

Nuclear magnetic resonance applied to actinide ions and their complexes: in search of covalency effects.

Geoffrey Vidick, Nouri Bouslimani and Jean F. Desreux

Coordination and Radiochemistry, University of Liège, Sart Tilman, B16, B-4000 Liège, Belgium

In collaboration with F. W. Lewis, M. J. Hudson and L. M. Harwood, University of Reading, UK

The aim: use NMR for determining

- the stoichiometry
- the solvation state
- the solution structure ... of Ln and Ac complexes

The approach

- nuclear magnetic relaxation dispersion (NMRD) titration
- nuclear magnetic spectroscopy (NMR) of
 - diamagnetic complexes
 - paramagnetic complexes

The ultimate goal

covalency effects in actinide complexes

A (very) quick remainder of nuclear magnetic resonance

Paramagnetic metal complexes

Small zero field splitting \rightarrow long electronic relaxation time \rightarrow large NMR ¹H peaks

P. Lindqvist-Reis *et al., J. Phys. Chem.* B **2006**, *110*, 5279 N. Edelstein et al. J. Chem. Phys. **1968**, *48*, 2110

V. Vallet et al. 2009, Univ. of Lille

Stoichiometry and solvation

Paramagnetic metal complexes

Solution structures by NMR

Paramagnetic metal complexes

Which ligand ?

Which ligand ?

- High stability in water
- High symmetry: C₃
- Lanthanide complexes: known crystallographic structure

- High stability in CH₃CN
- High symmetry: C₃ or C₂
- Lanthanide complexes: known or unknown crystallographic structure

Yb³⁺ tris-complex with BTP in anhydrous acetonitrile

Yb³⁺ tris-complex with crowded BTP in anhydrous acetonitrile

Eu(Pr₄BTP)₃: rigid alkyl substituents

Highly compact structure

- slow inversion of cyclohexenyl groups
- slow rotation of aliphatic chains
- NO₃⁻ : not coordinated

Bis-complex: no crystallographic structure

- \rightarrow Molecular modeling
- Force field with Hay and Cundary parameters
- Full optimization with SPARKