂle. (4.94)

In this expression we use the notatibs t;g'. However the presence of a primiti\jgin this
expression leads to an implementation issue. This termdh@gdakly) ensure the compati-
bility of the deflection normal to the mid-surface and therefa consistent approximation of
this term can be assumed as long as this enforcement renadistsesl. Toward this end, we
suggest to neglect curvature effect, leading to equalidjss presented in Appendix B.2.
Note that under this hypothesis the two last termspf(¢n, 5¢) (4.90) can and are also be
neglected. Finally in Eqs[(4.H0-4192), expressj¢n] - ¢ y means the scalar product of the
jump of ¢, at interface with the vectdpn , defined at the interface element which is typically
the average o, and(l)hj/, see Section 41.5.
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These three quadratic terms depend on dimensionlesszatibih parameterf; that have
to be chosen large enough to stabilize the weak statemehé giroblem. They are indepen-
dent of the geometry and of material properties by consomciherefore, after adding such
contributions, the final weak statement of the problem isifigd;, such that,

a(q’h,&b) - bext(¢h76¢)+bboun0(¢ha6¢)a (4-95)

for all 3¢ kinematically admissible and with,

a(¢n,00) = 3 (ag(®n,00) +ah(dn,0d) +af(dn,09)) +

e

> (@5 (6n, 09) +am (9n, 0) — a5 ($n. 09)) , (4.96)
ay (Pn, ) = a31(bn,0d)+ a3 (bn, ) +ay3(bn,0d), (4.97)
am (6n,00) = a5, 1(bn, ) +an2(dn,d0) + a5, 3(én, ), and (4.98)
ag(6n,00) = a3(9n, o). (4.99)

Furthermore, if continuous test and trial functions aredu$én] = [0¢] = O and for a
quasi-static problem.g. & (¢n, ) = 0), equation[(4.95) simplifies into

a0n.50) = 5 (a5(On.50) +a5(®n.50)) + Y a% (On.59)

e

= bext(¢h> 6¢) + bbouno(q’ha &1’) ) (4-100)

which is identical to the non-line@%DG formulation presented by L. Noe[s [181].

The final resulting forme(¢n,0¢) (4.96) of the problem contains the classical terms of
shells theoryas(¢n,dp) andas,(dn,0), while the sum orsis a collection of boundary inte-
grals resulting from the inter-element discontinuitieeey enforce respectively

(i) the consistency of the formulation for the terafs, (b, 5¢) anday,, (dn,d),

(i) the compatibility and the symmetric nature of the Jdaalfor the termsZ,,(¢n, 5 )
anda ,(¢n,0¢), and,

(iii) the the compatibility and the stability for the terra§,;(¢n,o¢), a3, 3(¢n, ) and for
the termag; (¢n, o).

Although termsay ,(¢n, 0b) anday, ,(¢n, ) can be omitted without compromising the sta-
bility, these terms are mandatory to get an optimal convergeate in the_?-norm, see
Sectior 4.},

The weak form[(4.95) is a general large deformations fortradawhich can be used
whatever the constitutive behavior. This weak form is cated by the equation describing
the constitutive behavior.
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4.3 Constitutive behavior

This work considers three different constitutive behaviofwo assume a pure elastic
response of the material and are used to validate the methsedme numerical benchmarks.
The first one is the Hooke law linking stresses to deformationder a linear small strain
assumption. This law can be generalized to non-linear ldegjermations and is then called
Neo-Hookean law. Finally, &-flow elasto-plastic law can be considered to take into actou
the plasticity effects for finite deformations.

4.3.1 Hooke law

The Hooke law assumes a linear elastic response betweeefthrendition and stress ten-
sors. Furthermore, this law considers a small displacefieddtu, leading to,
¢ = ¢o+u and, (4.101)
t(u) = to+At. (4.102)
with,
¢07(x-/\ ug e toAdog

oU g . , (4.103)
' Jo

At = g4 B3

whose the gradient is formulated as,

€apato, €qpato
Aty = %uja-(towoﬁ)— “?0 way- (toAbog) +

€ap3to
G?O ug- [toAPopy+toyAbogp| —
50([33150
jo
fap3 |
jo
€aBr3 €nu3
?s ¢O,a /\U,B%tO' (¢O,nv/\¢07u) . (4.104)
The last relation is a first order approximation of the dioecinit vector, under Kirchhoff-
Love assumption Eq.L(4.13), where the symbgi; is the Levi-Civita permutation tensor.
Such an approximation can be used as the second and higleetemas are negligible in the

linear range.
The resultant stresses Eds. (4.26), (1.37) andl(4.48) eandecomposed into membrane,
shearing and bending stresses in the mid-surface conveass! following[[233],

nd = g+ At = (ﬁ“B—i—)\ﬁrﬁ““)q),B—i—)\hqat, (4.105)

m® = [P g+ At , and (4.106)
U= 19 o+ 13t = (" +A50%) o +13\nt. (4.107)

£
ug- (toNog) ?—;Bto (bonyAoy) +

¢0,ay/\ up +¢070( A U7Bv} -




4.3 Constitutive behavior 117

Under small deformation assumption, these equations read,

n® = g+t = (A% ABTFH) dop + Ancf't, (4.108)
m® = [Phgp+ 1t , and (4.109)
U = %00+ 13t = (" + ASF™) doq +13¢. (4.110)

In these expressions?? is the membrane stress resultant (defined in Appendik Bi%§, ~
is the stress couple resultaif, is the out-of-plane stress resultam®37is the out-of-plane
stress coupleq® is the transverse shear stress aﬁck )\ht7u~¢75 ~ to,u-(I)OvB characterizes
the curvature of the shell. Due to the symmetry of the Cauctgssttensor and as,  is
neglected, one hag' =% — )\ﬁms“ = [%, see AppendikBI3 for details. Als ~ 19, asnH
vanishes for thin plates.

Similarly, the deformations are also decomposed into mamnds, shearingd and torque
p strain components,

1 1 1 1
g = Ed’,a '¢,B - §¢O,a ‘¢O,B ~ §¢O,a U + E’U:,cx '4)0,[37 (4-111)
-to+At-
5 = 0+2 boa _ g and, (4.112)
paB = ¢7a ' t,B - ¢07a ’ tOvB
€un3
~ @oop- to?n—ou,u' (bon Ato)
€un3
+ %0 - (Goop Adon) —wap- to- (4.113)

Jo

Then, for thin bodies this law can be written in the planesdrstate by prescribing the
value ofezz in the mid-surface (in place of an iterative procedure onitkegration points of
the thickness, see Section 413.2),

V ooa.p(1 1
Ah=1+¢€33 = 1—E¢o' 0 <§¢,a‘¢,g—§¢o,a'¢o,s)

\Y

1= m%a 08 (wa-bop+ug-doa) . (4.114)

Q

Then, usingE = €4pd @07 + €330y © 05 + 8 [05' @ to+to @S] + papdy © b7
and usingr = # : € with # the usual Hooke tensor, the elastic constitutive relatbmigeen
the effective (linearized) stresses and strains réad] [233

AP = #0Pe s, (4.115)
mP = #3Pp5, and (4.116)
= wPy~o0, (4.117)

wherey = 26 and wherer,, #n and}[SO'B are respectively, the linearized membrane, bending
and shearing stiffness given by Eds. (4.84), (4.85) andj4.9
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4.3.2 Hyperelastic based constitutive behaviors

A hyperelastic approach can be used to link the stresseg tiinite deformations. Such
an approach assumes that the linear part of the materiakddrom an internal potentiaV,
which depends only on the right Cauchy tensor defined by,

C= F'F =gi-gjghog). (4.118)

Thus, depending on the potential, the material responséevdifferent. In this work two
different potentials will be considered regarding the agpion (either elastic Neo-Hookean
or elasto-plastic). For both laws, the Kirchhoff stresssterr = Jo can be related to the
deformation gradient thanks to,

T =%FT =pF. (4.119)

Furthermore, as plane stress state is assumed in the shedlated basis, it is convenient to
formulate Eq.[(4.119) in this basis,

. ow
T= Tlgiwg = 2Egi ®gj. (4.120)
ij

AsAn o is neglected, as-t o =0 (t-t = 1) and ag - ¢ 4 (Kirchhoff-Love assumption)gs -
ga = 0 with regard to the definition§ (4[9-4]110). From the defimit{4.118), for an isotropic
behavior, this implies,

=1 = 0, (4.121)

for elasticity as well as for J2-plasticity. Therefore tHane stress state can be ensured by
enforcing only,

™3 = 2aﬂ:o, (4.122)
0933

all across the shell thickness. This requirement is nurallyiachieved by a discretization of
the thickness with 11 integration points following a Simpsategration rule. Then, the local
)\E stretch is determined at each point using Newton-Raphsmatides satisfying locally the
plane stress requiremeri®® = 0. Finally, the global thickness stretah is determined by the
Simpson integration on the 11 local valu\# Note that formally, because of the bending
effect, A\p has a dependence alofgbut we assume it constant in the previous development
and equal to the value at mid-surface.

Oncer known, the reduced stress and torque are respectively dechfrom [4.26) and
(@#317), aso = § andl = 0.
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Neo-Hookean law

The neo-Hookean constitutive model considers an elasporese with the internal po-
tential,

W = (%—%) |ogZJ—po|ogJ+%(trC—3), (4.123)
whereKg andpg are respectively the equivalent bulk and shear moduli ofriaterial. Using
this potential in Eq.[(4.119) the Kirchhoff stress tensads

' = (Ko - §uo) logJg'- g’ — 1o (g' g’ —96-96) : (4.124)
Finally, the tangent modulus in the convected basis reads,

N 2 o
M = (Ko—éllo) g-9'd"g' -

2 . . . .
KKo—éuo> |09J—u01 (g' g“g'-gd'+4 ¢ ¢’ -gk> . (4.125)

Jo-flow elasto-plastic law

In the Jo-flow elasto-plastic model, lengthy described(inl[74, 76k plastic behavior of
the material is taken into account through theflow theory. In this work we restrict the
model to isotropic linear hardening. The model is based oypetelastic formulation, which
implies the assumption of a multiplicative decompositidnhe deformation gradierf into
an elastic parfF® and a plastic pafP i.e.,

F=F°.FP, (4.126)

As W should only depend on the elastic deformation, the elasgjit Cauchy strain tensor
is considered in the internal energy, definedd$y= F€T F€. Using these definitions the first
Piola-Kirchhoff stress tensor can be written
oW _10W(C®) _
— o |(Fy A (Epy T
P 3F 2F - | (FP) 3ce (F™) : (4.127)

Thus, the internal energy depends only on the elastic Cawctspt and a bi-logarithmic
potential,e.g, reads,

W(C®) = %IongJr%[logCe]deV: logce|dev (4.128)

whereKg andyg are respectively the bulk and shear moduli of material and mnge]deV

the deviatoric part of loG®.



120 Full-DG formulation of Kirchhoff-Love shells

In order to obtain the elastic and plastic parts of the defdion gradient in equation
(4.129), thel,-flow theory, expressed in terms of the von Mises stress gd berein. Toward
this end, the Cauchy stress tensor is computed as,

o=pl+I1Fe [ZpoCe’l- (log VC_G)deV} FeT (4.129)

where p’ = (KlogJ)/J is the pressure, and where the second term on the right hded si
of equation[(4.129) is the deviatoric part of the Cauchy stregich allows computing the

equivalent von Mises stregs9 = @/%adev: odev. According toJ, elastic-plasticity, the von
Mises stress criterion reads

f =0®—R(p)-0Y <0, (4.130)

wheref is the yield surfacec?( is the initial yield stressR(p) > 0 is the isotropic harden-
ing stress, and whengis an internal variable characterizing the irreversibleawor, as the
equivalent plastic strain in small deformations. Pradigdhe yield criterion can also be writ-
ten in terms of the Kirchhoff tensar = Jo. In case off = 0, Equation[(4.130) is completed
by the normal plastic flow, which gives the increment of ptadeformation gradient between
time step h”" to “n—+ 1", and reads

FPhi1 = exp(ApNP)FP
{ an— a3 gy " (4.131)
— 9 — 2 0%

Practically, the normal of the yield surfab® is calculated from the elastic predictor. Details
can be found in reference [[74].

4.4 Numerical properties

In this section, the numerical properties of consisten@pibty and convergence rate of
the full discontinuous Galerkin formulation of Kirchhdfeve shells Eq.[(4.95) are demon-
strated. In particular it is proved that the suggested ntelias an optimal convergence rate
in the energy norm as well as in thé-norm. The properties of stability and convergence are
proved after linearization for the bilinear form as it is aby done in the non-linear range.

4.4.1 Consistency

The proof of consistency follows from the recourse to cdesisnumerical fluxes in the
formulation. Indeed, the exact solution of the physical problem¢i$(ap). Thus, the jumps
of displacements and of normal unit vectors are identicadlyal to O ord; 2. Nevertheless, as
discontinuous shape functions have been considered, ivahields[d$] and[dt] remain
discontinuous. On the external boundary, following EQGE#.69) we havép] =¢ —¢ =0
onady4an andf[t] =t —t =0 onodran. Similarly, the virtual fields read on this boundary
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[0¢] = —d = 0 and[[6t] = —dt = 0. Furthermore, the resultant stres$ and torquen:®
vectors, as well as the thickness ratig of the exact solution are continuous across inter-
element boundaries, which allows rewriting the weak fo@935) as,

/ p6-3pda+ [ jn®-dpqda+ [ jmS(5thy) da+ [ jI-StAnda +
an an Ap ’ Ah

/ (o] - j_n“vgdaz + [6t] - j_)\hm“v;da,q —
a|ﬂhU6U}4h

0, ApU0T 4h
/ j_ﬁ-5¢dﬂ+/ j-Sthnda+ [ nt-bjda+ [ - thnjda.
ONAn OMAn ap an
(4.132)

After integration by parts, on each elemery, of the terms inn® andm?, this expression
reads,

[ 06 -3pd +/a ind . 5pvedoa —/ in® . [5b]v; dda —

NAh 01 ApU0y 4

/ (in%) - 3bda+ [ S StApedda — / i - [St] Anvg doa —

An ’ oM Aan 01 AnU0T 4

/ (%) - Sthnda + / i1 8tAnda + (5] - jncv; daa +
Ah ’ Aap 01 4pUdy 4n

/ [5t] - PAnrn®vg doa — / in-obda + / i StAnda +

01 AnU0T 4 ONAn omAan

/ n?.8bjda+ [ - 5thnjda . (4.133)
An Anh

The arbitrary nature of the virtual field# anddt reduces the weak form to the set of equa-
tions

(jn%) g+ in? =P in ap, (4.134)
(jim®) g — jl+jm? =\t i ap, (4.135)
m =m%g+Ast on Owan, (4.136)
n=n%y on don4nh, (4.137)

which correspond respectively to the governing equati@iizd), [4.50), [(4.53) and (4.54),
up to undefined valuel. Consistency of the weak formulatidn (4.95) is thus ensunetie
non-linear range.

Derivation of the numerical properties of stability and wergence rate requires a lin-
earization of the equations that we present here below. di) flais usual done for FE, to
postulate that if the linear form is stable its non-lineaeasion is stable too, although this is
not always true.

"For completeness we do not neglagipn, ) in this form although ~ 0
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4.4.2 Linearization of the weak form

The linearization of the weak form (4.J95) is performed urtlerassumption of a small dis-
placements field and with Hooke constitutive behavior aggion (see Sectiopn 4.3.1). Thus,
the displacements field is expressed by Eq. (4.101) and steofder approximation of the
unit normal Eq. [(4.102) is considered. Furthermore, usiegiinear forms of the membrane
(@.115) and bendind (4.1116) stresses and the definifos Ant ;- ¢ implying for small
displacementﬁﬁ -§o.a = toy, the first order approximations of the terms of Hqg. (#.95)rea

ay(up,du) = pup-duda , (4.138)
Ae
e —1 apyd 5 5 d
ap (un,du) = 107 (®oy-uns+os uny) #n™* (Popdu.a +oadup)da
+ /ﬂ jo(uny tos+boy- At ) #APPty - du qda, (4.139)
al (un,ou) = /ﬂ jo(uny tos+boy- Ats) #PPhg s 8AL (4, (4.140)

a1 (up,Ou) = /Sé<i_<ﬂ{n°(ﬁy6 (doy-uns+Pos- uny)

+ AR 0765 (Boy - At 5+ uny - tos) )bop- [Bu v dode,  (4.141)
a1 (uh,0u) = /S[[5At]] : <j_()}[r%8y6 (unhy-tos+boy- Ats) ¢O,B>Vadaﬂe, (4.142)
ajniz(un,du) = /S[[Uh]]'<j_o¢o,8 E?{naﬁyé (Guy-$05+doy-du 5)

+ AR (Suy - to 5+ oy 6At75)] >v;daﬂe, (4.143)

amio(up,O0u) = /S[[At]]'<J'T)¢0,[37{rﬂ8y6(5“#‘to.,6+¢07y'5At,6)>Vadaﬂea

(4.144)
g{aﬁvé-—
ajn3(un,0u) = /S[[Uh]] “boyVy <w> [du] - o vy diae, (4.145)
-_}[O(Byé
Bmia(un, du) = /S [AL] ~<|>o,s<8“%> [3At]-bowgVvsdode,  (4.146)
P,
ajgi3(un,du) = /s [un] - tovg <w> [Bu] - tovy dde. (4.147)

In the stability expressions (4.145-4.147), the eﬁectwﬁ/ature)\ﬁ has been neglected with-
out compromising the stability as earlier presented ane@xpeession o8&}, ;(un, du) is ob-
tained as presented in Appenfix B.2. These developments atliting the weak form[(4.95)
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as findingup, such that,

> A (un,du) + & (un, u) + % afy; (un,du) + &y (un, du)
e e e S

+ Z a|sm| ('U;h, 611/) + Z a|ss| (Uh, 5’11,) = bext(éu) + bbouncia'u;) s (4148)
S S
for all du kinematically admissible and with the bilinear forms,
A (un,6u) = a1 (un, du) + ajy o(un, du) + ajy 3(un, du), (4.149)
ajmi (un,du) = &y 1(un, Ou) + 2 (uh, du) + ajm3(un, du), (4.150)
aiSSI (uh’ 6“’) = aiSsI3<uh7 6“’) ) (4-151)

and where it has been accounted for that(du) andbpound du) become linear forms at the
first order fp ~ 1).

Finally, as the consistency of the formulation is provedmiplies that the exact solution
u satisfies[(4.148), which provides the orthogonality relati

a(up—u,0u) = a(up,ou) —a(u,0u) = 0. (4.152)

whereuy, is the FE solution.

4.4.3 Stability

The stability of the weak forni (4.148) is established follegvthe same argumentation as
for Euler-Bernoulli beams. For simplicity, the prescribadpthcement: and directionAt
are taken to be 0 and that there is no inertial forces. Thufotlosving energetic norm can be
suggested,

—aBq
le]l[* = > [\ #nio §(¢0,G'U,B+“,a'¢o,l3) T
€ Lz(ﬂe)
Z \/ HAm]Jo (¢O,G'At73+u,a'to7ﬁ) +
€ Lz(ﬂe)
—ap 2
H, _
5 B1#mjo boa-[At]vg 4
S hS
L2(s)
—ap 2
H, _
5 B27njo boa - [u]v, n
S hS
L2(s)
—B 2
> w/BiSJO to-[uvg , (4.153)
° L2(s)
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with the abuses of notation,

2

af
H \/; aap
L?(4e

Vo™ [aalvy

:/ agp# “PPasda and, (4.154)
) S

2
L

2

S

1
o Zé /a ﬂeﬂ"ﬁyé [aa] v [ay] v5 doae.  (4.155)

In Eq. (4.155), integration on all sidess equivalent to one half of the integration on all the
element boundaries. Indeed, the sum on all the element boesdiccounts twice for a side

$.

Expression[(4.133) is a norme. its value is equal to zero only far = 0 on 4y,. Indeed,
if [||u]|| is equal to zero, then all the contributions are also equagto but, if this is the case,
the only solution iz« = 0 on 4y, as it is shown in the following lines. If the membrane energy
(first term of Eq. [(4.153)) is equal to zero, then the solutibthe problem isu ¢ parallel to
to on every4e. If the bending term (second term of EQ._(4.1153)) is equaleimzit means
thatpyg = 0 on 4e. Using Eq. [4.1183), and sinag is parallel toto, the solutionp,g = 0
impliesC = u ¢ - tg is constant on eache. Since the jump in the variatioAt (At depends
onu see Eq. [(4.103)) is equal to zero between two elements (thind of Eq. [4.153)
equal to zero), this product is constant on the whole donazadyt cannot be perpendicular
to ¢o o by definition (see[185]). So the solution of the problem vebkéu o - to = 0 on the
whole domain asAt = 0 ondtan. Asuq-tg = 0 everywhere and as is continuous on
Up this meanau is constant om,. Because of the constrained displacemert 0, the only
remaining solution ist = 0 on 4.

With the aim of demonstrating the stability of the method @per and a lower bound
of the bi-linear form[(4.148) are given. These bounds canbiaied as in[[185] with the
addition of the supplementary interface terms relatedediwh-DG formulation. After some
developments given in Appendix B.4, an upper bound of thedsli form is,

@y (wn, 3u)[* < C(Ba) [aull | [1Bue][ (4.156)

for all w andu satisfying the essential boundary conditions and wi@(@,) is a value
larger than magd, (CX)? /By ), whereCXX > 0 are constants depending only on the polynomial
degreek of w anddu. In case of the FE approximatiary, is considered, thekis the degree

of the polynomial approximation.

8Except on the domain boundady 4, U dy 4n, where the correction is omitted here for clarity.
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Furthermore, a lower bound of the bi-linear form can be emniths,

=B
a(u,u) > (1—¢p) Z Hnlo > (¢O,a "upgtUuqg ‘¢O.,B) +
e Lz(ﬂe)
._GB
e Lz(ﬂe)
ck Bzﬂnlo i
1—28n|32 Z ohs boy - [u] vy +

L2(04¢)
2

Kk 2
(1— i)z Bl;f:;” doy: [At(u)]vy +

L2(04e)

; (4.157)
L2(04e)
for all u satisfying the boundary conditions and wheg@andey, are constants larger than zero
coming from the so-calleg-inequality’.
The stability of the method can be proved directly from tlastlrelation. Indeed the
comparison of the right hand terms bf (4.153) dnd (4.15%)dea,

b(un) =a(un, un) > C(Ba)lllunl?, (4.158)

WhereC(Ba) > 0 as for given < g, < 1 and 0< g, < 1 there always exigh; > (C”) and

oM

B2 > 2En° This shows that the stability of the method is conditiongdhe constanBl and
B2 WhICh must be large enough as the energy norm is bounded bydteof the external
forces. Note that Eq[(4.158) does not imply stability ctiods on the paramet¥ as long
asfs > 0.

4.4.4 Convergence rate in the energy norm

The convergence rate in the energy norm of the bilinear f@d4@) can be demonstrated
in the same way as presented in ApperidiX B.4 and only the mairitseare reported herein.
In the following, the error between the FE solutiap and the polynomial interpolation®of
the exact solution is calculated to establish the convesgyeate in the energy norm of the
method. First some definitions and hypotheses are givewm. i$fthe exact solution of the
problem and satisfies the essential boundary conditianstérpolant.X, satisfying also the
essential boundary conditions, is defined by,

/ (w—u¥) -Bujoda = 0. (4.159)
An

e >0:|ab| < §a2+ £b? orve > 0: [ab] < €a + £ b?
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The error is defined as,

e=up—u, (4.160)
whereas the error on the exact solution interpolant is de:ase

eX = up —uX. (4.161)

Both errors satisfy the essential boundary conditions. rAitene developments presented in
AppendixXB.4 and written for Euler-Bernoulli beams in Appeddi3, it can be found that,

e[| = cBa.Be.B) )3 b e - (4.162)

The order of convergence is one order lower than the degitee giolynomial approximation,
which is consistent with the presence of high-order derxigatin the governing equations

(.50).

4.4.5 Convergence rate in the B-norm

The convergence rate in thé-norm of the solution of the bilinear forfi {4.148) is demon-
strated under the two assumptions:

1. Proper elliptic regularity of the problem;
2. Pure Dirichlet boundary conditionse. w =t = 0 ond4ay, ).

As well as the convergence rate in the energy norm, the deinatios of the convergence
in theL2-norm is performed in AppendxB.4, so only the final resuligparted here,

ZChSk—I—l’U’HkJrlae) |f k > 2

< € 4.1
e

where the cask = 2 is obtained by following the work of G. Wellst al. [257]. The rela-

tion (4.163) demonstrates that the method has an optimakcgence rate for at least cubic
elements.

4.5 Implementation

This section discusses the implementation of the fornaniat{4.95) and (4.148). The
structure discretization (mesh) is performed via Gmsh [1@Hich is a 3D finite element
grid generator with a build-in CAD engine and post-proces#isrdesign goal is to provide
a fast, light and user-friendly meshing tool with paraneimput and advanced visualization
capabilities. As Gmsh possesses also utility tools (splvethematics, geometry ...) we
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decided to use it as a base for a C++ library. Furthermore, Gsnaglopen source software
that is used industrially (Cenaero, EDF,...) for pre-pograpons.

Furthermore, Gmsh has the particularity to create the dwtsugh a dof manager mak-
ing these ones independent of the nodes. We exploit thigcpkatity to allow importing a
conventional mesh without interface element. Then frors thesh the interface elements are
created before the association of dofs to each elementgduodily which thus do not share
dofs each others.

Then, we separate the implementation in two parts. On ond, leanon-linear solver li-
brary is implemented, which uses all C++ classes defined innGmdescribe the geometry
and the mesh, facilitating the management of the mesh anpbitgorocessing, as all results
are stored directly via Gmsh. As we focus on various resganajlects, this non-linear library
performs only the basic tools, with parallel feature: matdibrary, integration point man-
ager, Newton-Raphson iterations and explicit resolutidrestes ... As part of this thesis we
developed this parallel feature.

On the other hand, the specific feature of the dg-shell appraa functional spaces, man-
agement of elements, integration of material laws... ag@emented in a separate project
which includes the non-linear solver library and commutasavith the solver mainly through
an interface class callgghrtDomainwhich is common to all projects. ThmartDomainclass
is purely virtual and has to be derived by the conceptor optiogect. By this approach, dif-
ferent projects can use the same tools while being develop@dmost) independent codes,
allowing research in different fields to be performed sirmumdtously. Both parts are developed
in the following.

4.5.1 Dg-shell project

We describe in this section the implementation of the irdgkforce vector and stiffness
matrix which are specific to our formulation and which areré¢fiere implemented in a sepa-
rate projects. Their implementation is a generalizatiothefEuler-Bernoulli full Discontin-
uous Galerkin formulation presented in Secfion 3.2.3. Haurhore, the linear Eql_(4.148) as
well as the non-linear Eq[(4.95) are implemented sepgrakar the first one the stiffness
matrix can be obtained analytically. On the contrary, fa tion-linear case, an analytical
tangent stiffness matrix is not obvious since the itergirecedure ensuring the plane stress
state (see Sectidn 4.8.2). Therefore in this case the tasgtness matrix will be evaluated
numerically by differentiation of the internal forces vectThis one can be divided into two
parts: the bulk terms and the interface terms leadinBito= Fyyk + Finter- The implemen-
tation of bothFy ik and Einter is discussed below.

Bulk internal forces vector

The bulk terms are computed in the reference fraigewhere the shell is represented
by an isoparametric element with coordinaté$, &) € [—1,1] x [—1,1] as depicted on Fig.
[4.3(@). Then the unknown fiel},, as well as the virtual field¢, are decomposed in terms of
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@

(a) Isoparametric element. (b) Integration of the interface term on the side
s common to element, anda .

Figure 4.3: The numerical integration is performed (a) otht® isoparametric element for
bulk terms and (b) with the convention of picture for intedantegration. Courtesy df [185].

the nodal displacements using traditional LagrangianeHiapctions,

bn = NS¢¢and, (4.164)
5 = NEOP&. (4.165)

Then, the coordinates in the reference baseée used to compute the convected basis of
the mid-surface and its derivative as,

ONE

bhy = 5€a z¢ and, (4.166)
0°N¢

From these definitions, the computation of the initial caned basis of the mid-surface is
straightforwardly obtained using the initial positida® in the reference frame,

ONE

booa = azo(Xﬁand, (4.168)
02N¢

boop = X¢. (4.169)
9EUQER

Note that as the shell formulation is written in the inertefierence frame, the determination
of (A I68E4.16D) does not involve a Jacobian of a transftianaee Figl 4.3(R).

Once the convected basis of the mid-surface is known, thepuatations of the unit vector
t, and of the convected bagjs follow respectively from[(4.13) an@{4[9-4]10). Moreowibe
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development of = J® allows computing the Jacobian as,

j = g93-(91/g2) and, (4.170)
i = An|lbnindns,l|. (4.171)

In the non-linear case, the thickness ratjpis determined following Sectidn 4.3.2 and a
Simpson integration rule (discretizing the thickness)sedito evaluated the reduced stresses
n® (@.28) and torquen® @.317). In the linear case, the reduced stresse@.26) and torque
m® (4.31) follow from Section 4.3]1.

At this point everything is known to compute the bulk intdrieaices vector[(4.172) of non
linear formulation[(4.95) as well as those of the linear folation [4.148). This vector reads,

Fouk = Y (Fintn+ Finp) » (4.172)

e
where F5, , is the elementary internal membrane forces vector correipg toas(¢n, 5¢)
(4.63) and whereF;>, is the elementary internal bending forces vector corredipgnto

a5, (on,00) (4.64). The detailed expressions in the non-linear rangp@thf elementary vectors
are given in Appendik BI5.

Interface internal forces vector

For the interface terms the integration on interface eldmbas to be specified. Unfor-
tunately, as illustrated on Fi. 4.3|b), the basis vectdth® neighboring elements; and
¢; differ in general, requiring special care. The interfaca isurve that is represented in
the reference fram&; like a 1D isoparametric element with the coording&tec [—1; 1]. A
Gauss quadrature rule is used to perform the integratiohe@mterface element. It has to be
mentioned that a Gauss-Lobatto quadrature rule had alsoflemented but no benefit due
to the presence of quadrature points at the extremitieseadlfment was observed. As a finite
element is created at interface, 1D Lagrangian shape hrmj‘u§ are associated to each of
its nodest. Using these nodes the convected basis of the interfacerputed as,

NS _ ¢

bo1 = _0231X and, (4.173)
ONE

bny = a§§w£~ (4.174)

The unit normal vector at interface is set to the mean valumiolis and plus elemeris
evaluated at the common element edge,

tT+ty

to = %amd, (4.175)
[t +to ]|
tt+t

- - 4.176

] (4.170)

10A test is performed to ensure that the two normals are defimétkisame direction, which is the case if all
elements are defined in the same manner (clockwise or axttiwise).
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The in-plane normal to the interface() is then equal t¢ 2 (or ¢ in the linear formulation)
which can be determined by, see Hig. 4.3(b),

toANdo1

= — 2>~ and, 4.177
$o2 TtoAdoa] ( )
t/\(l)h 1
on — (4.178)
2 [[tnnall
With these definitions the Jacobian of the interface is atithputed by,

jo = lldo1Adozl| and, (4.179)

j = Anl|éngAdnsll (4.180)

Then, at each quadrature point of the interface the diﬁqeantitiem“i,ﬁz“i, HE, H

and Hqi are first evaluated on the common edge of the plus and minoseals. However
the basis of the plus and minus elements do not match withakis bf the interface element
requiring the use of push-forward tensors, defined as,

Tg. = &n® énpe and, (4.181)
Top: = 6% - dgp: . (4.182)

Using these tensors and callimghe quantities formulated in the interface convected basis
successively yields,

— +

not = TginB , (4.183)
Mo = TLmP, (4.184)
—apyd+t
9, - TSiTEiﬂ{nWZOiTZiTgi, (4.185)
— afyd+
Him - TﬁiTSiy{r‘n*"ZOiTZiTgi and, (4.186)
—~ap+
Hy = TOHNETE (4.187)

Then, thee quantities are used to evaluate the jump and mean valueskatGeauss inte-
gration point of the interface. Therefore everything is\Wnao compute the different in-

terface termsy, (¢n, 0¢) (4.917), a5, (dn, o) (4.98) andag (dn,d¢) (4.99) of the non-linear

weak form [4.95) as well as the different terags (un, du) (4.149),a5, (un, du) (A.150) and
ay, (un, du) (4.151) of the linear formulation (4.148). Then the integénternal forces vector

is formulated as,
1 _ S S S S S
Finter = z (Fint consnt Fint compn"‘ Fint stabn™ Fint consmit Fint compm

S
+ E?It stab m+ Eﬁt staba) (4-188)

where the terms of the right members are the elementaryfaoteforce vectors computed
from either the weak fornm (4.95) or the weak forim (4.1148). Tletailed expressions in the
non-linear range of these different vectors are given inexuix(B.5.
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Elements library

The recourse to DG leads to a thickness-locking free metivben considering under-
integrated quadratic elements or fully integrated cub&re&nts. The implementation de-
scribed above is employed to build a library of four elemghts/ing three (displacement)
dofs per node,

(i) 6-node quadratic triangles with 3 Gauss points for bualiegration and 3 Gauss points
on each edge for interface integration (T6);

(i) 8 or 9-node quadratic quadrangles with 4 Gauss pointbditk integration and 3 Gauss
points on each edge for interface integration (Q8RI and Q9RI);

(i) 10-node cubic triangles with 6 Gauss points for bulktegration and 4 Gauss points on
each edge for interface integration (T10);

(iv) 16-node quadratic quadrangles with 16 Gauss pointduitk integration and 4 Gauss
points on each edge for interface integration (Q16).

Note that linear elements cannot be used as the secondtderighshape functions have to
be computed.

4.5.2 Non-linear solver

The non-linear solver implemented as a project of Gmsh deduthree computational
schemes: explicit Hulbert-Chung [123], dynamic relaxaftt®6] and quasi-stati¢ [122]. The
implementation of these three schemes is discussed hens. bel

Explicit Hulbert-Chung dynamic scheme

A dynamic explicit solver based on tliegeneralized method introduced by G. Hulbert
et al. [123] is implemented, which allows introducing numericalntping in the problem.
Once again we use the same approach than in Gmsh and we d#vslegplicit solver as
an interface to a powerful library, which can perform veatperations (there is no matrix-
vector operations in this resolution scheme). The interfacgmplemented for two libraries:
PETSc [21, 22, 23] and BLAS [52, 83, 134]. Notice that this lagtrface is written in such
a way that a (less efficient) default implementation is pied if the code is not linked to
BLAS.

In the Hulbert-Chung time integration algorithm [123], theakation of the nodal un-
knowns vectore at time stem+ 1 is realized from the nodal internt,; and externalFey;



132 Full-DG formulation of Kirchhoff-Love shells

forces vectors at timn,

= MR mr e @aso)
&6 = (@€ ALy € + Aty [ and (4.190)
21 = (2" 4 At + At E - BN} EME+ ARy M0, (4.191)

for the unknown at nodé and whereFey and F; are evaluated from Sectién 4.65.1 in the
case of the full-DG formulation.

An original parallel partitioning of this scheme, based dms} elements, is suggested
herein. Compared with previous parallel implementatio@]this one allows communicat-
ing the nodal unknowns between the different processotsadf the material law resultant
n®, m%, Hn, Hm, Hq,... Thus, the main advantages of the suggested impleriemaat, on
one hand, to be independent of the material law, and on thex bdnd, to decrease the num-
ber of communications. Furthermore, this approach lea@stextra memory cost on each
processor as the ghost elements have to be stored. Neesgh#lis extra cost is relatively
limited if we assume that the number of elements by partitenains large compared with
the number of duplicated elements (only one layer of elemisrduplicated as illustrated on
Fig. [4.4(c)). This assumption is generally verified as tersrocessor are used with meshes
containing thounsands of elements.

The set of Egs.[(4.189-4.191) shows that if the mass matrikaigonalized the evalua-
tion can be done unknown by unknown, leading to an easy résolon different processors.
Therefore the coupling of the unknowns only results fromew@uation of the force vectors.
Then, METIS [127] is used through Gmsh to partition the mestwben the different pro-
cessors, see Fig. 4.4(a). So each processor owns a paditibe mesh, see Fid. 4.4[b),
but also the ghost boundary elements, which are elementsedfther processors having a
common interface, see Fig. 4.4(c). Thus, using the ghosteziés, each processor can create
the interface elements in its own partition and at partiiimerfaces. Finally the interface
termsag; (Pn, 36), a1 (Pn, 39), a55(0n, ), 2, o(0n,5), ar3(n, 3P), a5,3(¢n, 39), and
aZ,3(dn,09) are integrated on all the interface eleméhtsAs partitions are discontinuous,
they do not share common degrees of freedom (dofs), and tlelh@af manager creates new
dofs on each partition, independently on the node numbeG(irsh the dof is not directly
linked to the node), leading to a straightforward compataof Fi,,kx and Fiter in €ach par-
tition. However, this statement is not true for the ghostraets, which nodal values have
to be communicated through the network via MPI when evaigatie interface terms as de-
picted on Fig[ 4.4(d)). Also, as interface terms at the iafof ghost elements, are actually
computed on two partitions, only the part related to the elegiof freedom really belonging
to the partition is assembled into the lodgjk:e, in order to avoid duplication. At the end of

10On interfaces internal to the partition, if ti@®/DG method is used instead of the full-DG method, only
a5 (dn,00), a ,(dn, o) anda;,;(dn, o) are integrated as the displacement field is continuous froen o
element to another
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(a) Mesh of the structure.  (b) Partitioning of the mesh (METIS).

I —
-Qu_

11
Q7

(c) The ghost elements in dashed lines al{d) Nodal unknowns are exchanged
low performing the interface integration through MPI communications.
on both partitions.

Figure 4.4: Different stages of a parallel computation. $teps a) to c) are performed once
during initiation of the computation. The last one is penfed before each assembling step
of the internal forces vector (and of the stiffness matrithi@ quasi-static case).

the assembly process, the set of equatibns (#.189 -14.18&)vied locally in each partition.
So the time integration from timg to timet, 1 follows the chart flow:

e Knowing values at timéy,,, determine the critical time step and compute successively

the acceleration$ (4.1B9), velocitiés (4.1190) and dispteants[(4.191);
e Send nodal values to ghost elements, see[Fig. 4.4(d);

e Following Section 413, compute the stress field in each butkiaterface elements be-
longing to the processor, including the ghost elements amclissor boundary interface
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elements;

e ComputeFy; of the bulk elements froni_(4.172) and the interface forceb®fnterface
elementsF}er from (4.188) belonging to the processor, including the tjletesments
and processor boundary interface elements;

e Assemble the elementary force vectors in each processoat Ibioe interface of ghost
elements consider only the part on the boundary belongitigetprocessor.

Dynamic relaxation

As convergence problems occur when studying crack projmamgand as it can be useful to
neglect the inertia forces for some problems, we suggestigimal adaptation of the dynamic
relaxation concept first presented by M. Papadrakakid [185%&ct, this technique can be used
to prescribe a quasi-static loading with an explicit dynastheme. The main idea of dynamic
relaxation is to annihilate the dynamic effects by the idtrction of damping on the velocity
field in such a way that the static solution is reached afteirannum number of time steps.
This principle is commonly applied with the explicit centi#ference method [186,195,2[72],
among others, and is adapted herein to the explicit schenttuliiert-Chung([123] in an
original manner. From the developments of M. PapadrakdiS][ the dynamic relaxation
can be generalized to Hulbert-Chung algorithm by introdg@rdamping factor in equation
(4.190) which becomes,

@S = oM EE -y EE Ay [E Y @192)

wherec is the damping factor to be determined. The modificatiorothiced in equation
(4.192) is the only one in the algorithm, which allows an easgiementation and facilitates
the switch between the two schemes.(switch from dynamic relaxation to Hulbert-Chung
or conversely). The computation of the damping factor isesdasn the work of Z. Zhang
et al. [272], which avoids the computation of the stiffness matexcept that we compute a
global damping factor and not a local damping factor by naesuggested in [272]. The
reason of using a global damping factor is related to ouremgntation. Indeed as we use a
dof manager to create dofs independently of nodes, it is tvemy consuming to identify the
three displacements related to a node. Keeping these evasahs in mind the value chosen
for damping factor is,

1 " FN
c™l — = with == —int_ 4,193
1+ 22n+1At EI’H—l "M -z ) ( )

wherez" and F})), are respectively the nodal positions and internal forcéisnatn, and where
M is the diagonalized mass matrix. In this wdxkis lower or equal to the value of the critical
time step for the explicit Hulbert-Chung scheme.

For the application of an external effort, the convergenepethds on the fundamental

period of the problem. Therefore increase of density hasifioence on the convergence as
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an augmentation of the time step involves the same incrdade dundamental period.é.
the number of time steps needed to achieve convergence ssuthe no matter the time step
value). The external effort is applied at the beginning @&f $fmulation and is kept constant
until convergence, which is based on the criterion (at fienan+ 1),

| Fext— Finy

| Fex+ Fin

int

ol s (4.194)

where Fey: is the vector of external forces prescribed and wiegggis a convergence param-
eter, which is independant of the problem as we use a reladilve. A value of 102 seems
to give accurate results with a minimal computational eéffsrpresented through a numerical
example in AppendikBl6. Notice that this scheme can be eas#yl for parallel computa-
tion by computing the scalar vector product on each procdssfore summing the different
values.

Quasi-static solver

Gmsh includes a linear static solver, which resokas= Fgy;, with K the stiffness matrix,
x the unknowns vector anHey: the external force vector. This solver provides in factinte
faces with powerful and widely used libraries for matrix i@mperations as, Tauds [244,245]
or PETScl[21,22,23]. We extended this solver by derivatiariasses. Indeed, we implement
a non linear quasi-static solver based on Newton-Raphs@tidas to solveFi = Fext With
F} and Fgy are computed from Sectidn 4.5.1 in the case of the full-D@nfdation. Yet,
at each iteration, we have to solve a probléhx = Fgy;, which is performed by the solver
included in Gmsh.

Furthermore, the parallel implementation described lgeféan be used for the non linear
quasi-static solver. In fact, the PETSc library is able tvesthe (linear) systerKx = Feyt
in parallel, once it is assembled. We implemented this ratheme using the algorithm
described above for explicit scheme. Moreover PETSc usdtkmtive solver to solve the
problem simultaneously on several processors a good padmorer is required. We tried
the different standard ones provided by PETSc but they seefficient for large systems. A
study will have to be performed on this point to use the gstaic scheme in parallel but this
is out of the scope of this thesis. Notice that for serial cotafion, PETSc solves the problem
thanks to a direct solver without any difficulty.

4.6 Numerical benchmarks

This section regroups the results of benchmarks simulatedlidate the developed full-
DG shell formulations (linear and non linear). Furthermdine results of th€%/DG formula-
tion (4.100) are compared with those of the full-DG formigdas [4.95) on several examples.
In particular, the comparison of both formulations provas ability of the full-DG method
developed in this thesis to provide results as accurate aslgochusing continuous elements.
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Results are also compared to analytical solutions whenadlaibnd to results from the litera-
ture using mixed shell formulations. The drawback of the M6 method is to consider more
dofs, but it can be advantageously used to solve fracturéaméc problems by combination
with a cohesive law, see Chaptkér 5, or to perform parallel kitimns in which case the full-

DG can be limited to processor interfaces. Unless speciffeehwise, the stability parameters

are sett@31 =B = (%)2[33 =10, withh the initial shell thickness anld., the largest length
of the problem. This choice of a low value @ is motivated by the conclusions arising
from the Euler-Bernoulli beam case in Chapter 3. These coiocisisare confirmed by the
first numerical example of this section, which studies tliectbf 3; and where it is explained
that for thin meshes, stable results are obtained for thwsvilue of ;. Also as for explicit
problems the critical time step is proportionalﬁgxl—i low [B; values allow simulating the

Vi

processes in a reasonable time.

4.6.1 Quasi-static benchmarks

We first present several quasi-static benchmarks: a hesrisptith different constitutive
behaviors and a cut plate ring. These simulations regrowgrabenchmarks commonly used
in the literature to validate a numerical model of shellse@uthe good correlation between
our new formulation and the literature we can prove the ugliof our approach.

Elastic pinched open hemisphere with small strains

This first example is used to illustrate the numerical proeerof the full-DG method
presented in Sectidn 4.4. It considers a pinched open haemspwith radiusz, thicknesg

Property Value
RadiusR [m] 10
Thicknessh [m] 0.04
Openingd[“] 18
Young modulus [MPa] 68.25
Poisson’s ratio [-] 0.3

Applied forceP [N] 40

Table 4.1: Material and geometrical properties for the pattopen hemisphere test.

and an opening of a spherical sector arfyj(see values given in Tab._4.1). It is subjected to
radial loadsP applied on two diametrical directions, see Hig.l4.5(a). Bael is compressive
in the y-direction and tensile in the x-direction. One qeradf the structure is modeled by
exploiting the symmetries of the problem. The maximal défdecalong x ory igdy| = \Sy\ =
0.093(mN_1)§ (seel[234]) and is used as the reference value. This prolslsimulated with
9-node bi-quadratic elements with reduced integratiorRIQfbr several meshes22, 4x 4,
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I

T

(&) One fourth of the open hemisphere is(b) Magnified deformation of the complete
meshed. hemisphere for a regular mesh of thirty-two
quadratic-quadrangular elements on each side.

Figure 4.5: Study of the pinched open hemisphere. Problememsions: radiuR, thickness
h, openingd, concentrated loading.

8x 8,..., 32x 32 elements and for different values of stability paransfiee= 3> = 33 (%)2 =
10, 1€3, 1€5.

Results obtained by the presented full-DG formulation aregared with th&€®/DG for-
mulation previously presented in[185]. As it can be seernerFig.[4.6, there is no noticeable
difference for reduced mesh sizes. The displacements.(Bi¢$a) and 4.6(¢)) and conver-
gence orders (Figd. 4.6{b) ahd 4.6(d)), are the same forrnethod$2. Note that for the
lowest value of stability parameters, the convergence tsmanotonic as it appears on the
Figs.[4.6(d) an@ 4.6(H). This is due to the fact fhat= 10 is close to the stability limit, and
thus stability is only ensured for fine-enough meshes.

Elastic pinched open hemisphere with finite deformations

The previous example was also performed for finite deforwnatin the literature by sev-
eral authors[[9, 50, 152, 181] with the Neo-Hookean corstébehavior given in Takd._4.1.
They used this benchmark with the aim of demonstrating thigyadf their respective method
to remain locking free even when the mesh is distorted. Tadalmking phenomena M.
Bischoffet al.[50] had recourse to a mixed enhanced assumed strains fatioruvith 6 dofs
per nodes (3 displacements, 2 rotations and the thicknEss}heir part, P. Areiast al. [9]
use a mixed formulation based on mid-side rotations and lel$Nd@81] suggested tt@’/DG
method from which we extended our full discontinuous foratioin.

12Note that even if the formuld(Z4.163) predicts a convergendefor k = 2 it is numerically observed that
the convergence is ik+ 1 (seel[91l, 185]).
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Figure 4.6: Influence of mesh size and stabilization pararaedn the deflection for the
pinched open hemisphere.

We compare the results obtained for different loRds [0; 800 [N] by studying the re-
sponses at both points A and B. It is obvious from pictures of(Ei7 that all methods provide
similar results and therefore that our suggested new f@l+ethod is as accurate as a con-
tinuous method even in case of large deformations.

Elasto-plastic pinched hemisphere with finite deformations

The example of a (not open) hemisphere, with a radius of 1@frd]a thickness of.B8 [m],
depicted on Fig[_4]8, is also presented in the literafurg238] with theJ,-flow constitutive
behavior reported in Tab.4.2.

As in previous benchmarks, the hemisphere is loaded on twosie diameters (one in
tension, the other one in compression). Once again this jgbeais performed with the full-
DG method for quadratic and cubic triangles as well as fodcatéic and cubic quadrangles.
The structured quadrangular mesh is formed by 27 elemertslénents along each edge)
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(a) Deflection of point A. (b) Deflection of point B.

Figure 4.7: Results of the full-DG formulation for elast pgiecl open hemisphere finite defor-
mations are in agreement with literature[[9,1181].

(a) One fourth of the open (b) Deformation of the complete hemisphere for a reg-
hemisphere is meshed. ular mesh of height quadratic-quadrangular elements
on each side.

Figure 4.8: Pinched elasto-plastic hemisphere benchmark.

and the unstructured triangular mesh contains approxlyn@feelements. The deflectiors.
force curves at loaded points are plotted on Figl 4.9 fongnsar elements arid 410 (quad-
rangular elerments). These curves are compared to J. &irab[236] and to P. Betschkt
al. [48] results. These pictures give rise to the avoidance@fdhking that could be present
for triangular quadratic elements. With the full-DG forratibn this locking is avoided. Fur-
thermore, except for quadratic triangles with @¥DG formulation which strongly suffers
from locking, the other simulations give results in agreetwdth P. Betsch shell formulation.
In their paper, P. Betso#t al. explained the difference with J. Simo formulation [236],thg
difference of constitutive model. Indeed, the stressitastiplasticity model used in [236]
leads to less hardening than theflow theory used in[[48] and in this work. This example
proves that the full-DG framework provides accurate resudt matter the type and order (at
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Property Value
Young modulus [Pa] 10
Poisson ratio [-] @
Yield stress [Pa] @

Hardening modulus [Pa] 9

Table 4.2: Material properties of the pinched elasto-pidstmisphere benchmark.
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Figure 4.9: Pinched elasto-plastic hemisphere benchreatkts for triangular elements. The
locking is avoided with the full-DG method, which is in agneent with the literature [236,48].

least quadratic) of the element.

Elastic plate ring with finite deformations

This last quasi-static benchmark was first performed_in f26] consists into a thin plate
ring, with inner radiugx; = 6 [m], outer radiuge = 10 [m] and thickness= 3 [cm], with the
geometry depicted in Fig._4.111 and the properties reportdahb.[4.8. This ring is cut along
a radius AB, and, on one side of this cutting, the plate is clangvhile a uniform vertical
loading g = 12000 [N/m] is applied on the other side, see Hig. ¥.11. Téss has widely
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Figure 4.10: Pinched elasto-plastic hemisphere benchreathts for quadrangular elements
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there is no locking and results are in agreement with thatitee [236, 48].

10

Figure 4.11: Elastic non-linear plate ring benchmark. Gesyriof [181].

been used in the literature, seg.[9,/60/223], 224] to compare shell formulations when large
deformations and rotations arise.

This simulation is computed using the suggested discootisuGalerkin formulations
(C%DG and full-DG) with 8-nodes bi-quadratic elements and a-Heokean model. The
final deformed configuration is illustrated in F[g. 4.12(&)d the displacement evolutions of
nodes A and B located at the cutting are shown in Fig. 4.1 Z&hough the mesh experi-
ences large distortions during the deformation procegssthutions are in good agreement
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Property Value
Young modulus [GPa] 210
Poisson ratio [-] 0

Table 4.3: Material properties of the elastic non-lineat@king benchmark.
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(a) Nodes A & B forcevs. displace- (b) Final configuration.
ment.

Figure 4.12: Elastic plate ring results 6?/DG and full-DG methods are in agreement with

literature [9,224].

with the ones obtained in the literature, and in particulahw

e The hybrid stress formulation proposed by C. Sansial. [224], whose results are
displayed forg <3000 [N/m] (which is the maximum loading considered in tlager-
ence).

e The mixed formulation based on mid-side rotations propdseéP. Areiaset al. [9],
which converges for an applied linear force reaching 12006].

This proves once again that the use of the full-DG framewavkgyresults similar to the
existing formulations.

4.6.2 Dynamic benchmarks

We present two dynamic benchmarks with finite deformatiandeémonstrate the abil-
ity of our formulation to model correctly a structure sulieut to a dynamic loading. Both
benchmarks use &-flow constitutive model and are reported in the literatureparticular,
the second example contains experimental data that ardasatidate our new method.

Simply supported perfectly plastic square plate subjectedo uniform loading

This example studies the central deflection history of theasg plate, depicted on Fig.
[4.13 which is suddenly submitted to a uniform presguye- 20.7 [bars]. This plate has sides
of 254 [mm], a thickness of 12 [mm] and its material properties are reported in Tab. 4.4.
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Figure 4.13: Simply supported elasto-plastic plate subgeto uniform loading benchmark.

Property Value
Density [kg/m°] 2768
Young modulus [MPa] 69000
Poisson ratio [-] 03]
Yield stress [MPa] 207

Hardening modulus [MPa] 0

Table 4.4: Material properties of the simply supportedtelgmastic plate subjected to uniform
loading benchmark.

This benchmark has first been presented by T. Belytsehkh [39] and performed again
some years later by S. Swaddiwudhipogtgal. [243]. The central deflection is computed
using the explicit algorithm of Hulbert-Chung [123] withautmerical dissipation, for both
CYDG and full-DG formulations and for successivelx® quadratic and cubic quadrangles.
Results are reported on Fig._4114 showing the good correlatith the literature for all the
studied elements. This benchmark demonstrates the abflitiie full-DG formulation to
capture accurately the solution in case of a dynamic loading

Perfectly plastic cylindrical panel

This second dynamic benchmark, presented by T. Belytsehkb [39,45], focuses on a
cylindrical panel loaded impulsively as depicted on FiglB4.The perfectly plastic material
properties are reported in Tdb. 4.5. As for the square plample, this example is simulated

Property Value
Density [kg/m°] 2675
Young modulus [MPa] 72400
Poisson ratio [-] B3
Yield stress [MPa] 303

Hardening modulus [MPa] 0

Table 4.5: Material properties of the perfectly plastidmgtical panel benchmark.
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Figure 4.14: Results of the simply supported elasto-pladite subjected to uniform loading
are in agreement with literaturie [39, 243].

Figure 4.15: Perfectly plastic cylindrical panel benchikadie Grey part is the zone where a
normal initial velocity of 14351/m/g| is prescribed.

using the explicit Hulbert-Chung time-integration algbnit without numerical dissipation,
and using both th€%DG and the full-DG formulations. The results obtained vati x 11
cubic quadrangles are displayed on Hig. %.16 and are conhpétie the experimental data
of T. Belytschkoet al. [39,/45]. This Fig. shows that the developed method fits wedl t
experimental data. Furthermore, snapshots of the defmmpttocess are shown on Fig. 4.17
in the case of the full-DG formulations.
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Figure 4.16: Perfectly plastic cylindrical panel resutts €°/DG and full-DG formulations
compared with T. Belytschko experiments|[39].

MPI benchmarks

The efficiency of the parallel implementation is discussedwo previous examples by
evaluating the speed-up. This number compares thetiimeeded to perform the simulation
on one processor with the timgneeded to solve the simulation arprocessors. Ideally, the
speed-up has to be equal to,

t 1
speed-Upheoretical = i = - - (4.195)

1 n
Nevertheless in practice, some data have to be exchangew) ¢harallel computations and
these MPI communications require time leading to a loweedpg. However if the scheme
is well implemented and if the cost of MPI communications égligible, a value near the
theoretical one is expected.
If the number of interface elements introduced between teshnpartitions is low com-
pared with the number of elements in each partition, therMR& communications are neg-
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Figure 4.17: Snapshots of the deformations process witHul®G formulation for the
perfectly plastic cylindrical panel.

ligible. In practice a finite element mesh includes thousamdmillions of elements and is
performed on tens or hundreds of processors and therefoepi@ble speed-up can be ob-
tained. To illustrate this, the two explicit benchmarksgemted here-above are computed
with thinner meshes on the supercomputer of our Universitied "nic3”, which has height
processors per node. For the square plate examplea 60 and a 120x 120 elements
meshes are considered, and for the cylinder, & Z4% as well as a 4& 152 elements meshes
are used. As these meshes represent a large computatishahame processor and as we are
interested only by the speed-up measure, only 1% of sinonisitare computed from one to
sixteen processors with coarser mesh and the thinner meshesed to perform simulation
from sixteen to ninety-six processors. The speed-up rabtsned in all cases are reported on
Figure[4.18. For the plate example, a very good speed-uptasnga until height processors
with the coarser mesh. After, the cost of MPI communicatisnmsot negligible and therefore
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Figure 4.18: Speed-up measures are near the theoretical waile the number of elements
by partitions remains large compared with the number ofriate elements between parti-
tions.

the speed-up is lower than the theoretical one but it remedasptable until 16 processors.
For the cylinder example, an excellent speed-up is founa¢itiheight processors. Then for
sixteen processors the reduced number of elements byigai@Eround one hundred) com-
pared to the number of interface elements (around thirtg)eéxs the lack of efficiency. This
point is highlighted by the simulation with the thinner mestshowing a speed-up near the
theoretical value until ninety-six processors as the nurobelements by partition remains
large compared to the number of ghost elements. This condgigenerally met for classical
problems where the speed-up of the suggested method widldnetime theoretical value. Prac-
tically we will study larger problems, see Sectlon]5.2 withrenthan one hundred thousand
elementsi(e. problems with more than one million of dofs) with a high spesd

4.7 Conclusions

In this chapter, we present an original full-DG formulati@inon-linear Kirchhoff-Love
shells. The main difference of this method compared witleoghell formulations is to con-
sider discontinuous polynomial approximation betweemelats. Ther® andc?! continuity
between elements are then ensured weakly by boundaryaoéetérms. These ones are ob-
tained similarly to other DG methods reported in the literat Furthermore, although the
out-of-plane shearing is negligible in Kirchhoff-Love thrg, the stability term related to this
shearing is used to guaranty the continuity of the normalldcement. This results in a one-
field (displacement) formulation contrarily to usual sheiplementations which use mixed
formulation.

As it considers more degrees of freedom, the full-DG forrafais time consuming com-
pared to theC®/DG formulation where only"! continuity is weakly ensured, while® con-
tinuity arises from continuous polynomial approximatiom$evertheless, on one hand, this
formulation provides a powerful tool to perform parallehgoutation. Indeed, as it is demon-
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strated in this chapter, the parallel implementation ofekplicit Hulbert-Chung algorithm
is mandatory with the recourse to DG. Indeed, we suggestexdtigimal parallel implemen-
tation, based on ghost elements between partitions torobtparallel scheme independent
of the constitutive behavior. On the other hand, as it willdigcussed in the next chapter
the full-DG method developed herein can easily be combinduan extrinsic law to obtain
a powerful and versatile tool to perform fracture mechasiosulations. In such a frame-
work, the full-DG method has to model the continuum part & tleformation. Therefore,
several numerical benchmarks are presented in this chagteove the ability of the full-DG
formulation to be as accurate as other (continuous) shetidtations to model a continuum
mechanics problem.



Chapter 5

Full-DG/ ECL framework for fracture
mechanics of thin bodies

This chaptet extends the full-DG/ECL framework developed for Euler-Bedlidoeams
in Chaptef B to Kirchhoff-Love shells. The full-DG formulaii was presented in Chapter
[4 where it was demonstrated that this method is able to stmaacontinuum mechanics
problem with discontinuous elements. In particular, it wagved that the full-DG method
provides in this case results as accurate as other methessrped in the literature. The ad-
vantage to have recourse to the discontinuous Galerkinadetphpears clearly in this chapter
when simulating fracture mechanics problem. Indeed inalmserting an extrinsic cohesive
element during the computation without any change in theltagy of the mesh. In fact, the
interface elements naturally present in such a formulatéonbe easily replaced by a cohesive
one at the onset of fracture.

Furthermore, as well as for the Euler-Bernoulli beams case,Ghaptel]3, we suggest
applying the cohesive principle directly on the reducedsstes to avoid the requirement of
moving the neutral axis during the through-the-thicknasslc propagation. Therefore the
model presented in Sectién B.3 is originally extended tastiedls. As we neglect the out-of-
plane shearing by assumption, the fracture mode |1l canmotddeled and we also assumed,
as in Chaptefl4, a plane stress state. Therefore it limits ppécability of the suggested
framework to cases where the 3D behavior of the crack is gietgi. If it is not the case, we
think that the recourse to a 3D FEmodel or at least a 3D cradateime needed to capture
accurately the crack path. Such a 3D crack model can be cewhldina shell formulation
by having recourse to a multiscale approach as suggested\Wydttet al. [260]. Therefore
in the following we focus on problems involving mode | or a domation of mode | and
[I. This modes combination is realized using the work of G. @ahwoet al. [63], which
consider a unique effective opening combining the contioims of the different modes. In
fact, the recourse to an effective opening is an assumptidalyvadmitted in the literature

[73/142/168, 194,196, 268.274].

1The main applications presented in this chapter are sutnitr publication ininternational Journal of
Fracture[34].

149
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Then, we perform several benchmarks to prove that our meadepowerful and versatile
tool to simulate dynamic fracture mechanics. Indeed, wéyapu framework to crack prop-
agation as well as to fragmentation that are two very diffef@cture phenomena. Moreover,
the loading conditions include concentrate force, pressbiast and (rigid) impact demon-
strating that the method can be used for different loadingditmns. Furthermore, as we
solve the constitutive behavior in the bulk and interfacarednts before fracture, the frame-
work is suitable in linear small elastic strains as well aasstl-plastic finite deformations
cases, as long as the fracture involves small scale yieltibgittle materials.

5.1 Combined full-DG/ECL

The idea of combining a full-DG method with an extrinsic csie law was pioneered by
J. Mergheinet al.[157] and by R. Radovitzkgt al.[211[228] in order to avoid the difficulties
inherent to the classical cohesive approaches (as lengtityibed in the Chapter 2). The main
idea of this method can be summarized by substituting théi@l weak formulation of shell

(4.95) by,
Zagulk@hv &I)) + Z [(1 - GS) al'snter(q’h, 6¢> + cxS‘a(s:ohesiveg [[q)h]] ) [[54)]])]

= Dext(Pn, 0 ) + boound bn,39) , (5.1)
with,

apuk(®n, Ob) = ag(dn,ob)+-an(Pn,db) +af(dn, o), (5.2)
Bnter(®n, 00) = @31 (Pn,0) +a32(dn, ) + a3 3(Pn, O) +

a1 (n, 0) + a5 2(bn, 59) + a5, 3(n, o) —

ag3(dn, ), and (5.3)

& onesivd [@n] . [0]) the bi-(non)-linear form of the cohesive terms that has taléined.

Furthermore, the different bulk terna§(¢n, 5b) (@.62),a5(¢n, 5b) (@.63),a5(¢n,5p) (£.62),
as well as the interface terna,,(¢n,00) (E.77), a5,,(dn, 0b) @.87), a5,5(dn, o) (£.90),
a1 (dn. 00) (@.78), a5, 5(¢n,0¢) (4.88), a5, 5(dn, 5¢) (£.91) andag;;(¢n, o) (4.92) can be

replaced by their linear counterparts in case of small deftions (see Sectidn 4.4.2). Notice
that compared with the Euler-Bernoulli beams case Eq. (3.ttie is no parametss in
front of the termaZ;(¢n,8¢). In fact, this parameter is introduced for the beams to ensur
the continuity of the normal displacement until the end effitacture process, but in the case
of shells this continuity is ensured implicitly thanks tetadjacent Gauss points making the
recourse to the parametgruseless.

In Eq. (5.1),05 is a Boolean value, which switches from "false” to "true” wheefracture
criterion is met. Indeed, before onset of fracture, Eq.)(Botresponds to the weak form of the
shell problem[(4.95) of (4.148), and thus inherits from iiswerical properties of consistency
and stability. Upon onset of fracture, the interface terelated to the DG framework are
replaced by an extrinsic cohesive law, which has still to &ngéd. Note that in practice the
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Booleanas is evaluated at each Gauss points of interface elementshangfdre all Gauss
points of an element are not necessarily fractured.

As itis discussed in Chapter 3 for beams, when considerinthdwy of thin structures, it
is very difficult to separate the thickness part under tangiom the part under compression,
during a through-the-thickness crack propagation. Sostsuggested, with success for Euler-
Bernoulli beams, to apply the cohesive principle to the testilstressea® andm®, which
appear in thin bodies equations. The same concept is extdératein to take into account a
mode | or Il fracture, or a combination of modes | and Il simmaokously.

Toward this end, an effective opening is defined herein fcheaode and the combina-
tion of both modes is performed by following the idea sugggdty G. Camachet al. [63].
Note that in Kirchhoff-Love theory the out-of-plane shearis neglected, which implies the
impossibility to take into account a fracture in mode llI.

Figure 5.1: Local basis vectors on the interface elemermgetatial to the shell surface. The
interface is drawn with dotted line. By conventidnyg) , is parallel andp q) » is normal to the
interface.

Before developing the cohesive law, we assume that the ctea/basis, tangential to the
shell, at the interface element obeys the following rules:tum(o)’l Is parallel to the interface
element an«p(o)z is perpendicular to the interface element, as it is illusttaon Fig[G5.01. In
the linear range (4.148), everything can be computed ingfexence convected bagig .
On the contrary, in the non linear range (4.95) the diffecprantities have to be evaluated in
the current convected bagig,. Thus we unify both cases by using the notatog) .

5.1.1 Model

Let us first discuss the case of the mode | opening, seelFiy. Gosidering the basis
of the interface element as shown on Hig.] 5.1, the resulfiiogte are related to an effective
opening whose aim is to consider the two parts (tension andibg) of the normal opening
represented on Fi@. 5.2.

Similarly to what has been suggested for Euler-Bernoulliniedsee Sectioh _3.3), an
original normal effective opening, corresponding to thedmd is deduced from the tension
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Figure 5.2: The two components of the normal operjgview perpendicular to the shell.
The neutral axis is drawn with a dotted line.

and bending openings

[w]" 90 eqlt]” 90
Ny = (1-n)——- e (5.4)
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(a) Resultant membrane stress. (b) Resultant bending stress.

Figure 5.3: Linearly decreasing monotonic law.

In this expressiorfu]* and [t]* are respectively the effective openings in displacement
and in rotation, resulting from the use of a DG method befaaettire activation. Indeed at
fracture initiation the opening in displacemdunt] and[t] are not exactly equal to zero due to
the weak enforcement of compatibility. In order to have npknings at fracture initialization
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these initial valuegu], and[t], are subtracted frorfw] and[t], yielding

[l = [ul - [ul,. (5.5)
[ = [l (5.6)

Moreover, the parameteg ensures that the coupling between the resulting tensésstand
the resulting bending stress respects the energetic leafgacthat the fracture process re-
leases the correct amount of energy), which is obtained for

g o
T el |

Wheren and m%z are respectively the traction effort and the bending coapleacture ini-
tlallzatlon The factoheqm Egs. [5.4) and(517) ensures the respect of energetiatm|as
it is shown below for a pure bending case. Considering thatlpaelecreasing cohesive law

as on Fig[5.B
<m22>coh m%z <1— ) (5.8)

assuming that the bending leading to fracture is equivalera tensile stress, the critical
bending stress writes,

~22
% ~ ho, (5.9)

and using the definition of the resulting normal openingl)(5.4

R s ieq<m%2>(1__)dy

e 5 =hGe, (5.10)

[t]5$0)
o0l zl |
is completed, wher@c andcrC are respectively the fracture energy and a spall stressdeje

on the material only, wheus; = ZGC is critical opening for a linear cohesive law (see Fig] 5.3),
and wheret sign depends on the direction of bending. Let us remark theglation [5.#),
sign+ is used |fm%2 < 0, while sign— is used otherwise. The assumption|5.9) provides
a relation to compute the value bfq For a pure bending problem in linear elasticity the
fracture at skin occurs for,

wherel = —qu’ is the critical opening in rotation, for which the fractun®pess

h?o,

g2 = 5 (5.11)

2The demonstration remains valid with another cohesive law.
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and thus, using Eq[(3.9f%= 1.
Nevertheless, in the case of a tension/bending coupledgmplthe equivalent thickness
has to be computed considering the bending part of the daadmg to,

22
hd = g 5.12
! hoe — g%’ (5.12)

222 22
which under linear elasticity hypothesis, as fracture m:when6—h2— + n% = 0c becomes,

hd = 6 (5.13)

as presented for Euler-Bernoulli beam in Chapter 3.

5.1.2 Mode ll

Figure 5.4: The two components of the tangential opedihgBefore opening, the element
axes are the same and the two crack lips are in the same plane.

Following exactly the same argumentation for the tangeatiactive opening in mode I
as drawn on Fid. 514 reads,

[u]”- ¢ eqlt]” 901 I"- &0
h
60 lu Ry H

In this expression, the parametgi ensures that the coupling between the resulting shear
stress and the resulting torsion respects the energetind®lwhich is obtained for

iy
T+ (D

5= (L) 0t (5.14)

(5.15)
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wheren3! andnig! are respectively the shearing effort and the torsion toeqfiacture initial-
ization and where the equivalent thickness of mode Il englitie energetic balance is given

by,
21 21
hd = T s (5.16)

" hte—ng' hBoc—ngl’

wheret. = 0¢ is the shearing critical strength and whre- 'f<'—|'c° is the fracture mode cou-

pling parameter. Finally, siga is used in Eq.[(5.14) Whenm%1 < 0, and otherwise the sign
— is used, following the same convention given rﬁuﬁ2 in mode I.

5.1.3 Modes Combination

Now the combination between modes | and Il is realized in alaimway as achieved by
several authors [73, 142,168, 194,196,268] 274] when deriag Cauchy stress tensors for
3D TSL. This method, which was first suggested by G. Camattad. [63], and extended
a few years later by M. Ortiet al. [191], considers an effective stresg; to detect fracture
initialization, with the criteriaoes > 0¢, and allows fracture in compression happening if the
shearing stress is sufficiently large,

2. R-272 ifg>
Oeﬁ:{ \Vo%+ B4t ifa>0 (5.17)

5<[t|-pelo|> ifo<0 "

In this criterion,c andT are respectively the normal and tangential Cauchy stresseant
tegration point where fracture is evaluated ggds the friction parameter, depending on the
material only. The operateg e > is equal toe if @ > 0 and 0 otherwise. The initiation cri-
terion (5.17) can still be considered in the present worlletd, from the resulting stresses of
the shell formulation, the Cauchy stress tensor can be Hialuated through-the-thickness
of the body, either analytically for linear elasticity or@impson points on the thickness for
non-linear shells.

Furthermore, in the coupled case, the equivalent thickofesedes | and Il are determined
respectively with the values of= o) andt = 1) reached in Eq[{5.17) when = o leading
to,

%22
eq _ m%

%21
pea _ Mo 519
I hT|| —n%l ( )

However, in this new formulation for thin structures the esive law should be written in
terms of resulting values instead of Cauchy stress, and soargitjes and notations have to
be first introduced:
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e The effective openingd* is a combination of the two effective openintys (5.4) andA;
(5.12). SAA* allows taking into account a coupling between the two frectunodes. Its
value is an extension of the formulation, presented by Miz@ttal. in [191], to thin
structures:

A=\ < B2 2, (5.20)

The use of the operate®. e > is mandatory. Indeed if the rupture occurs in compres-
sion, the normal opening has to be equal to zero, as in cosiprethe normal opening

is negative, which means that there is a penetration beteleements. Obviously this
latter case has no physical meaning and forces have to beuted between elements.
In place of contact forces, the DG terra3,(¢n,0¢) anday ;(dn,0¢) (see equations
(4.87) and[(4.90)) can also be used to weakly enforce a zewtidion.

e The critical opening). is the opening for which the fracture process is completed,
meaning no remaining forces exist between the fractureelssidrherefore, for this
value, the energy released has to be equ&doand for linear decreasing monotonic
cohesive lawsf; = ZG—GCC

e The maximal effective opening reached during the simufel,,, is an internal vari-
able tracking the maximum opening history.

Now the cohesive law can be formulated in terms of these néinitiens. As it is well
known that for brittle materials the shape of the cohesiwehas little influence on numerical
results, as long as the law is monotonically decreasingmglsi linear decreasing law is
considered in this work. In case of unloading the effort dases linearly to zero (see Fig.
[5.3). By application of cohesive principle on stress resuilt@ctors, the following cohesive
model reads,

1. Tensile casea(> 0 at mid-surface)

o if A* > A} .« (loading case),

(1), = 12 (1-5 ) B (521
(P = (15 ) & (522
() = (15 ) 29
(P = 88 (1-5 ) F 52

3Note that the cohesive zone is in term of the traction compsme? and not®® even in the linear range.
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o if A* < A} 2« (unloading case),

A*
222
(M%) = (Arnax ) n (5.25)
22
<n >coh - (Amax )A* (5'26)
=21 vy
(e = <A?nax C) i~ (5.27)
(™eon = ( - ) ~ (5.28)
max Ac
2. Compression case 0 at mid-surface),
o if A" > Af .« (loading case),
A*
~21 ~21
(fehy o, = M (1—A—C) (5.29)
21 21 A*
<n >C0h — no (1_A_C) (530)
o if A" < Afax (unloading case),
A A
~21 ~21
<m2 >coh - (Aﬁax_ A_c) (5.31)
A AF
21 _ 21 _a

where in this last case the conditi@%| = % (cf. equation[(5.20)) is taken into account.

The use ofng?, M2, n3l, ma! allows guarantying the continuity of stresses at fracture
initialization. If this continuity is not ensured, K. Papiauet al. [I196] have demonstrated
that there are some convergence problems. Furthermorefrastare initialization the ratios
2—’:‘ and |ﬁ§| are undetermined, their initial values are chosen resmdgtequal to one an%
in order to ensure the continuity of efforts. It must be netichat the choice of tensile or
compressive case is performed at fracture initializatidrerefore, although unloading and/or
compression/tension shifts can be accounted for durinfrdlcéure process, as shown on Fig.
5.3, this model is not able to shift from a fracture procestesion to a fracture process in
compressiond.g.start the fracture in compression and end up the fractuensian). Finally,
with these definitions, the cohesive terads, ..;,{ [¢n] , [0¢]) of equation[(5.11) can be written

Bonesid 00l [30]) = [ (in)con [39] vy dote

S

+ / (A - [58] V5 0026, (5.33)
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where the components 6f) .., and(m) ., are computed thanks to the set of equatiéns (5.21
-[5.32), with others components of the resultant stressealdéq zero. Note that all these
definitions depend on the choice of manifold used on thefarter As mentioned earlier, this
paper follows this conventiorp g, ; is parallel to the interface anfil) » is perpendicular to
the interface, as it is illustrated on FIg. b.1.

5.2 Full-DG/ECL framework applications

The full-DG formulation presented in Chaplér 4 and the egicicohesive model devel-
oped above are combined in this section to solve severaluf@enechanics problems. As
previously discussed our suggested framework is suitaldigriamic fracture mechanics and
we restrict the application to this field as it is the topic luktthesis. Nevertheless we try to
cover a large variety of phenomena in the dynamic range. tiicpéar, it is proved herein that
our framework can be applied to crack propagation as weltagrientation which are two
very different fracture phenomena. The first one is inves#id in linear and non-linear range
and the second one is restricted to linear range. We valaatemethod by comparing results
with numerical and experimental data coming from the ltiene

5.2.1 Dynamic crack propagations

We present in this section several benchmarks which stuedghthamic crack propagation
in initially notched specimen.

Mode | dynamic crack propagation: spall test of a notched spemen

This example, performed by P. Zavattieri [269], consideesdynamic crack propagation
of the single-edge notched specimen represented oh FlgTBexdifferent material properties
are summarized in Talh._%.1. Contrarily o [269], where caleeslements are only inserted
along a predefined crack path, with this full-DG framewofe track cara priori follows
any direction. As the crack should propagate straightfodlyafor symmetry reasons, the test
is numerically performed using structured and unstruckuneshes, successively, in order
to show the convergence of the method for both mesh confignsatResults on a structured
mesh of 3206= 40 x 80 (width x length) bi-cubic quadrangles are considered as the referen
solution.

The test is performed using an explicit time integratioroatpm without numerical dis-
sipation (spectral radius equal to one). The forsedisplacement curve at the top edge of
the plate is illustrated on Fig. 5.6[a), where some chariatiepoints obtained by P. Zavat-
tieri [269] are also reported, showing an excellent coti@fabetween the results. This force
vs. displacement curve shows the effect of a wave propagatidherbar, reflecting on the
symmetry axis before propagating the crack. Fig. 5|6(bjsplee energy released during the
simulation with the structured mesh:

G Wext — Wint

. (5.34)



5.2 Full-DG/ECL framework applications

159

v=1[m/s]

RN

w =127 [mm]

300 [mm]

L:

" ap = 26 [mm]

thickness
h=6[mm]

P

v=1[m/s]

Figure 5.5: Single-edge notched specimen.

Property Value
Young modulus [GPa] 200
Poisson ratio [-] 03]
Density [kg/n?] 7850

Fracture energy [J/fh 12250
Fracture stress [MPa] 700
Coupling parameter [-] 1
Frictional coefficient[-] 0

Table 5.1: Material properties for the single-edge notdiest

whereWgy is the work of external force®i is the work of internal forcegy is the thickness
andAa s the total increment of crack length (101 [mm] in this ca3éje graphs shows thé&t
increases (linearly) only during crack propagation anbikzes itself at 12021 [kJ/nf] which
is close to the material fracture energy of 250 [kJ/nf] within a 1.8% relative gap. This test

demonstrates the ability of the presented fracture moddigsipate the correct amount of

energy during the fracture process.

Furthermore, this example is also simulated with two unswtnitunstructured meshes.
These two meshes are built with quadratic 6-node triangiegsh are generated by prescrib-
ing a distance between two nodes at the crack tip®&ad 5 [mm] successively. Further from
the crack, the element size is twice larger. These spedtitaproduce a coarse mesh of ap-
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Figure 5.6: Results of single-edge notched specimen fouatated mesh are in agreement

with [269].

proximately 900 elements and a fine mesh of 2600 elements siudations are performed
with the coarse mesh, one without numerical dissipationtaeather one with a low numer-
ical damping (spectral radius of9). Crack paths obtained with these unstructured meshes
are illustrated on Fid. 57. It can be seen, that for the eoauessh, a crack bifurcation appears
if numerical damping is not introduced Fig. 5.7(a), while thse of numerical damping pre-
vents this behavior, Fid. 5.7(b). The crack path obtaineti trie finer mesh and a spectral
radius of 09 is illustrated on Fig[ 5.7(k). In the three cases some ei&sridew up during
the simulation. This phenomenon is purely numerical andiscdue to the combination of
the fracture criterion and of the Gauss integration peréatron the interface. The fracture is
introduced at a Gauss point when a effective stress is ldinger the characteristic material
strength ¢fr. Eq. (5.17)). Thus, the criterion can be satisfied at two Gposs#s of adjacent
edges at the same time step (see Eig. 5.9 for quadratic legnd his is particularly true for
small elements as the integration points on two differegesdan be close. This eventually
can lead to the blow up of an element. One way of avoiding this reduce the time step, or
to give a statistical distribution of critical stress foetimterface elements [2176].

When analyzing the curve foraes. displacement illustrated on Fig. 5.8 it is observed that
the results for the different meshes are in agreement. Allesuare similar, which demon-
strates that the unstructured meshes predict an exceltdlgesult even if they don't repro-
duce the exact crack path. In particular, the finer mesh, sheovelative error of Z % on
maximal force, and of 8 % on the time where the force vanishes to zero.

Three-point bending impacted plate

This benchmark focuses on the simply supported notched ptasented above which is
dynamically impacted in its center by a rigid cylinder witlpescribed velocity of 1 [m/s].
The setup of this benchmark, including the dimensions, @sated on Fig.[ 5.10(R) and the
material values are reported in Tab.]5.2. In fact, the crachagation was previously reported
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Figure 5.7: Crack path obtained with unstructured meshethétensile test. The black line
draws the reference crack path. The displacements are figaghd times.

in the literature by P. Zavattierri [269], who used shellneésts combined with an intrinsic
cohesive law for which cohesive elements are pre-inseftewjdhe crack path. Furthermore
he used a fracture criterion based on a maximal bending mmenwhich is transformed
herein to a criterion on the stressfi{ Section[5.113). The mesh used, Fig. 5.10(b), has
40 x 80 cubic quadrangle elements. Finally, although the crathk s well defined for
this case, due to the loading conditions, in our framewokk ¢rack can propagate along
any interface elements. This shows that the stress waveagatipn is not modified by the
DG/ECL framework.

The simulation is performed on four CPUs using the Hulbert+@@{d23] time-integration
algorithm, and without numerical dissipation. The craakgagation over time is displayed on
Fig.[5.11 which also shows the results obtained by|[269].dllzases the crack propagation
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Figure 5.8: Small variations of the force-displacemenatieh are observed with different
meshes for the tensile test.

Figure 5.9: Activation of fracture at two Gauss points (+)diffierent edges. The initiation
can occur simultaneously at both Gauss points of group Eifuture criterion is reached at

both points. The criterion can also be met later on for grdtgand 2b independently. If all
integration points are broken the element can blow up.

is initiated at the same time and the plate is broken at theegame. This example demon-

strates that our fracture framework models with good a@yutlae bending, in combination
with contact.

Blast of a notched pressurized cylinder

A cylinder, with a diameter of 2 [m], a length of 1 [m] and with a thickness of 1 [mm], is
blasted. It exhibits an initial crack of 56 [mm] centered taheight. It is made of Al2024-T3
aluminum alloy, which has the properties given in the TaBl. This example suggested by
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Figure 5.10: Setup of the 3-point bending plate as prewopitsented by [269].

Value

Property

200

03]

7850

Young modulus [GPa]

Poisson ratio [-]
Density [kg/n?]

12250

Fracture energy [J/fh

2170

1
0

Fracture stress [MPa]
Coupling parameter [-]
Frictional coefficient [-]

edge notdestin bending.

Table 5.2: Material properties for the single

R. Larssoret al. [133] is studied with two constitutive behaviors: a Hooke land and a

Jo-flow elasto-plastic law. Indeed, the obtained results &itrelastic material law were not
in correlation with experiments, as mentioned by R. Larssoal. [133], who suggested to

introduce an elasto-plastic finite deformation model talgttihe problem in a more realistic

way.

Note that, contrarily to the elastic cases were the fractmexgy is artificially increased

to 67 [kJ/nf], as suggested by R. Larssehal. [133], to take into account the plastic work,
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Figure 5.11: Crack propagation for the 3-point bending pl&esults are in agreement with
[269].
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Figure 5.12: Improvement of crack speed computation duéeocbnsideration of elasto-
plastic finite deformations.

the elasto-plastic behavior allows to use the real mategiales given R. Larssaet al. [133].
Furthermore, in order to avoid unphysical blow up of elermeshiring crack propagation,
the idea suggested by F. Zhetial. [276], who used statistical distributions for the fracture
strengthog, is considered. This strength can vary in a range arounaitsmal value (10% for
the presented application) at each Gauss point of the aterélements which is physically
justified by the material imperfections.

This notched cylinder is loaded by a blast wave, which is &ated using the internal
pressure evolution depicted on Fig. 5.1P(a). The cylindenitially pressurized app = 2
[bars]. This initial pressure is applied in a quasi-statayywAs the use of an implicit scheme
is prohibitive due to the very thin mesh used to capture thekcpath, the dynamic relaxation
presented by M. Papadrakakis [195], which allows to perfarquasi-static analysis with an
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Property Value
Young modulus [GPa] 73
Poisson ratio [-] B3
Density [kg/m°] 2780
Yield stress [MPa] 350

Hardening modulus [MPa] 800
Fracture strength [MPa] 65065
Fracture energy [Kin?] 19 or 67

Table 5.3: Material properties of the Al2024-T3 alloy usedstudy the blast of a notched
pressurized cylinder.

explicit dynamic scheme, is used to initiate the pressutbercylinder, see Sectidn 4.5 for a
description of the method, before shifting to a classicaliei time integration.

Taking advantage of the problem symmetry, only the top sidaeocylinder is modeled,
successively, with 5500 bi-cubic quadrilateral elememts with an unstructured mesh of
18536 cubic triangles. These meshes ensure a mesh sizersthati the cohesive side (2.2),
which is equal to 6 [mm] in this case. The simulations areqreneéd on height processors
using the explicit Hulbert-Chung scheme [123] includingw itmumerical dissipation (spectral
radius of 09).

The speeds of crack propagation, measured experimentallgtztained by XFEM method
by R. Larssoret al.[133], is also obtained with the presented DG/ECL frameworlihear
small strains and for elasto-plastic finite deformationsede speeds of crack propagation are
shown in Fig[5.12(B). As predicted by R. Larsgiral. [133], the introduction of plasticity
allows to obtain results in agreement with experiments évidre speed at the beginning of
the crack propagation seems faster in our model. After aggajon of 0.18 [m] the model
matches well the experimental data. The crack path pretimtehe simulations is shown on
Figs.[5.18 and 5.14, respectively for triangular and quagleaelements. A straight propaga-
tion is observed with quadrangle elements, so only the firsdkcpath is depicted. With the
unstructured triangular mesh, due to the heterogeneityemtesh, the crack initially deviates
but afterward it propagates straight before bifurcatiommwheaching the clamped part, as ob-
served in the experimental data Ffg. 5.1B(h). As expectedinatructured mesh converges
toward the solution, but the structured mesh was used asaisop.

5.2.2 Dynamic fragmentations

The results previously presented demonstrate the abilttyedull discontinuous Galerkin
/ extrinsic cohesive law framework to propagate an initralck. Hereafter, we investigate the
ability of such a model to initiate cracks. An interestingeaf multiple crack initiations is the
case of fragmentation. Recently, several authors investggach a problem with 3D elements
(in place of shell elements). On one hand, R. Radovittlal. [211] studied the fragmentation
of a thick plate due to the impact of a rigid sphere. On therdtlaed, S. Levy[[137] applied
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Figure 5.13: Crack propagation with the triangular meshtukéc(h) comes from [133].

the same framework to the uniform expansion of a hollow sphEhis last case, can be solved
with the linear shell formulatiori (4.148) when the thickmé&ssmall enough (the thickness of
the sphere is.Q [mm] for an external radius of 10 [mm], which allows modagjithe sphere
as a thin body. Furthermore, the literature reports othegnrentation studies as, among
others, the one presented by F. Zhetual. [275]. In this reference the fragmentation of a
plate ring under radial uniform expansion is studied withessical extrinsic cohesive law for
2D elements. As they used a continuous formulation onlyakeoimputations were performed
with a high computational time. The DG/ECL framework preserh this thesis allows using
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Figure 5.14: Straight crack path with the quadrangular mesh

a parallel implementation and leads to a reduced computdtione.
In the following, through the study of two benchmarks, a gssful comparison between
the 3D formulations of the literature and the shell framdwmesented herein is carried on.

Defect model: Weibull distribution

The mechanism of fragmentation is mainly controlled by tisrithution of the defects
in the specimen. Indeed, for a specimen made of a perfectiadaad uniformly loaded the
fracture takes place in each point at the same time. Thusptimder of fragments obtained by
a finite element analysis is equal to the number of elememisiceed in the mesh. On the con-
trary, in a component made of a non perfect material thedradhitiations of multiple cracks
take place near the defects, which are the locations ofsst@scentration in the microstruc-
ture. Obviously, fracture occurs earlier at these streseeamtrations and forms fragments
composed of several elements. Thus the model of these ge$exbt straightforward in a
finite element analysis as they cannot be represented byespapameters. So a statistical
distribution of the cohesive strength is commonly used ggssted by[[80, 136,137, 275].

In this section we consider a statistical distribution o gtrengtho; to be consistent
with the fragmentation data of the literature based on thekved W. Weibull [255]. He
performed some experiments which demonstrated that tisdedoading leading to fracture
can vary for specimens of the same material and of the sammejgo Based on these
experiments he suggested an empirical formula for the pibtyaof fracture, accounting
for the heterogeneity of the material,

Pi(o,V) = 1—exp VOV, (5.35)

whereo is the value of the equivalent stress and wheéiis the volume of the specimen. The
functionN(o, V) increases necessarily monotonically watland, therefore[ [255] suggested,
based on his experimental data, to employ a power law,

¥ (gm) " if 6 > oy
N(o,V) = ¢ W\ ao =-mn (5.36)
0 otherwise
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where\y is an arbitrary normalizing volume. Furthermore the othemameteryg, omin and
m, representing respectively a stress scale factor, thenmainialue for which the fracture can
occur and the Weibull modulus, are all characteristics efrtfaterial.

The work of Weibull can be applied on the cohesive strengthicivis then computed
from

0C*“c,min)m

F(oe) = 1—exp_( % (5.37)

In practice it is easier to generate a uniform distributietween zero and one, from which a
Weibull distribution can be easily obtained,

Tes = 0o (— log(xrand)) ™ + G min, (5.38)

whereadgs is the value of the cohesive strength for the interfaemd withxrand a random
value coming from a uniform distribution between zero and.on

Therefore in this following, the simulations are perfornveith the linear full discontin-
uous Galerkin Kirchhoff-Love shell formulation presentedthe Chaptefl4. The fracture
initiation is modeled by cohesive interface elements asrite=d in Sectiof 5]1. The cohesive
strength of these elements follows a Weibull distributieee Eq.[(5.38).

Fragmentation of a plate ring

7=

Figure 5.15: Geometry of the plate ring fragmentation.

The first example of fragmentation presented herein focases thin plate ring under
radial expansion, as shown on Fig. 3.15, and with the majemgperties given in Tad_5.4.
The fragmentation is consequent to a centrifugal forceighaimulated, as suggested by F.
Zhouet al.[275], by prescribing on each mass padiatbody force computed as,

filr) = mwr, (5.39)
wheremy is the nodal mass; is the radial vector of nodieand wherev is the angular velocity
given by,

Wot et <
{ ; <t (5.40)

P ift >t
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Figure 5.16: Weibull distribution: the more a material isviaeneous, the more the Weibull
modulus is high and the more the pdf (probability densityction) is concentrated around
the peak value.

Property Value
Young modulus [GPa] 320
Poisson ratio [-] 03]
Density [kg/n?] 3300
Fracture energy [J/fh 200
Minimal fracture strength [MPa] 0
Weibull modulus [-] 50r40
fracture strength scale factor [MPa] 450
Coupling parameter [-] 1
Frictional coefficient [-] 0

Table 5.4: Material properties of the plate ring fragmeotat

Valueswp = 60000 [rps] andp = 75 [us] are considered for the presented simulations.

The ring is meshed with 32380 quadratic triangles to obtanenor less the same number
of interfaces than in the reference [275]. The simulatigreiormed on 16 CPUs for different
Weibull moduli (5 and 40) with the explicit [123] time-inteagion algorithm associated to low
numerical dissipation (spectral radius £8). The stability parameters used gie= (3, = 10.

In this case, as the out-of-plane displacement is prestribe value of33 has no influence
on the results. Two Weibull moduli are successively cormreidewhich give the strength
distributions reported in Fig. 5.116.

For both Weibull moduli, the fragmentation processes,ldigd on the Fig, 5.17 fan=5
and Fig.[5.IB fom = 40, are coherent with the results provided by [275]. ot 5, cracks
initiate at the inner radius at approximately 28]and propagate more or less radially (with
crack branching) toward the outer radius. With a Weibull odad of 40, more cracks.é.
smaller fragments) are generated and they appear latefdhan= 5. This observation is in
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(a) t=26[s]

(d) t=32[s] (e) t=34fus] (f) t=36[us]

Figure 5.17: Fragmentation process of the plate ring withesbWl modulusm= 5. Results
are in agreement with [275].

agreement with [275] who noticed that high Weibull modulus implies a fairly homogeneous
material, it is not surprising that under sufficient loadiognditions, crack initiation occurs at
more locations [...] the ring rotation speed at crack intian should be an increasing function
of the Weibull modulds However in our simulations, fom = 40 the cracks reach the outer
side after 44|fis] instead of the 36ug] reported by{[275].

Fragmentation of a sphere

The second fragmentation test considers a thin sphere underm expansion, as previ-
ously analyzed by S. Levy [137] with 3D elements. The makgrd@ameters of the ceramic
sphere are reported in Tab. 5.5. The symmetry of the sphéag&es into account and only
1/8th of the sphere is meshed with 144528 quadratic triangles hdsrtesh corresponds to
the mid-plane of the sphere, its radius is equal.859nn] for a thickness of @[mn.

Note that the very thin mesh used to discretize the spheds leaconsider a problem
with approximately 2 millions of unknowns. This large number of degrees of foeed
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(c) t=40[us]

(d) t=42[ps] (e) t=44fus] (f) t=46[us]

Figure 5.18: Fragmentation process of the plate ring withegbWl modulusm= 40. Results
are in agreement with [275].

can be treated by the parallel implementation presenteceaic®[4.5, and an acceptable
computational time is obtained using 32 CPUs (about heightd)oThe stability parameters
are set, to 10, 10 and@0O01 respectively fop1, B2 andBs. The uniform expansion of the

sphere (centered if0,0,0)) is simulated by prescribing an initial velocity profile fimiing,

Ww(xy.2) = &, (5.41)
w(x,y,z) = ¢y, and, (5.42)
Vixy2) = &z, (5.43)

wheret is the strain rate. Three different strain rates are susagsonsidered: &', 2¢*
and ¥°[s™1].

Fig. [5.19 represents the time evolutions of the kinetic antémtial energy of the sphere
loaded with a strain rate ofe? [5‘1]. As an initial velocity is prescribed the kinetic energy
is initially different from zero and decreases with the gese of the potential energy. This
one reaches a peak value at titgge.x When part of the potential energy is released during
the fracture process which occurs at that time. Afterwdrd,Kinetic and potential energies
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Property Value
Young modulus [GPa] 370
Poisson ratio [-] @2
Density [kg/n?] 3900
Fracture energy [J/fh 50
Minimal fracture strength [MPa] 264
Weibull modulus [-] 2
fracture strength scale factor [MPa] 50
Coupling parameter [-] 1
Frictional coefficient [-] 0

Table 5.5: Material properties for the fragmentation of hesp.
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Figure 5.19: Kinetic and potential energy over time for tregmentation of a sphere with a
strain rate of & [s71] .

stabilize. The final time of our simulation is chosen as tvilevalue oftyea, Which differs
for the different strain rates. Furthermore, the final canfidion of the sphere is displayed on
Fig. in the case of a strain rate- 1*[s™1].

Fig.[5.21 represents the mass distribution and the numifeagrhents obtained in terms
of the loading strain rate In the presented results, the dust-like fragmeingsthe fragments
composed of only one or two elements) are neglected as segdeg S. Levy[[13[7]. The
pictures show that the results obtained by the frameworkgmted in this thesis are in agree-
ment with the mass distribution and the number of fragmergdipted by the work of [137],
at the exception of the largest strain rate for which theldbenulation predicts less frag-
ments. This difference is due to the small number of elempatdragment obtained with
our mesh. Indeed, the mean value is around seven elementsgmgent, which may cause a

mesh dependency. Overall, our shell formulation is showedaktan efficient tool to predict
fragmentation in brittle materials.
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Figure 5.20: Final configuration of the fragmentation of esie with a strain rate ofef [s71].

5.3 Conclusions on the DG/ECL framework for thin bodies

In this chapter we have presented an original frameworkrtaulsite fracture mechanics
problems in thin bodies. This framework is based on the coatlmn between a DG dis-
cretization of the structure combined with an extrinsicesite law. The main advantage of
the method is its ability to insert cohesive elements on thedking the simulation without
any topological mesh modifications. This simplicity leaglsitstraightforward parallel imple-
mentation which allows to simulate large problems (more th® dofs) within an acceptable
computational time (few hours/days).

Furthermore, the cohesive zone approach is applied on eddsicesses in an original
way leading to a fracture model which respects the energpetiance. Such an approach
avoids the complex implementation of the neutral axis mgduaring the simulation required
by the difference of fracture behavior in tension and corsgion. The ability of the model
is demonstrated on several numerical benchmarks comimng fiterature by comparing our
results with numerical and experimental data. In particule versatility of the framework
is proved as different fracture phenomena (crack propagaitnpact and fragmentation) are
simulated with success. We restrict the applications tpl{@x) dynamic cases where the
XFEM method is less developed. Indeed, for quasi-statiecasd linear elastic fracture,
XFEM is very suitable and we don’t think that our method caraheefficient alternative in
this case, however a combination between our method andkEMXcould be envisaged in
the case of parallel simulations. Indeed, @8%DG method could be used on each processor
in combination with the full-DG formulation at interface$ martitions to obtain an efficient
parallel scheme. The fracture could be modeled by havingurse to the XFEM.
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Figure 5.21: Results for the fragmentation of a sphere wiflerdint strain rates. Results ob-
tained with the DG/ECL shell framework are compared to 3Drfragtation results obtained

by [137].



Chapter 6

Prospective of extension of the full-DG/
ECL framework to damage

The cohesive law introduced in Sectibn]5.1 is suitable fattlerfracture but it is not
applicable to ductile fracture although an elasto-plalstic can be used to account for the
small scale yielding. Indeed, even if the elasto-plastieaveor of the material can be modeled
thanks to the bulk constitutive behavior, the mechanisnisitife and ductile fracture are too
different to be treated with the same approach. In fact, seaaf ductile fracture, cracks
initiate in the material due to nucleation, growth and cee¢sice of micro-cavities and a
continuum damage model is generally considered to modet {i€0,135]. Nevertheless,
the initiation of a crack is by nature a discontinuous pheaoom which explains the interest
to develop a criterion to switch from the continuum damagm®ti to the fracture mechanics
(i.e. to switch from a continuum to a discontinuous model). Amohng different works
presented on this subject in the literature, we focus on ik wresented by J. Olivest al.
[187]189,188,222,121]. It has to be mentioned that a revfawis work and its applicability
to linear damage theory presented herein was part of theemigsis of G. Vo Thi[[254]
(the student that | supervised). The main idea of J. Oleteal. is to model the damage
with a continuum model until the lost of ellipticity of equmts (Hadamard criterion [113])
and to introduce a strong discontinuity (crack) at this tinfédnis idea is quite general and
can be applied whatever the damage and crack models. Inrfdbeir works J. Oliveret
al. [121] used a modified Gurson model (see reference [110] foesemtation of this model)
combined with the introduction of a strong embedded disnaity (see Section 214 for a brief
review) to model the crack. Notice that, as highlighted bg&heyvaertgt al.[226], the use
of Hadamard criterion to insert a crack is reserved for lowesst triaxiality cases. Indeed,
it is experimentally observed that if cracks appear immetiiaafter the maximal stress for
low stress triaxiality, moderate and high stress triaijadpecimen exhibited a not negligible
softening behavior before the apparition of a crack. Theetiogd of this softening behavior
requires a non-local approach as suggested by severara{®ip65, 102, 203, 202, 201].

Hereafter, we suggest to use this idea in the context of duDf@/ECL framework. In-
deed, we can model the damage thanks to the bulk materialdasuaformulation can be
used with any constitutive behavior and we can activate agsigld element when a criterion

175
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is reached at an integration point. The major drawback coeapaith the work of J. Oliveet

al. [187/189,188,222,121] is that with our approach the cracktb follow element bound-
aries. In fact, J. Oliveet al. [187,189] 188, 222, 121], as they introduce a strong emizkdde
discontinuity, can choose the direction of the crack based oriterion [1211]. Nevertheless,
with our method we ensure, on one hand, a continuity of thekcdairing its propagation,
and, on the other hand, an easy parallel implementatiorelshdo investigate such problems,
only three few adaptations are required in our full-DG/EClpiementation:

(i) Implementation of a damage constitutive model;

(i) Change the fracture criteriof (5J17) based on an effectiress by a criterion based on
damage as.g.the Hadamard criterion;

(i) Define the shape of the cohesive law from the damageriheo

As a starting point to achieve this goal, in the following weadiss these adaptations through
a simplified case. In fact we consider a membrane (no bendingibution) with a linear
damage model and small displacements. Furthermore, glththe value of the cohesive
energy will be discussed, it will be assumed that the shapleeotohesive law remains linear
and monotonically decreasing.

6.1 Linear damage model

The damage theory models the creation, growth and coalesadnmicro-cavities and
micro-cracks. Although these phenomena are discrete (@@fore discontinuous in the
material) they can be modeled by a continuum variable, @¢dlleif their sizes are small
compared with a representative volume element (RVE) of theenal. This variable is
defined for an isotropic damage in a section of surfaes the ratio between the surface of
voids included in this section arfd Due to this void surface, at the continuum level, the
stresses are exerted on a smaller surface, and so they her thgn if they were exerted on
the surfaces, leading to the definition of the effective stress as,

~ Oij
Oj = ——. 6.1
i = 15 (6.1)
This definition of the stress tensor allows writing the Hookestitutive law as,
o = (1-D)# g, (6.2)

thus the Hooke law can still be used if its tensor is multiply (1 — D).
The evolution oD is governed by a damage law, which can be written in the calaseair
damage as,

fD = 0. (6.4)
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Figure 6.1: There is no lost of ellipticity of acoustic tens$or the linear damage theory if
m< 1. If m> 1, there is a lost of ellipticity as soon Bs> 0.

wherem is an exponent (material parameter), wh¥rés the damage energy release rate
defined as,

y - 7% (6.5)

and wherex; is the energy of deformation required to initiate the dan{aggerial parameter).
When damage increases, [Eq.[6.3) governs the damage enastio

Ye\ ?

Such a law is drawn on Fid._6.1 for the 1D case with differefiem of the parameten.
Unfortunately, it appears clearly from this picture tha thadamard criterion cannot be used
with this law. Indeed, this criterion inserts the crack whiemacoustic (or localization) tensor
loses its ellipticity. In 1D, ifm > 1, this corresponds to the point of the maximal stress, as
after this point the softening effect leads to the lost ofuh&ueness of the solution for local
formulation. Ifm < 1 the stress increases with the deformation without regcaimaximum.
The casen = 1 corresponds to a degenerate case where the stress istavittano unique
maximum. Furthermore, this behavior was demonstratedenatically by G. Vo Thi[[254]
for the general case of a linear plane stress law. Therdfereladamard criterion bifurcation
cannot be applied with the linear damage constitutive biehav

Keeping in mind that the main objective of this section isltosirate the concept, we
fix this issue by substitute to the Hadamard criterion a Goitebased on a critical damage
valueD¢. Indeed, with a more realistic damage modekag Lemaitre-Chaboche [135] or
Gurson|[[110] the lost of ellipticity occurs for a damage eafu|0; 1] and we can simulate this
effect by fixing the value to a given one. Therefore, in thdofwing, the fracture criterion
(5.17) based on an effective stress is replaced by a critemnoa critical damage value. This
one is evaluated at each Gauss point of interface elemedta eohesive element is inserted
where the criterion is reached. Finally, to keep uniquené#se solution we considen < 1.
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6.2 Cohesive law for damage theory

If we assume a linear monotonically decreasing shape focdhesive law, the values
of (reduced) stresses being known at fracture initiatibwe, anly parameter that has to be
defined is the fracture energy. We suggest to compute thikotioeing the work of J. Mazars
et al. [155]. In this work they demonstrated, based on thermodyn&ansiderations, that
an equivalence between the continuum damage theory andatieie mechanics can be
formulated as,

/—dev _ _GA, 6.7)
V

whereV is the total volume of the considered body and whieigthe variation of the cracked
surface area. This equation allows to transform a given damane into an equivalent crack
or conversely. Using this formula, M. Seatetal. [227] suggested to defin@; of the co-
hesive zone as the energy which would be dissipated by thenoom damage model if this
model was used to model the entire fracture process. Ing@eshD+ the final damage value
(which can differ from one depending on the damage model)naouat of energy is dissi-
pated between a damage valdg at which we insert a cohesive element, &rd This energy
should be dissipated by the cohesive zone, which can be mattoally formulated as,

D
GdA=B [ YdD, (6.8)
Dc

with B is the width of the damage localization band. This one, ssp@do be a material
parameter, is introduced to take into account the accumualaf damage in a narrow band
due to the softening effect. For the linear damage model isezin, using Eq[(613) we have,

vy = Y (6.9)

(1-D)

EilN

Inserting this last relation in Eq._(6.8) it comes,

D¢ 1
Ge — —BYC/ —~ _d(1-D),
De (1—D)m
BY: DA E (1D A
(1__5[(1 Do) m— (1-D¢)" 7| ifm#2, (6.10)
BY:log1=p¢ if m=2.

It has to be mentioned that to avoid the definition of the patenB, a model of void coales-
cence by internal necking could be used as suggested by &y &ahrtset al. [226]. In fact,
their model is able to predict the unloading slope of the sal@ezone and thus it could be
used to determin&; without the recourse to a damage bandwidth.



6.3 Numerical benchmark 179

6.3 Numerical benchmark

The fracture model combining the damage theory and thensxtrcohesive zone as pre-
sented in Sectios 8.1 and16.2 is illustrated by consideripigte radially notched, as depicted
on Fig.[6.2(d). The parameters of (fictitious) damage anésigh materials are given in Tab.
6.1. The parameters of the material law are set to illustitaéedeveloped model with an
acceptable computational time on a personal computer.

0.01 [m/s]
trtttrt
thickness t=1 [mm]
€
E
5 [Inm] S
©
E
KR
w=400 [mm] ’
Y \L
Z X
Pyt
(a) Geometry. (b) Quadratic triangles mesh.

Figure 6.2: Configuration of the plate used to illustrate thagition from damage to crack.

Property Value
Young modulus [GPa] 200
Poisson ratio [-] 03]
Density [kg/n?] 7850

Fracture energy [J/fh  13.26
Damage threshold/Pqd 225
Critical damagé-| 0.4+15%
Final damagé-| 0.8
Damage law exponent [-] .05
Coupling parameter [-] 1
Frictional coefficient[-] O

Table 6.1: Material properties for the notched plate witmége.
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Moreover, as the insertion of a cohesive element leads toecgence problem of the
quasi-static scheme, we use the dynamic relaxation tegbrfipe Sectidn 4.5) to simulate in
parallel (on six processors) the tensile loading. Moreaweavoid spurious dynamic effects
at computation initializing, an initial velocity along y«a is prescribed. This one is zero at
the edge near the hole and increases linearly to the puliegds (001 [m/s]) at the opposite
edge. One quarter of the plate is meshed (taking into ac¢bargymmetries) with quadratic
triangles and with a refinement of the mesh near the hole, pistdd on Fig.[ 6.2(). The
plate is fixed along z-axis. The value of the last stabilitsegpaetei3, (the only one remaining
due to the boundary conditions) is set to 10.

Figure 6.3: Blow-up of elements near the hole a few (pseudm4 step after reaching the
fracture criterion. Displacement are magnified 50 times.

Furthermore, with the aim of reducing the blow up of elemewtsprescribe a statistical
distribution of D¢, which can vary from 15% around its nominal value from onerifatce to
another one, although this strategy seems not as efficiéot @asck propagation as illustrated
on Fig.[6.8. Indeed, as expected the damage is concentreaedhe hole (see also Fig. b.4)
but all interfaces in this area reach the fracture critenmmme or less at the same time, leading
to the blow up of elements in this region. A strategy to sohie $purious behavior should be
develop in the future. One idea is notably to have recourserton local fracture criterion.
Nevertheless, we can see from the different captures @epan Fig.[6.4 that finally only
one macro-crack propagates from this region to the otherafithe specimen. Furthermore,
during the whole propagation, the damage remains cond¢edtiraa narrow band around the
crack. Therefore this simple example demonstrates théyabflthe suggested framework
to produce qualitative results although improvements tilteequired to obtain quantitative
results.
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Figure 6.4: The crack propagates due to damage which renmamsarrow band around
the crack. The displacements are magnified 25 timessané % with uy the value of the
prescribed displacement.
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6.4 Conclusions on the applicability of the DG/ECL frame-
work to ductile fracture

As perspective to this thesis, we have illustrated on a vienple example the extension
to the damage to crack transition of our framework. On thischenark we demonstrate the
capacity of our DG/ECL framework to model the damage thanks damage law and then
to insert a cohesive element to model a crack when a critésiorached to reproduce a
phenomenon observed experimentally. Obviously, this giatie work should be improved
(with a more complex damage model ag. the extension to shell of a non local damage
model to capture the softening) to solve practical appbest and this should be part of a
future research project.



Chapter 7

General conclusions & perspectives

An original framework to model fracture in thin bodies is tmain achievement of this
work. Starting from a review of the literature in Chagdier 2appeared that there are several
methods which allow modeling such phenomena. Among theenXBEM method, seems to
be very efficient to study the quasi-static crack propagaitiothe context of linear fracture
mechanics. Nevertheless, the efficiency of XFEM to studylnwear dynamic of large prob-
lems has still to be proved and thus our DG/ECL framework fesusith success on such
problems.

Toward this end, we developed a framework similar to the alggssted by on one hand,
J. Mergheimet al. [157] and on the other hand R. Radovitzéal. [211] who presented a
method combining DG formulation and ECL for 3D elements. Twe iain advantages to
recourse to a DG formulation (compared with a classical CQ ares on one hand, an easy
parallel implementation, and, on the other hand, an easrtioe of cohesive elements at
onset of fracture. We adapted this framework to thin bodiemiilations in an original way by
developing a novel full-DG formulation of Euler-Bernoulkéms and Kirchhoff-Love shells.
Furthermore, an original cohesive model based on reducesksts was also presented.

In Chapte B, we focused on the Euler-Bernoulli beams casertmuagtrate on a very
simple example how the DG formulation leads to a straightéod insertion of a cohesive
element for thin bodies. In fact, as the insertion of the soleeelements at the beginning of
the simulation generates numerical problems, such an etesheuld only be inserted when
a fracture criterion is reached. As a DG method ensures welag&lcontinuity between bulk
elements thanks to interface terms, a cohesive elemenecgreasily substitute to these terms
at onset of fracture. Nevertheless, in the specific casebibdy formulations, the equilib-
rium equations are integrated separately on the thickmebar@ therefore formulated in term
of reduced stresses. Furthermore, the propagation of & themugh-the-thickness requires
the moving of the neutral axis during the through-the-thess propagation with a classical
cohesive lawi(e. a cohesive law based on stresses). For these two reasonyelepsel an
original cohesive model based on reduced stresses. In taest@ model different contri-
butions of membrane and bending (there is no other coniwibun the case of beams) are
combined to respect the energetic balance. Indeed, it iskweln that the energy released
during the whole fracture process is a characteristic ohtagerial. Therefore, at the end of

183



184 General conclusions & perspectives

the fracture process the dissipated energy has to be idetttithis quantity. We proved at the
end of Chapt€rl3, that our suggested cohesive model verifiegldntity.

These developments were then extended to Kirchhoff-Loe#isshin a first time we pre-
sented an original full-DG formulation of non-linear Kitobif-Love shells in Chaptéd 4. We
demonstrated that our new method has the same numericarpespas other shell meth-
ods suggested in the literature. In particular it is demanst through several numerical
continuum mechanics problems that our method providesdtsemsiaccurate as other (contin-
uous) methods. The main advantages of our method in comtirmechanics are: a one-field
locking-free formulation for shells and its easily parhiiteplementation. Indeed, as the mesh
is discontinuous by nature, its partitioning between tHie#nt processors is straightforward
and the interface terms can be used to ensure the contiretityebn the partitions. Toward
this end, we suggested an original efficient manner to parfine integration at interfaces
between two partitions. In fact, we used ghost elementsiwddiow communicating (through
MPI) only the degrees of freedom of these ghost elementsceding this way, allows, on
one hand, reducing the cost of communication, and, on ther didnd, being independent of
the material law. This advantage is demonstrated througtenoal benchmarks.

Afterward in Chaptefl]5, we coupled this full-DG framework afmlinear shells with
a cohesive law to model fracture mechanics problems. Fosd#inee reasons as the ones
presented in the case of beams, we suggested an originadivehaw based on reduced
stresses which respects the energetic balance. The difesavith the law for beams are that,
on one hand, the accounting for mixed fracture mode, and @ottier hand, the accounting
for non-linear material behaviors. Then we illustratedabdity of the framework to simulate
crack propagation as well as fragmentation through seberathmarks, including non-linear
plasticity and a large number of degrees of freedoms. Thgelaumber is required to capture
the crack path and highlights the interest of the developroéa parallel implementation.
Furthermore, the comparison with the numerical and expartal results from the literature
proved the ability of the framework to model different fraie phenomena.

Finally, as a preview to the future works, we present theiagpbn of the framework to
the damage to crack transition problem in Chapter 6. We detraded that we can easily
model the damage in the bulk material law and that a crack eamderted through a cohesive
zone when a criterion is reached. In the future, the damaggtitative behavior as well as the
transition criterion will be improved notably by the recserto the non local damage theory.
Furthermore, although the stress triaxility plays a ke iolductile fracture, we neglected its
effect which should be taken into account in our next devele.

Moreover, the out-of-plane shearing is neglected in thiskwdherefore, our framework
cannot model a fracture mode Ill. The remove of this limitatrequires the model of the out-
of-plane shearing which necessitates some developmeittetpate it in a Kirchhoff-Love
formulation.
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Appendix A

Annex to chapter(3

A.1 Euler-Bernoulli beams kinematics
The kinematics of thin bodies is previously establisheddot®n 4. 1.1 in the general case
of Kirchhhoff-Love shells. These equations can be pariczéd to Euler-Bernoulli beams.
Under the assumptions given in Chapter 3, which are,
(i) Linear small strains;
(i) Initially straight beam;
(i) The out-of-plane shearing is neglected;

(iv) Plane stress state.

First, for a straight beam with small strain the mapping ef nhid-surface[{4139 can be
written,

b =do+w(EHEL+us(E') B3 (A.1)

as under this assumption, the mid-surface is subjectecttsrttall displacement field lead-
ing to,

¢ = dot+u. (A.2)
Furthermore, the calculation of the derivativegadre straightforward,

b1 = bo1+ur1E1+uz1E3=(14+u11)E1+ U3 1E3 (A.3)
b, = E» (A.4)

as a straight beam is always included in the pl&heFEs.
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The third assumption leads to neglect the out-of-planersiggand so the cross section
always remains perpendicular to the neutral axis. Theeetds always perpendicular to the
neutral axis and it comes at first order,

b1/
t = 21092 (A.5)
b1 A2l
— E
_ (A+u)Ez—uz1 By (A.6)
v 1+2u11
= FE3—uzi1F;. (A.7)

Then, following these developments, the use of relatiod}4and[[A.Y) in the expression
of O® (4.8) gives at first order,

0% = [(1+u11) E1+Us1Es @ B+ B, E? — (uz11E1) @ E*
+(E3— U371E1) ® FE3 (A.8)
1+up;—&ugn 0 —ugg
= 0 1 0 : (A.9)
Uz 1 0 1
Moreover, as there is initially no deformation mappingpbo = I, and soD<I>5T = 1. There-

fore, using Eq.[(4]7), the deformation gradiént [0® and as by definition of Cauchy strain
tensore = 3 (F+FT —21), which leads to,

upr—&3us11 0 0
g — 0 0 o0 (A.10)
0 0 Ap

A.2 Governing equations of Euler-Bernoulli beams

The governing equations of shells previoulsy obtained ictiSel4.1.2 are now particular-
ized to Euler-Bernoulli beams. The set of Eqs. (#.30) and{4:8n be written with the stress
tensor related to the particular case of Euler-Bernoullntga

011 0 031
o = 0O 0 0 |. (A.11)
a3l 0 0

with o1 = Eg11 as plane stress is assumed. Normally, as out-of-planeispéameglected
by assumptiong3! ~ 0, but this term is kept as it will be used to obtain the fullodistinuous
Galerkin formulation.
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Furthermore, the initial deformation mapping of a straigbam reangg = Ei, the ex-
pression of resultant quantities (other values are equadrio) are,

1 [hmax
ntl = = jotlde® (A.12)
hmin
~11 1 fhmaxc 193 03
Ml — _—/h_ jolle3ds (A.13)
1 rI:rI:ax
L. j—/ jo31de3 (A.14)

Finally, as there are no external effort by assumption, #ilarice of linear(4.30) and angular
momentum[(4.50) become respectively,

nf = pl, (A.15)
mi—1t = Oand, (A.16)
15 = pus. (A.17)

Notice that the Jacobian @f® can be determined from Ed. (A.8) with a first order approxi-
mation,

j = 14+ug—&usas. (A.18)
(A.19)
At neutral axis €3 = 0) and the Jacobian reads,

j = 1+ Ug1- (A.20)

Since we have the following identities,

P = P, (A.21)
nt! = nit, (A.22)
mglt = mtland, (A.23)
1t = 11, (A.24)

the set of Eqs[(A.15) £ (A.17) corresponds to the set of Ej8) @nd[(3.14)

A.3 Numerical properties of the full-DG formulation

In Chaptef B we enumerated the numerical properties of thgestigd DG formulation of
Euler-Bernoulli beams. To be concise some demonstrations araitted. They are reported
here below.
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A.3.1 Upper bound of the bilinear form

To obtain an upper bound of the bilinear form each terni_of4Bi8 bounded separately
as suggested in_[185]. First, the membrane and bending t@rensonsidered. The use of
Cauchy-Schwartz inequalityeads to,

< V V
< Z Ehul’lHLz(e)‘ Eh6u171‘ |_2(|e)and’
(A.25)
Eh3
—U311)0(—Uz11)dX < Z Uz 11 12 5U311
e
(A 26)

Now the interface terms can be bounded. As all terms are lsabibg the same way, only the

first membrane interface term of consistency is developdte résults for the others terms
will be extended. First, the sum on the interface elememtseplaced by a sum of elements’s
integral of contour. In doing this, the contribution of eacterface term is taken twice which

is valid because it is a upper bound,

[dw]| = |5 (Ehua) [8ud]
< ZS Ehuy 1) [Sta]|
< éEhullﬂéul]H (A.27)
Then,
Y (nat)fowl| <y \/ﬁul,lHLz(ae) VER
< 2y \/Elul,l‘ o (A.28)

Finally, to have a norm over?(l¢) the scaling properfydemonstrated by P. Hansbkbal.

in [116] is used,
Eh
’z (ng'V) [3ug]| < [ %2 o1 (A.29)
5 L2(le) h 5
L2(dle)
The same procedure applied to the others terms gives sivalgds
llabl < va2vh?
le| fsa2dale
2For an element &5||v/77al|” o <Cck ‘ ’\FaH with hs = T' and withCk = sup ‘lsl‘jf gt >0

acrK(lg
depends only on the polynomial degree k
3Note that the scaling property is not applied for the termstabilization
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e for the symmetrization term of membrane patrt,

Eh
> (Ehduyg) [ui]| < th5U1,1‘ ) BZ[[ U] ,
: L2(le) L2(0le)
e for the stabilization term of membrane part,
B2Eh BzE BzE
> ) (Pl < 3 [u] ||
€ L2(dle) L2(dle)
e for the consistency term of bending part,
’Z <rﬁBll> [[5(—‘13,1)]]‘ \/ U3 11
s L2(le)
Eh3

H Bl [[6 31]] 5

L2(dle)
e for the symmetrization term of bending part,

z< —U3 11 >[[(—U31 ' \/ 5U3 11

S L2(le)
Ehd
H 1 s [usa] :
L2(ale)
o for the stabilization term of bending part,
1Eh3 B.ER3
> luoal (P ) 1owal| < 3 |1/ B feal )
L=(0le)
B1ER3
H PIET o] ,

L2(0le)
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¢ and for the stabilization term of the "shearing” part,

< +V)he >[[6u3ﬂ \ 2 fiEvhhs “

_ BsEh
2(1+v) 2(1+v)hs

2

e

[us]

The summation of these different expressions with Hqs. 3 28) gives the inequality,

’ ‘

a(u,bu)| < Z{H@”“Hm( )

L2(le)
+ Ehsu Ehséu
\/ 1o Ya11 1o Y11
L2(le |—2(|e)
C% Ehl32
+—==1|V EhU171 [du1]
\/@ H L2(le) L2001
CcK Eh
||V |, 2 1)
P2 ¢ L2(dle)
E E
‘ B2Eh [32 5]
L2(ale) L2(dle)
Ck Eh? BlEhS
+—=|[\/ ==Us11 < [Ous 1]
\/E 12 L2(le) L2(ale)
ck ER3 BER
+—=1|\/ =5 0U3 11 [usa]
\/E 12 L2(le) 4 L2(ale)
Eh3 ERh3
H B:ER° Bllm [Bus.] )
L4(ale)
_ BsEh B3sEh
—_ . (A.30)
S S
H 2(14v)hs 2(1+v)h L2001
Then, a constant defines /(B ( S ) is put in evidence. Indeed,
m/ (Bl BZ) \/— \/— p

as the equatiori (A.30) is an inequality, it is possible tdae@\/c—é_ and\;—g_ by CX and to
1 2

multiply the two first terms by2’X. Moreover, the terms five, eight and nine of right member
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of (&30) can be multiply byc% with CX(By, B2) = max(z, V2CK(By, Bz)) andCX(B1, B2)

can be replaced b§*(B1, B2) in the others terms, which gives,

|a(u, du)| ER
Ck([31,[32 Z H hullH ’ HLZ(IG)
+ Ehgu Ehgéu
311 3.11
124 12 o
(le) L2(le)
Eh
+||VEhu 1 L2 BZ [dus]
e L2(3le)
Eh
+ th6u171‘ L2 [32[[ us]
(le) L2(0le)
E E
L [32 [ua] Bz [5ud]
L2(le) L2(dle)
Eh3 Eh3
I\ gl Bl < [Ous 1]
L2(le) L2(ale)
Eh3 Eh3
+ 35U3 11 Bl s [Us1]
L2(le) L2(dle)
Eh3 ER3
+ Bl < [usa] Bll [Bus 1]
L2(3le) L2(3le)

L2(dle)

BsEh
V zin v el

} .(A.31)
L2(ale)
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Then the terms can be rearranged to whjte

|a(u,du)| Eh3
< VEh
CK(B1,B2) ~ z H ul’l‘ 29 ||V 12 e L2(le)
BlE BzE
2hS B
L2(dle)
BsEh
I 557 ovrs LUs] X
2+2(1+v)h LZ(OJ
H\/Ehﬁull‘ + 1/ Eh35U311
THL2(le) 12
L2(le)
B.ER3 Eh
+ 1 [[ Uz 1] + B;hs [ou1]
L2(ale) L2(ale)
BsEh
TR S . (A.32)
‘ 2+2(1+v)h o

Now using the Cauchy-Schwartz inequality, the relation P\ l3ecomes,
2

|a(u,5u)|2 En ERe
C’%(B1,B2) ~ H huﬂ’ 2 'e)+ 12 L2(1
I31Eh3 1 BzE
2
L2(ale) L2(ale)
BsEh ’
3
+ 2|y s [ug] x
2|[V 2@+
2
2 ER3
+ [ \/EhBUl,l) + ——0U3 11
L2(le) 12
L2(le)
1 Eh3 E
s [31 " [8us.] 2 Bz 5 1]]
2
L2(0le) L2(dle)
1 [3 Eh ’
3
(0le)

4If the product of the right member df {AB2) is developed tleenterms of right members df {A.B0) are
found back with sixteen other terms Q) added which is possible as it is a upper bound.
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with C"K(B1, B2) = (CK(B1,B2))?. Finally using[[3.4b) and the definition of energy nofm (3.43
the relation[(A.3B) can be rewritten,

la(u, u)|? < C"™(Ba,Ba) |[Jull[*[]ul|?, (A.34)
which is identical to the relation (3.46).

A.3.2 Lower bound of the bilinear form

The lower bound of the bilinear form is found following thevéépments suggested in
[185]. By definition ofa(u,u) (see equation(3.34)),

2
JER3
a(u,u) = ZH@UM‘ izﬂe)—’_ZH El—ZU3,11 +22<U1,1>Eh[[U1]]
+ZZ<—U311> 1Eh3[[ 31]]
E Eh z)
+2H P ] +z|' Sl (A35)

First to have a lower bound @fu, u), the two terms of the form 2 (a) # [a] in (A.35) are
bounded by a sum of integrals on the boundary of elements,

22 Yo [a] < 2| (@) # [4]
< ZZ\ ay H [[a]]|
< 22\ ) o [a] |- (A.36)
and,

22\ Yot [a] |y, < ZZ]aﬂ{[[a]Hal , (A.37)
using the Cauchy-Schwartz inequality in the right membehisfinequality, and introducing
Ve,

#al o Vel (A.38)
o L2(ale)
Afterwards the scaling property can be applied to equa#oBg) which leads to,
2v/2CK(B
a7 [a] < [[a]] (A.39)
z \/B ‘ 2(1 2h5 L2l
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Finally this equation can be multiply by1 to reverse the inequality,

—2v/2CK(B Hp
-2 (@ [a] > s 18] (A.40)
Z \/B L2(le) 2he L2(ale)
This relation[(A.40) can be used to replace the terms of thva &5 s (a) # [a] in the equation
(A.35),
2
2 Eh3
a(u,u) ‘ L2, + Z H\/ ﬁUS,ll
2V/2C(B2) 5 Eth[[ ]
\/E € 2ne L2(0le)
2R gue ‘ e [usa]
VB % 12 L2(le) 240 L2(dle)
/BLER®
+ Z Bl [[ s 1]]
S L2(s)
BzE BsEh
+5 [u 1]] +5 11 5o vl (A.41)
S (S) S 2<1+V)hs LZ(S)
Then, thee-inequality’ can be applied to the two terms of the form :
H #B 1 to have,
‘ Lz('e) 2n [[ H |_2(a|e)
22/2CK( = Eh
\/2_[32 H BNty ‘ L2(le) 2hBS2 [va] =
B L2(dle)
2
2 2(ch? EhB,
€2 : + [ud] ; (A.42)
( ‘ L) Pakz Z 2 L2(3le)
which multiplied by—1 leads to,
2v/2cy £ Eh
\/2_82 |VERu,| L2(16) ZhEZ ] =
B (le L2(dle)
2(Cy)? EhB2

|32€2 2

e

2hs

I8

Sve > 0:|ab| < §a+ £b? or |ab| < ea? + 4 b?

2
. (A43)
L2(0le)
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Similarly for the bending term one has,

2 (,/E;;M
2
( Z \/ U311

ERBy
24hs

[usa]

2(le)

L2 [3181
~BsEh
Furtermore, for the terry ¢ LvIh
[33Eh o 1 [33Eh
Z 2(1+v)hs Lus] e 2; 2(1+v)hs lus]
L2(s)
1 B3Eh
> — e —
Z 32 |\ ze2ar v

)

i,

) . (A49)

of equation[(A.3b) it is possible to write,

2

L2(dle)

(A.45)

L2(le)

Then the final form of the lower bound efu,w) is obtained by injecting the relations

(A43), (A 42) and[(A.4b) in the relation (A%1),

2
a(u,u) > (1—¢) , ] g, A Z
e e e
EhB2
()
82[32 2hs L2001
ERB;
- (1 ) Tuz 1]
8181 24hs L2l

2
BsEh

252 1+v)hs[[ ol

Y

1
22
L2(dle)

which is identical to the lower bound given By (3.47).

A.3.3 Proof of convergence rate in the energy-norm

2
\/ U3 11

L2(le)

(A.46)

The convergence rate in the energy norm of the full-DG foatah is derived by follow-

ing [185] under a quasi static assumption. To achieve tlisethor between the FE solution
and the interpolation of the exact solution with the same/painial degree is calculated.
First, some definitions and assumptions are given. Considsrthe exact solution of the
problem where displacement and derivative are constraizeto on the boundary ane



220 Annex to chapter[3

its interpolation of degrek in each element defined by (v — uX)dudA = 0, satisfying the

essential boundary conditions. Then the error is defineel-by, — u, and the error with the

interpolation of the exact solution is given b = un — uX.

To show the convergence rate in the energy norm the bilingaessiora(u, du) is con-
sidered. This expression includes only linear terms by defimso,

a(up—uf up—u) = alup—u,un—uf) +a(u—uk up—u). (A.47)

The terma(up — u, un — uX) is equal to zero (see the orthogonality propely (3.42))tHeu-
more, using the expression of the lower bound of the bilifean (3.49) leads to,

alun—u un ) > C(Ba,Bo)| [|un | (r49)

or, using the error definition,

2

a(un—uXun—u*) > C(B1,B2) ‘Hekm (A.49)
Then the Eq.[{A.47) can be replaced by an upper bound giverprgssion[(3.46),
x| = cmpaf| s

Then, an upper bound dfeX|| can be obtained by bounding the tefthu —u¥|||. To
achieve this, the terms of the energetic norm are boundest.tRé membrane and the bending
terms are considered. The framework is the same for the twisteo the calculations are only
presented for the membrane term.

2

) ‘\/ﬁl(ul’l B ulil)‘ L2(le)

whereCy; is a constant sufficiently large to bouilich. Using the definition of the notation

’ ’\/ﬁa‘ ‘i2(|e) (see equatiori(3.44)),

2

< Cn (A.51)

‘\/i(um - U'il)‘

L2(le)

H\/ﬁ(un - U'il)’

< Cu /I (Ura — U 1) (ups — )i
e

< Cnlfl(ul—u'I),l(Ul—U'i),lm

2
L2(le)

2

< Cu ’\/1(U1—Ul](_),1’ L2y (A.52)
Afterward, the definition of the SobolBgpace is used,
2 2
Kk < ok
HVEh(Ul,l U1,1)‘ L2y S Can\/iul Ul‘ Hil) (A.53)

A property of Sobolev space is the inequa*i#yﬁaﬂu

HO(le) = H\/ia‘ ‘Hlae)'



A.3 Numerical properties of the full-DG formulation 221

Furthermore, the basic error estimates of interpolatieotyf is applied,
2
Th ok
H Eh(u u171)‘ L2(le)
Similarly, using the same framework, the bending term isnoed by,

H\/ 12 (Ug11— u311
L2(le)

Moreover, the interface terms can be bounded. As the framkeisagain the same for the
three terms, the calculations are only presented in theafdhe membrane term. Gively 1
a constant such &%,; > Ehone has,

< Ca(h®) P fuffing,) - (A54)

1 BZEh k CnllBZ k 2
QZH\/ 2" Jua— o s Z(M(ul—ul)] gy 5O
Furthermore, using the scaling property leads to,
1 /BzE K Cniz2B2
h < — : :
ZZ [[ ulﬂ = 2 Z H\/_ (g - uf) ‘ L2(le) (A.57)
L2(ale)
Using the Sobolev space’s definition yields,
1 B2Eh K Cniz2B2 K
23 = [[ul ulﬂ < T2ty H\/i(ul—ul)‘ oy (59
L2(ale)
Using the basic error estimates of interpolation theory fvaee
E
BZ v ] < CaBeh Uiy, - (A59)
L2(3le) €

Similarly for the bending interface term,

2
Enhd _
Bl [[Us 1— U 1ﬂ > Crih 2 |U3|E|k+1(|e) ,  (A.60)
L2(ale) €
and for the "shearing” interface term,
BeEh 2
1—|—V hs [[U3 Ugﬂ Lz(ale) > ZCIIBS ‘U3’Hk+1(|e) ( )

‘Given a mappingu € H*'1(lg), then YuX ¢ 2K interpolating u € I : Hﬂu_ukHan)

C1h¥* 9] i) YO < < k+ 1 with C; independent of®, the size of [140].
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Finally, as there is no coupling between the different \@eau;, u3 these quantities can

be replaced by in the right hand terms equatioris (Al5#),(A.55).(A.99)d®) and [(A.61L).

Moreover, these inequalities are upper bounds of the reghtg of the energy norm’s defini-
tion (3:43) so they can be used to bound the quaniity—u¥|||,

o] < ZC”hSk [l + ZthSkl [l + ZCm'Bthkl [l
+ 5 CriBeh™ [ulyiergyy + 5 CiBash™ [ulyiny, (A.62)
e e
Giving C(B1, B2, B3) = max(Cm,Cn,CmiB1,CniB2,Cii B3) this last equation is rewritten,
[[u—w{|| < c(BrB2Bs) § h™ ey, (A.63)
e

This equation[(A.63) can be injected in the relation (A.®@)ding to,

’Hekm < C(Bl,[327|33)ZhSk_l|u|Hk+1(|e)7 (A.64)

which corresponds to the Ed._(3150).

A.3.4 Proof of the convergence rate in the B-norm

The convergence rate in the&-norm of the full-DG formulation is derived by following
[185] and under the three assumptions :

1. Cubic approximation;
2. Proper elliptic regularity of the problem;
3. Pure Dirichlet boundary conditions @ie=t = 0 ondLy,).

Givenug the exact solution of a problem governed by the externalihggll(du) such thatug
satisfies the essential boundary conditions. This solgaiisfies the equatioa(uy, du) =
b(du). So considering the particular casesatisfying the essential boundary conditions as
virtual displacements field,

b(e) = a(ug,e). (A.65)

Defining u§ the interpolation ofugy satisfying the essential boundary conditions, the bilinea
form allows writing,

b(e) = a(ug,e)=alug—uf,e)+a(u,e). (A.66)
Furthermorea(u, du) is symmetric so,

e = alug—uf e)+ale,uk). (A.67)
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Then by definition of the erraa(e, u'é) =a(up—u, u'é) = 0 from orthogonality relation (3.42)

and Eq. [(A.66) becomes,
be) = alug— u'é, up—u). (A.68)
Afterward, asa(u,du) is a bilinear form, one has
ble) = a(ug—uf,un—uS)+alug—uf,u—u). (A.69)
Now the external loading is particularized such thé&t) = HGHEz(Lh) leading to,
e = a(ug—uk,up—uX)+alug—uf,uk—u). (A.70)

Then, an upper bound efis obtained by applying the upper bound of enefgy (3.46),

e e e
- <] )
< & aa ot ] o] wry

with CX = max(CK,C¥). The error will be bounded if the terfi|uq — uf||| is bounded. To
prove this, we use the theorem 5.1 and 5.4 demonstrated lignkédt al. [147]. The result of
the theorems under proper ellipticity is,

|2 |yp() < CP {HA ‘| |yp-2my + ) [ B- uHHpil/Z(aL)} ; (A.72)
|

Vp > 2m. As by assumption pure Dirichlet boundary conditions asuaged the last term of
(A.72) is equal to zeros so,

eelloy < CP{IE -l jp-amg ) § (A73)

Moreover the application of equatidn (Al63) idug — uk||| gives,

o] < {EEREAS, w

where the cask = 2 is obtained by following the work of G. Wellst al. [257]. Then the
result of the theorem$§ (A.V3) can be applied to the relaffaid4) withm= 2, p=4> 2m
which gives,

o] = {BoREACS e
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To finish and to have a bound of the error, using the triangquality|[e|| 2, < Hek\ |L2(|e)
(see G. Wellset al. [257] for details), and injecting the Eqd._(Al64) and (A.T&tp the Eq.
(A7) it comes,

Chsktl if k> 2
lellzgy < {Ze [l I k> (A76)

3 eChE [ulyys,) if k=2 ’

which proves that the method has a optimal convergenceeéfat cubic element are used as
presented in Chaptel 3 EQ. (3/51). Note that for a pure mermalparblem,

os-u]| < Foruhs -

which leads to (in applying the theorems with= 1 andp = 2),
lell zgy < ZChSkH [y i k> 1, (A.78)

which shows that if only the membrane term is present, theergence of the method is
optimal inL2-norm even for second order interpolation. This is consistéth the fact that

as the membrane terms include only the first derivative, dmtiuity is (weakly) enforced

by second order shape functions.

A.4 Difference of internal energy in a DCB at fracture ini-
tiation

In this section we demonstrate formula_(3.1126) dnd (3.12¥e demonstrate first the
expression of internal energy for the two configurationsDCB (unfractured) and (ii) 2 SCB
(full broken) and afterward the formula are obtained by arsabion.

First we investigate the case of a DCB, which force-displacgmedation is given by,

P = 16Eh3u3, (A.79)

3
I‘DCB

with us the vertical displacement at the center of the beRnthe punctual loading at the
middle of the beam andpcg the beam length. It has to be mentioned that in the following a
unit width is considered.

Secondly for a SCB the relation force-displacement is exgaeby,

3 3
4PLscg _ Plpcs
Eh3 2ER

Us (A.80)

or,

P=""us, (A.81)
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whereLscgis the length of a SCB. As the fracture occurs at center of DCBaihésbecomes
2 SCB, which have both the same lengtke.(Lpcg = 2Lscp).

Furthermore, the relation between the maximal bendingsife. the stress at lower or
upper skin) and the forde is given by,

Mbendingh
b

o= T3

(A.82)

With Mpending= P"gCB for a DCB, the bending moment ahd= 1;; the inertia of the beam.
Therefore for a DCB,

Loceo
us 1oEh - (A.83)
Similarly for a SCBMpending= PLscs= P"gCB, and Eq.[(A.8Il) becomes
L3ce
Uz = 12Eh0' (A.84)
From these developments the internal energy is given bgdtielasticity),
1
Wie = SPus. (A.85)
The application of this formula to the particular case of D@B/Q) gives,
8ER?
Wioce = —5—U5 (A.86)
Loce
and for a SCB[(A.8]1),
ER
Witsce = —— 5. (A.87)
Loce

Afterward, the energy can be expressed with respect to tessstFor the DCB case the Eq.
(A.83) allows writing,

8Eh? Lpceo 2 hLpce o
W = = A.88
intDCB L%CB ( 12Eh) 186 o, ( )
similarly, for SCBcase using Ed._(A.B4) it comes,
ER /12.5\° , hlpcs
W = (28] o*=—=0%. A.89
MSCE T3, (12Eh) O~ 1age’® (A.89)

Finally the difference of internal energy at fracture iiitbn is given by,

hLpce » hlpce » hlpce -
o°-—-2 o= o-.
18E 144 24E

AV\/lntbending = Witpce — MWintsce=
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Moreover as the fracture occurs when the stress reahi@sacture criterion), the difference
of internal energy at fracture initiation is given by,

hlpce
A\Nlntbending = EGE’ (A.90)

which is identical to Eq.[(3.126). It appears from this egqurathan the geometry of the beam
has an influence on the fracture stability. Indeed the fraaiill be unstable it pcg > 24EG°

Eq. (A.90) is valid for a pure bending loading and for a comkilrnnembrane/bendlng
case the energy of the membrane mode has to be consideredrtiddess, we assume that
the membrane energy after fracture is equal to zero. Thisthggis restricts the validity of
formula to tension loading and to compressive loading wighnerpenetrationif. there is
no contact forces between crack lips after fracture).

The energy of membrane mode can be computed in linear efpastyc

Wintmembrane = épmembrané'l

hLpce
= fczmembrane (A.91)

asuy = ImembmnbOC andgemprane= emne The total internal energy of the DCB configu-
ration can be obtained by linear superposition using Eg9T)Aand [(A.88) with the part of
the stress in bending,

hLpce (1
Wint bcB combined = 2E §Ggending+0%1embrane . (A.92)

The difference of internal energy at fracture initialipatican be obtained as previously by,

AV\llntcombined - VvlntDCBcombined_Z\NlntSCBa

hipcs [ 1
BT Tzogending"’oﬁ‘lembrane . (A.93)

Finally this formula can be expressed with respeatofindeed,

6/hMcorg Obending 0
Neoho +6/NMcog Omembrane of- Obending 0

ni (A.94)

asMcom = 6obend,ng 0andN¢ong = hOmembranedn linear elasticity by definition. Furthermore
at fracture initialization the identitgc = Opendingo+ OmembranedS Verified which leads to,

2 2
hLpce [ 1 Obendin 0
g0 membrane 0| ~2
A\Mntcombined = 19 + Oc

2E \12 o2 0%
hipce (1 > 2\ 2
2E 12nl +(1_nl) Oc

hLpce /13
= = | —2u+1)og, (A.95)
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which is the relation EqL(3.127). Furthermore for the pugading casej, = 1, which gives
the relation[(A.9D). As previously the fracture stabilisygoverned by the beam’s length but
also by the ratio between the membrane and bending stresses.
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Appendix B

Annex to chapter4

B.1 Linearization of compatibility terms

The derivation of the full discontinuous Galerkin formiratt of shells is realized by intro-
ducing compatibilty interface terms that are linearizele Tevelopment of this linearization
is written herein. The linearized expressiord0fAnmn®) is suggested by L. Noett al. [185]
and is summarized in this work. Afterwards, the same argtiatien is applied o (jn®).

B.1.1 Bending compatibility term

The expression of the bending compatibility term is preserity L. Noels[[1811], who
developd (jApm®). First, jApym® is decomposed into the mid-plane convected basis,

3(iAn®) = &( AnfiP g+ MRTL) (B.1)
Then this equation reads, separating the material and georparts,
S(jAnn®) = 3 (j_Ahm“B) b 5+ JAnPSD g 4+ 8 (JARIY) -+ JAETISE. (B.2)

The material part can then be computed using the linear ssjore ofm®? and i#® given
by [237], for elasticity with finite deformations,

e — %ﬂrgﬁ\/{) <¢,y‘t,6—¢0.,y‘t0,6) and, (B.3)
) jo JE (hmax—hmin)® | o o
- it 24%?X1+\T;m 05 95 (Ioghn) g (B.4)

229
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Thus
B(j_Ahrﬁo‘B) = o3P (3t 5+y-Bts) and, (B.5)
3243 _ -—J'E(hmax—hmin)3 a 4B
B(INIT™) = o001 ry) 40 - #68(109M)
. -—jE(hmax—hmin) %
= 00ty % o s (5.6

Finally, using these two linearizations and usm@f = ™ - ¢ P = m* - ¢, asp ;- ¢ P =

Op

S(JAnrn®) = jor P (30 ts+dy-Ots) b g+ A - ¢ P g

_j_O_ jE (hmax—hmin)3
jA2 240(1+v)

O3 - 935 (loghn) gt + jA™5t,  (B.7)

furthermore, as the terms By, or )\ﬁ are of the same order than the out of plane shearing
which is neglected the final form of the bending compatipilégrm is,

5(iAm) = jorpP® (Dy-ts+by-Ots)dp+idni® ¢Poh, (BB

which is identical to the Eq[(4.83).

B.1.2 Membrane compatibility term

We describe here the derivation é)qj_n“) which appears in the compatibility membrane
term (see equatioh (4.87)). As the shearing is neglecteldifohhoff-Love shells,

nd — (GBHB H)q;B, (B.9)
with,

AB

B = Antu¢P. (B.10)

The virtual form can therefore be computed as,
5(in) = 8[F (A +ABf™) ¢ gl

(Jn°B+J >¢[3+J< °B+)\Bm““>6¢[3
_ (J “B) g+ iMHoAED 5 + ABS(jFH) g +

i (e B+>\Bm°‘“)q:B 050, (B.11)
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with the introduction of the identity - Y = &g, in the last term. Then, the values of

5(jrPH) = m Jm"“&‘“ is provided by Eq. [[BI3) and the one dfi°® can be com-
puted from,

A — gj’ﬂ“ﬁ‘% 05— 00y-005) . (B.12)

and Eq. [(B.111) is rewritten when neglectidy, (as always did),
B(in) = oS (500510 55) 0+ in® 650,
+ ){—‘;Aﬁﬂgwé (3y-ts+by Sts)dp+ M oAld . (B.13)
Moreover using equatiof (B.1L0) and neglectiig,
S = A (5t,u-¢fﬁ+t,u-a¢>5) . (B.14)

The second member of this equation can be rewritten (to redp¥) using successively

3¢ -dp5) = O, (B.15)
¢ = —¢° g, (B.16)
and from Eq.[(B.10),
b 508 — Mg spB_ Magss (B.17)
a An ' An v .
leading to
Ad
5)\ﬁ = M 6t7u'¢7ﬁ_)\_h¢’ﬁ'6¢l . (B.18)

Finally (B.13) becomes

3(m%) = L0 (50,05 +6,-802)0+ 70750

o
+ }J\—h)\ﬁﬂ{n‘%‘“yé (Oby-ts+by-ts) b

_ A

with M™ = m . ¢H. This expression can be used for the implementatioa>pfi¢n, 5¢)
(@.81).
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B.2 Development of the stability shearing term

We present here the developments leading to the expresisiba stability shearing term
a;3(dn,09) (4.92) suggested in Chapfér 4. Toward this end, we first reducanalysis to
the linear case and then we show that a linearization of thelinear term[(4.92) is identical
to the linear form suggested.

Following the developments presented in Sedtion ¥.4.Dibssible to give the linear form
of the consistency sheari@g, , (un, du) as well as of the compatibility sheariag,, (un, du)
terms,

a1 (up,ou) = L(j}l)- |[/a 6AtB¢’OBda’ﬂ Vod04e ~ 0 and, (B.20)

8o (un,du) = /S H /G AtB%Bda/ﬂ-<¢o,ya{syéayéj?)>vadaqezo. (B.21)

Therefore, by inspection of these two relations the quadstability term is formulated as,

ajg3(un,du) = /S{ H/HAW)Vddﬂ $oaVy <Bgy{h—{BJ_0>
bog- H /V 6At5<|>’05dv’ﬂ vv} d04e, (B.22)

which weakly ensures the compatibility of the deflectionmalkto the mid-surface. However,
in order to implement it in an efficient way, it is necessaryia an expression for the prim-
itive of At anddAt. Using the definition of the shearing strain compongnt (Z) itlcomes
up o - to ~ —At-§o o Which yields

/ MpYdY ~ — / uny - toddi (B.23)
u u

As the unique purpose of the stability shearing term is toklyeanforce the stability, it can
be approximated without damaging the accuracy of the metbouisistency is preserved).
Therefore, the relatiori (B.23) can be approximated by assymisurface with a curvature
radius large compared to the sizes, thus leading for a peEssmption to

Mmgduﬂ $oa=— |Uuuh’y't°¢gduﬂ boa - —[un] todes.

(B.24)
Finally, using this last approximation in Eq.(Bl22) it comes
#{® o
ajg3(un,Ou) = /S [un] -tovg <w> [du] - tovg d04e, (B.25)

which is identical to the Eq[{4.147).
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Then we discuss the non-linear form af;(¢n,6¢) (4.92). As the unique purpose of
this term is to ensure the stability and the compatibilitytteé displacement normal to the
mid-surface, any consistent expression can be used. Dhneyréi a similar way for the other
compatibility and stability terms we derive an expressibaip,(¢n, o) which after lineariza-
tion leads to the linear form,;(un, du) (B.25). Toward this end, we suggest the expression:

ap
25(0n.30) ~ [ ﬂ¢hﬂ-t<¢h>vg<%>n6¢ﬂ-t<¢h>vadaﬂe, (B.26)

whose linearization leads to E@. (Bl25). Indeed, uding (#{4.002),

[dn]-t = [dno+un]- (to+ At) ~ [un] - (to+ At), (B.27)
as[éng] ~ 0 and, with a first order approximation, EQ. (B.27) reads,
[n]-t ~ [un] to. (B.28)
Similarly,
[00]-t ~ [du]-to. (B.29)

Finally, using Eqs.[(B.28-B.209) to linearize the shearingpitity termsag;(¢n,d¢) (B.26) it
provides its linear counterpaaf, ;(un, du) (B.25).

B.3 Implication of the symmetry of o

To satisfy Eq. [(4.47), the symmetry of the effective membratress tensor can be en-
forced. This tensor is defined, in the convected basis, as

i = AP 0dp=n"0bq+I®At—(Ant) (@M =i"Poz0¢4. (B.30)

From this definition, the componen& = (fi-¢-%) - A\pt andri®® read,
A% = 19— AImY =% and, (B.31)
P = g% =AY, (B.32)

Where)\ﬁ = )\ht7u-¢73. Moreover as we neglect by assumptityy, and taking into account
the relationt o -t = 0 we haveA3 = 0. Finally, asni® vanishes fore thin bodies the Egs.

(B:31{B.32) can be written as,
A% = 19=(%and, (B.33)
i = g (B.34)

But as Eq. [(4.47) is satisfied by enforcing the symmetry of tfiecéve membrane stress
resultant tensor it leads t6'% = A% and thus,

o = (B.35)
Finally, from the definition ofi (B.30), we have also,
AP = n®—\PriP. (B.36)
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B.4 Numerical properties

In Chaptef# we enumerated the numerical properties of thgestgd DG formulation
of Kirchhoff-Love shells. To be concise some demonstratiaere omitted. They are a
generalization to shells of the different demonstratiomsienin Appendix’/A.B in the case of
Euler-Bernoulli beams. Notice that all the demonstratiemorted here below are made under
a linear assumption as discussed in Sedtioh 4.4.

B.4.1 Upper bound of the bilinear form

The upper bound ofa(u, 6u)|2, is derived by first using the Cauchy-Schwartz inequal-
ity (|a®Pb®| < v/a®BadB+/haBpaR) in the membrane and bending parts of the bilinear form

) which gives,
—aB7
)‘ < Z \/ #nlo 5 (¢O,a upt+uqg '¢O,B)
€ Lz(ﬂe)
=1
L2(ae)
._GB
Za,%(u, 5“)’ < Z Hmjo  (Poa Atgtug 'tO,B)
€ € L2(4e)
—Yd
X |1/ Hmlo (¢07y . 5At75 + 5u’y- t075) , (B.38)
L2(4e)
where the notation,
B 2
H\/ﬂa Aup —/ agpH PPasda (B.39)
L2(4e)

is used. Then, the recourse to the propﬁl(tg/)lle < ||o+||Lz + ||0_||Ez(s) allows bound-
ing the consistent membrane interface term,

‘Zalsml(uhaéu)' < ZL/aﬁ“l(uh,éu)'

hS}[nlo

8)

L2(04e)

, (B.40)
L2(04¢)




B.4 Numerical properties 235

which becomes using the scaling propérty

Ck ._0([3
'Zafml(uh,éu)‘ < —Z Z H \/ Hnlo (¢O,a U+ UQ '¢O,B)
S \/E € L2(7e)

—Yd
x \/Bzi[:‘o [6u] - 0o.5vy , (B.41)

L?(0e)

WhereC'z‘ depends only on the degree af Note that this one is priori unknown, but
applying the bounds to the discretizatiop satisfying the essential boundary conditions, the
degree ofu, corresponds to the degree of the polynomial approximaiidw other interface
terms can be bounded in a similar ways

e Compatibility membrane term,

Ck ._O(B
‘zalsnlz(umé’u)‘ < \/—2_ Z ||\/ Hnlo (4)070( . 6u,B—|—5u,a '4)0,5)
S

L2(4e)
BZ”{““’ [u] - osvy , (B.42)
L2(04e)
e Stability membrane term,
S [32}[nj00(I3 _
> aniz(undu)| < rs [10u]-®opvq
> ¢ L2(04e)
')
IB’Z}[nJOy _
X e [ul- 9oy (B.43)
L2(04e)
e Consistency bending term,
' S Cll( _GB( )
Q) (Uh,é’uf)‘ < —= Hmjo ($oa-Atpg+ug-to
Z mit \/EZ B B Lz(/qe)
—Y0
x"x/mﬁ?’" [At (3u)]-$oavy . (B44)

L2(04e)

'Hansbcet al.[115] demonstrate that for an elemerdne has the propert3?||a||L2 (010) < CK \|a||L2 W|th
|2e| fs{a"B a“B}daﬂt
Is| [1o{a%P:a0P }da

CK > 0 independent of the element geometry and viath= ‘lieil. ConstanCk = sup

adBcPk(ae)

depends only on the polynomial degtee
°Note that the scaling property is not applied for the termstabilization
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e Compatibility bending term,

Ck ._O(B
S \/

L2(7e)
H,
< ““" [At]-$osvy , (B.45)
L2(04e)
e Stability bending term,
BlﬂmjodB a
du)l < B\ s [0At]-bopvq
¢ L2(04e)
—Yd
H,
<P A goavy | (BaE)
L?(04e)
e Stability shearing term,
s Bsﬂqjoa _
> gz(un,du)| < % s [oul-tovg
s € L2(02e)
—y
H
x B3hs‘“° [u] - tovy (B.47)
L2(d4¢)
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Then, completing the form to obtain the complete binomiahtg the summation of Egs.

(B.311B.47) gives,

|ay (un, ou)|
Ck(B)

VAN

|| ——=op1
H Hnlo §(¢O7G‘U,B+U,a‘¢o,ﬁ) +
i L2(ae)
—ap
\/ Hmjo (¢o,a-At,B+U,a'to,B) +
L2(4e)
P ap
PO u] pogvs |+
L2(04e)
o ap
Pnle " [ad) dogvs |+
L2(04e)
Batlqo
‘ o [ltova| |
L2(04¢)
=1
Hnlo §(¢o7y-5u75+5u7y-¢o75) +
| Lz(ﬂe)
—Yd
\/}[mjo (¢07y-6At_‘5—|—6u,y-t075> +
Lz(ﬂe)
P Yo
PO 5wl doavy |
L2(04¢)
o Yo
Blzhf“’ [6AH] - $o.5vy +
L2(0¢)
—y
H
H B32h‘;10 [5u] - tovy , (B.48)
L2(04e)
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with CX(B;) = max<2 Ck\/2/B1,C \/2/[32> Finally, using the propertyab < a2+ b? and
the Cauchy-Schwartz inequalitba bi' < [yafyb?)is Eq. (B.4B), this last one reads,
i i I

i 2
a(u ,5u 2 .—GB].
’(k,h—_)|§ > \/ #nlo §(¢O7G‘U,B+U,a‘¢O7B) +
C (B|) € Lz(ﬂe)
._GB 2
\/ HmJo (¢O,O('At7[3+u,(x't0,3) +
L2(4e)
1 i’ i
> Bzhsnjo [u] -dopvy +
L2(04¢)
1 g i
o VAV Y
L2(04e)
. 2
E' “h qjo [u] - tova X
L2(04e)
_ oy 5
> \/ #njo §(¢0,y'5u,6+5u,y'¢0,6) +
¢ | Lz(a.ﬂe/)
——Yd 2
Lz(aﬂel)
2
W -
z(a.ﬂel)
/5 2
L Bmio oy gy |
L2(04e)
. 2
EH s q‘o [5u] - tovy : (B.49)
L2(04e)
which can be written as,
&y (un, &u)[* < C*(B) [[|ull[*]||5ul||*, (B.50)

for all u satisfying the essential boundary conditions and wB&idepends only on the degree
of w. The Eq. [B.5D) corresponds to the upper bound given by th{ZETE6)
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B.4.2 Lower bound of the bilinear form

The following relation is used in order to obtain a lower bdwf the bilinear form,

—af 2
a (u,u) =3 H\/ﬂ{njo 2 (®oa up+ua-dop) 202y T
—af 2
3 || vV#tmio " (boa- Atptua-top) ,  +

25 Joul 9oy ($oa -ug+ua-bop) 25" jo) v dda
2
_|_
L

W
+3 |[v/ 2 oy [ulvy
S 2(s)

2% Js[At] '¢O,y< <¢O,a At (u)-ﬁ +ug- t0,5> }[rgﬁyéjo> ngaﬂ

2
=Y0
+ng/ Bl Goy - [At(u))vs
L

+3 |V L to- [u]vs
S
L

+
%(s)

(B.51)

%(s)
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Then, the product df 2-norms with constam@'l‘ andC'2< depending on the degreeofis used
to bound the remaining interface integral (see Eq. (B.42))ckvgives,

2
—aB1
a(u,u)> 3 y/#no 5 (®oa-up+ua-bop) T
e Lz(ﬂe)
S \/ Hmio  (®oa-Atpg+ug-top) -
e L2(4e)
ZﬁCk .—GB 1
Neay \/Hnjo = (¢0,0( Ut Uuqg '¢07[3)
\/E e 2 Lz(ﬂe)
Bzﬂnjo
s Lul-Posvy
L2(04¢)
2f2c:r'§12 H o j_OO(B (boa- At g+t top)
m Kol y ar 3
v L2(2)
Buimo”
1 0 —
L2(04e)
2
BoH, Jo .
% 2h2 boy- [u] vy +
L2(04e)
2
B4, Jo -
% Zh'z boy- [At(u)]vy +
Lz(aﬂe)
2
[33}[qj0y —
S LZ(S)

Finally, the recourse to theinequality’ applied to Eq. [[B.52) provides the lower bound

3ve > 0:|ab| < §a2+ £b? orve > 0: [ab] < €a + £b?.
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of the bilinear form,

—aB1
a(u,u) > (1—en)) |[y/#njo 2 (b0 up+ua-dop) *
€ Lz(ﬂe)
._GB 2
(1—¢&m) Z Hm]o (¢0,a Atgt+ug 't07B) T
€ Lz(ﬂe)
2 —Y0 2
CK B2#njo -
(1_28n[32> Z o borrluls "

L2(04e)
2

Ck? B, J'oye5
(1_ G )Z 200 oy [At]vy |+
L2(04e)

, (B.53)
L2(04e)

for all u satisfying the essential boundary conditions. The lowemiddB.53) corresponds to
the definition given in Sectidn 4.4 by the EQ. (4.1157)

oM

B.4.3 Proof of the convergence in the energy-norm

The convergence rate of the problem is established by edioglthe error between the
finite element solution and the interpolamt of the exact solution: in the same space of
functions of polynomial degrde If both w anduX satisfy the essential boundary conditions,
the definition ofuX is,

/ (u—uk) dujoda =0 Vou, (B.54)
An

for all du satisfying the essential boundary conditions. The dedinitf the error is,
e = up—u, (B.55)

where the prescribed displacementdna and the prescribed normal director ana are
strictly equal to zero. Furthermore, the error on the exalkit®n interpolant reads,

ek = up—uX (B.56)

As the terms[(4.148) are by definition linear, having receucsEqgs. [(4.136) and (4.158) it
comes, using the orthogonality relation (4.1152) ,

2
| < afon-vt )

< a<uh—u, uh—uk> +a<u—uk, uh—uk>

IN

=Y en = =1 =1

. (B.57)
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Afterward, the error resulting from the discontinuous @ele method is calculated by
bounding the terms dffju —uX|||. Giving 7%F¥ the unit forth order tensor, a bound of the
membrane energy term is,

2

H \/maﬁ% <¢o,a ) (’“’,B — u[‘B) + (ua— u'fa) -4)0,[3)
‘ﬁa%o,a ' (U,B - “[‘B) 2

L2(ae) —

L%(ae)

Cn1

2Cn1 {H\ﬁaﬁ(‘to,m(u—uk))7BHi2(ﬂe)+H\ﬁa%o.a[y(u—uk)Hiz(ﬂe)}
< 20|V 800 (u—u)| i

2

R

Hl(ﬂe Lz(ﬂe)

2 2
< Cos (= g =) <

Cn4h82k|u|ak+1(ﬂe) +Cn5h32k+2|u||%|k+l(/qe) < CnhSZK‘UmkH(ge) , (B.58)

as#y is positive and symmetric by nature and where in Eq. (B.585#veation by part, the
property(a-+b)? < 2a? +2b?, the definition of the Sobolev spadgla|lyo,) < llallu1(4,):
the property||a - b|| < ||a| ||b||, the basic error estimates of interpolation théamg well as
the assumptioh® < 1 are used. Therefore these assumptions lead to considethdtsurface
is continuous and regular (no singular point).

The same argumentation holds to bound the bending term wbéats,

2
[ mie™ (o At (u—u) + () tog) |, <
Cnt || u — “kHa%ﬂe) +Crm [|u — “kHal(ze) +Crmg [|u — “kHiZ(ze) (B.59)

where the definition[(4.104) oAt is used. Having recourse to the error estimates from
interpolation theory and the fact that < 1, Eq. [B.59) becomes,

2

———ap
H y‘[mjoa (¢07a . AtB ('U, - Uk) + ('U/7G - /u’lfa) : tO.B) Lz(ﬂe)

Cphs%—2 |u|ﬁk+1(ﬂe) . (B.60)

Now the bound of the different interface terms are investidaFor the membrane inter-

4Given a mappingu € H*1(ae), then VuX € PK interpolating w in 4 ||u7uk{|Hq(ﬂe) <
Cihsk+1-d |[u|pkeq) VO < g < k+1, with G independent offS, the size ofa, [140].
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face terms one has,

2
=0
bV e il
© L2(96)
2
5|/ o (u uf)vg <
€ L2(946)
2
Cni1B2 |°‘ .k ) <
% s \/— (U u) L2(020)
Cni2B k(|2
Y The [ —w¥|| o) <
%cn.[szhsz"\umkﬂ(ﬂe) : (B.61)

as #n
trace inequality, the definition of Sobolev spaceass V| Ho(a0) < [|®[[H1(4,)): the inverse
inequality? as well as the the interpolation theory are used. Noticetthiat assumed to be
constant in this development. Similarly, for the bendingiface terms the Eqs,_(4]12) and
(@.103) imply,[At] - ¢oa = — [uq] - to, and

2
<
L2(04e)

=ap
%%H % ¢07a-[[At(u—uk)]]v§

=0
ZH\/% to- (ua—uky)vy
e

2

2
<

L2(04e)

a .k
v (u,a u’a) '-Z(Me)S
CrglszzBlH\/a (ua—uky) ? ?

L2(ae) + %lesBlHﬁu%u”“Bfulﬁ(UB) HLZ
chﬂ'szzBl H"’_“k”alme) + %Cm'3|31 Hu—ukHﬁzme) =
3 CmiaPa

hs?

%leﬁthZk_z [ty - (B.62)

3 Cmrl]éﬁl
)

(1e) —

2
H“_“k”LZ(ze) <

and finally, for the shearing interface term it comes,

2
|33ﬂqlo

to- [u]vg

< 3 CuBsh™® wffea ) - (B.63)
L2(07¢) e

*vv € H! (7e) 3Cr > 0:[|v]|F2(9q,) < § sIIvIILz/qeﬁCThSIIvaIILz
Sym>1 3G >0: [[v]lyma <C" ™[0]I 4,
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Combining the results of Eqs. (BJ58-B163) the Hq. (B.57) is fdated as,

e = er® sy (B.64)

The governing equation involving high order derivativeadieg, as expected, to an order of
convergence lower than the degree of the polynomial appratkon and thus implies to have
recourse to at least quadratic interpolation.

B.4.4 Proof of the convergence in the E-norm

A proper elliptic regularity, a cubic approximation of theoplem, as well as pure Dirich-
let boundary conditions are assumed to prove the optimatargence rate in the2-norm.
First, the notations are simplified by formulating the lindapendency of vectaAt with u 4
explicitly from Eq. [4.10B), which gives

At = Atgu g with, (B.65)

Aty = e[i)aS [‘FOB to®(to/\¢0[3)} (B.66)

whereAt, is a second-order tensor adig is the skew rotation matrix associatedpgs. The
assumption of pure Dirichlet boundary condltlons leads to,

OuAh = 0714n = 04 andonAan = 0uAan =0, (B.67)
u=At=00n04y. (B.68)

The demonstration of the consistency of the formulation éct®n[4.4.1l leads to the
fact that the exact deformation fields satisfying the essential boundary conditions, satisfies
the bilinear form[(4.148). Furthermore, under pure DirtHdoundary conditiondy (du) =
bext(du) + bpound du) can be formulated using (B65) ad (B.68),

b (Bu) = /ﬂ h {Bnﬂ—o—o&tlﬁzﬁl)’p}-&udﬂ. (B.69)

Let ug, satisfying the essential boundary conditions, be thetes@ation of a problem gov-
erned by the systeri (4.148) for a given pair], /] ). Therefore, considering the errer
(B.58), satisfying also the essential boundary conditiasghe virtual displacements yields

b ™ (e) = a(ug, )—a<ud—ud, )—f—a(u'é,e)

(ud ud, >+a<e,u|é>

= a<ud 'u,d, >+a(uh—u,u§>:a<ud—u§,e>
(

Ug — ud, up — k) +a<ud — u'é, uk— u) (B.70)

I
©

= a
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where theu('§ is the interpolation oty satisfies the essential boundary conditions, and where
the recourse to the symmetric natureadf ) as well as the orthogonality relatidn (4.152) are
used. Using the EqL{4.156) with the particular choice ofdtigint problem such that,

jon — (j?.&tlmﬂ) = (B.71)

enables rewritind (B.70) as

el < OO |[ua—wif]| [+l ] @7

as all the terms involved satisfy the essential boundarditions.

The theorems 5.1 and 5.4 presentedlin [147] allows estafgjishe convergence rate
by bounding the term||ug — uf|||. Toward this end, these theorems are particularized to a
problem under pure Dirichlet boundary conditions, and gwsamarized as:

Theorem 1 Consider the problem

Au = fea, (B.73)
Bi-u = gionda fori=0,1,...m—1, (B.74)

with the proper elliptic operatoA : ¢®(4) — HS—2M(4) and the operator
Bi : ¢®(0a) — HS'=Y2(9a) which respectively take the expression

Au = Y (-1)PDP(apg(&")D%), (B.75)
0<p,g<m
ai
Bi-u = G_Ciu’ (B.76)
with ¢ the outer normal 0.4, and with
o oP1tP2
D W’ P1+pP2=P. (B.77)

Therefore, ifu € H2M () and ifA-u € HP~2™(4), Bj-u € HP~-1/2(9a), one has/p > 2m

[wllpia) < Cp{!IA‘UHszm(ﬂ) + IIBi 'uHHpil/Z(a,q)} : (B.78)
[

Notice that the use of this theorem limits the demonstratanproblem with a proper elliptic
regularity, which can be easily proved only for particulases like pure bending.
Then using Eq.[(B.684) it comes,

o= = { S 623 ©79
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where the result fok = 2 is obtained following the argumentation of G. Wedlsal. [257].
Thus, if the theoreml1 is applied to Eq. (B.79) with=2, p=4 > 2m, f = e andg; = 0, it
comes

=] < { %h;:!|||ee\’|‘5<fhh>) :; Ei; | (B.80)

Combining this last results with (B.b4), the EQ. (B.72) reads

Finally, using the triangular inequality one hgs||, 2, < HekHLZ(zh) (see G. Wellst al.
[257] for details) and thus,

ZChS"+ wlperay  If k>2
”€”L2 (an) zChszlu‘H3 if k=2

(B.81)

(B.82)

Therefore the full-DG shell formulation is proved to haveaatimal-convergence in the
L2-norm if at least cubic elements are used. Neverthelesssitown in a numerical example
of Sectiorf4.6.1 that the optimal convergence rate is alsemid for quadratic elements.

B.5 Expression of the elementary force vectors

In this section we provide the expression of the elementaigefvectors of the non linear
full-DG formulation of Kirchhoff-Love shells.

B.5.1 Bulk terms

We first present the vectors related to the bulk terms. Inetloeges, the integration on
the surface is performed through a Gauss quadrature ruhe(&%i,tzé) the coordinates of the
Gauss points andy the corresponding weight. Using the developments provideection
[4.5.1 the expressions of the elementary force vectors ofitinelinear shell formulation are
successively:

e Membrane term:

g ﬁl_ej_nd.éq)ﬂdﬂ = Z[/ JnN (51€> . SpH

= ZEntn - o+, (B.83)
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where,

Fr = Y Woj (85,85) n® (85, &5)N% (85,85) - (B.84)
9

is the elementary membrane internal forces vector.

e Bending term:

_ m“(q)h)'(f)t)\h),adﬂ = /ﬂe [J)\h [At } ~adﬂ].5¢ﬂ, (B.85)

Ae

where,
Frph = 5 wgj(85.&5) [Etf& (E&ES)}T - (£3,2) (B.86)
g

Notice that in these expressions it has been supposed ¢haghltant membrane and bending
stresses are computed thanks to the material law and theatia¢éion of the normal vector in
terms of nodal displacements is computed from,

53 = At".-3p~, (B.87)

whereAt" is a 3x 3 matrix defined by,

At = 8°‘JF‘3 [Gnq — £ (£ )| N (E1,€2). (B.88)

and wherefy, , is the skew rotation matrixassociated tnh,. From these definitions the
variation of the derivative of the normal unit vector in texof displacements reads,

Sta = Aty-3p", (B.89)

WhereANtff] Is a 3x 3 matrix defined as,
85 = [ 10N (1)~ N (E82) 6 s (BL87)
B 20N (& 8)| Bt [bnaa- Bn2At) —Onzg- (BnaA )]
@ | = (dno A t) Nige (81,82) + (dn 1 A ) Niyp (81,87) —

(00 10) N (E22)+ (£ ) N (2]
e _[&“}T' [— (P10 APn o) + (¢h721/\¢h71)ﬂ
o ® [— (£ 0n.1) N¥, (E,82) + (£ A ) N, (21,22)} } . (B.90)

0 —ag ap
’Givena a 3-components vector, its associated 3skew rotation matrix is{ as 0 —-a ]
—a a 0
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B.5.2 Interface terms

We discuss the implementation of the different interfaeantary force vectors of the
full-DG formulation of non-linear Kirchhoff-Love shell$n these ones, the integration on the
curve is performed through a Gauss quadrature rule (Jigﬁ the coordinate of the Gauss
points andwg the corresponding weight. Nevertheless, some quantiteesamputed on the
corresponding point of the elements as depicted on [Eigl Blterefore at each coordinate

(217»227) XZS]' (E:H\,EZJF)

Figure B.1: Gauss integration on the interface is performed @urve of coordinat&s!
but the different quantities are computed on (minus and)@lesnents edges of coordinates
(81£,8%%). The symbolx marks a Gauss integration point of the interface. With ainoous
method the three are congruent and with a discontinuous method, they areclesg.

(Eal) of the interface it corresponds a point of coordina(tééﬁ,éé—) of the minus element
and another one of coordinatééé*,éé*) of the plus element. In the following we write
N#— (g51) andN#+ (g5 respectively the shape functions of minus and plus elenferttar-
dinates(* &%) evaluated at the poif". Thus, these shape functions can be derived with

respect to both coordinat&ésand&?. Once computed on elements, the quantiiase formu-
lated in the interface convected basis using the push-fortemsor, defined by Eql (4.181),
and are then writtem. Furthermore, the Jacobignis computed on the interface following
Eq. (4.180). Defining$® = [ g+ } and using the developments provided in Sedfion 4.5.1,
the expressions of the interface elementary force vectoitseonon-linear shell formulation
are successively:

e Consistency membrane term:
S () 120090 = § Firconsi'-50%. (B.91)
where,
—(n%) N (51
(mE)Ne () |

is the elementary interface consistency membrane foragsive

Foiconst' = 3 Waj (&) Vo (B.92)
g
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e Compatibility membrane term:
/[M’h]] )Vqddae = Z mtcompnu - O (B.93)

where,

S H
Fintcompn -

= Flntcompn_L ‘I’Flﬁtcompr)l;‘I’F}ﬁtcomprg"‘Fi?]tcomprﬁta (B.94)

is the elementary interface compatibility membrane for@gor and where,

T (TSl :]_[GByé N\H_ El
Fi?]tcompnf = ZWQ@VG [H)h]]"l’h,g /n\6+/\’zy ( g)¢hy , (B.95)
] ™ NS (E3) b,y
- » (€5) [on]
Fiitcompry ) ve (n) P | it & B.96
tcompmrp %ng (Eg )V(X <’I’L > ¢h [ N[H—( )[[¢ ]] ] ( )
Sl)
Fl?]tcomprg ZWQ
— — T
{ AR [(¢h,g®t,5) Nf{f (Eé)+(¢h,g®¢h,y)~At%” “[#n] (B.97)
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e Stability membrane term:
aByé
AR <BZ >[[5¢]] B Vg d07e =
Z ntstabn - 097, (B.99)

where,

F;

int stabn

B aByES
gngo(zgl) VgV [6n] ‘¢h7y<B2 hs > {

—

—N#~ (&5 bng
NH+ (E5) n g
(B.100)



250 Annex to chapter[4

is the elementary interface stability membrane forcesore®ote that as explained in
Sectior{4.P the two last term af,;(¢n, o) can be and are neglected.

e Consistency bending term:
Z/ J)\h Hét]]vadaﬂe = z mtconsm &I’Su (B.101)

where,
—T _
—[At”]r -<Ahfna>
{ANt’H] (it

is the elementary interface consistency bending forcetokec

Fitconsrn ZWgJ ESl , (B.102)

e Compatibility bending term:

> [IE@0] B(h®) vaddse = 3 Fivcompd' 3%, (8103

where,
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is the elementary interface compatibility bending forcestar.
e Stability bending term:
Bi#Hm ™ Jo H#™ o
S [1E@n]-dnyv5 { P2 ) (3t @n)] -1 g doze =
S
> Firtstabm 00>, (B.105)
S
where,
g Burtm ™\ | [87] ane
Fiistabm = ZJO(ESl)VuV{) Ht]]'¢h,y<—l s {fﬁ )
g {At ] “bhp
(B.106)

is the elementary interface stability bending forces vecto
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e Stability shearing term:

ap
Z/Sﬂ%ﬂ't(‘l’h)vg <w> [50] -t (dn) vy dOAe =
> Firistaba - 90" (B.107)

where,

o _ ;ﬁ __NMB— (ES1
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9

is the elementary interface stability shearing forcesaect

B.6 Dynamic relaxation benchmark: SCB loaded at free ex-
tremity

The principle of dynamic relaxation is illustrated on a siynpantilever beam (SCB)
loaded perpendicularly at its free extremity as depictedrign[B.2. Material properties are
reported in Tab[B]1. The equilibrium displacement at the f®tremity can be computed

o\""&e

Figure B.2: Geometry of the simply cantilever beam benchmark

with a quasi-static scheme or analytically by [1153],

3

Usstat = 4% ; (B.109)
with, Fp the applied load.,., b andh respectively the length, the width and the thickness of the
beam andE the young modulus (see Tdb. B.1 for numerical values).

As this benchmark is elastic, the use of an explicit scheméd¢o oscillations between 0
and 21,statas depicted on Fig. B.3. However, if the simulation is perfednwith the dynamic
relaxation presented above, the oscillations are aniehiland the displacement tends toward
U,statin just over one period. After one period the convergencéoises which justifies the
limitation of g to 10-3. This benchmark demonstrates the ability of dynamic relarao
prescribe a quasi-static load using an explicit scheme atiebut evaluation (and inversion)
of the stiffness matrix.
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Property Value
Length [mm] 100
Width [mm] 10
Thickness [mm] 10
Young modulus [GPa] 100
Poisson ratio [-] (B
Density [kgh] 7850
Applied force [N] 10000

Table B.1: Material properties of the simply cantilever bdaanchmark.

Deflection [mm]
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Figure B.3: Simply cantilever beam loaded with dynamic raten.



	Tables of notations & definitions
	Definitions
	Abbreviations
	Conventions
	Mathematical operations
	Variables

	Introduction
	Computational fracture mechanics: review & contributions
	Linear Elastic Fracture Mechanics and its extension to the non linear range
	Cohesive Zone Model
	Intrinsic cohesive law
	Extrinsic cohesive law

	Discontinuous Galerkin methods
	DG methods for solid mechanics problems
	DG methods combined with extrinsic cohesive law

	Enrichment methods
	Meshless methods
	DG vs. XFEM
	Original developments

	DG/ECL framework for Euler-Bernoulli beams
	Balance equations of beams
	Full-DG formulation of Euler-Bernoulli beams
	Weak bilinear form of Euler-Bernoulli beams
	Numerical properties
	Implementation
	Numerical benchmarks

	Extrinsic cohesive law for Euler-Bernoulli beams
	Extrinsic cohesive law for thin bodies
	Implementation
	Numerical benchmark: Double Clamped Beam

	Conclusion on the full-DG/ECL framework for Euler-Bernoulli beams

	Full discontinuous Galerkin formulation of Kirchhoff-Love shells
	Continuum mechanics of thin bodies
	Kinematics of thin bodies
	Governing equations of thin bodies

	Full-DG formulation of Kirchhoff-Love shells
	Constitutive behavior
	Hooke law
	Hyperelastic based constitutive behaviors

	Numerical properties
	Consistency
	Linearization of the weak form
	Stability
	Convergence rate in the energy norm
	Convergence rate in the L2-norm

	Implementation
	Dg-shell project
	Non-linear solver

	Numerical benchmarks
	Quasi-static benchmarks
	Dynamic benchmarks

	Conclusions

	Full-DG/ ECL framework for fracture mechanics of thin bodies
	Combined full-DG/ECL
	Mode I
	Mode II
	Modes Combination

	Full-DG/ECL framework applications
	Dynamic crack propagations
	Dynamic fragmentations

	Conclusions on the DG/ECL framework for thin bodies

	Prospective of extension of the full-DG/ ECL framework to damage
	Linear damage model
	Cohesive law for damage theory
	Numerical benchmark
	Conclusions on the applicability of the DG/ECL framework to ductile fracture

	General conclusions & perspectives
	Bibliography
	Annex to chapter 3
	Euler-Bernoulli beams kinematics
	Governing equations of Euler-Bernoulli beams
	Numerical properties of the full-DG formulation
	Upper bound of the bilinear form
	Lower bound of the bilinear form
	Proof of convergence rate in the energy-norm
	Proof of the convergence rate in the L2-norm

	Difference of internal energy in a DCB at fracture initiation

	Annex to chapter 4
	Linearization of compatibility terms
	Bending compatibility term
	Membrane compatibility term

	Development of the stability shearing term
	Implication of the symmetry of stress tensor
	Numerical properties
	Upper bound of the bilinear form
	Lower bound of the bilinear form
	Proof of the convergence in the energy-norm
	Proof of the convergence in the L2-norm

	Expression of the elementary force vectors
	Bulk terms
	Interface terms

	Dynamic relaxation benchmark: SCB loaded at free extremity


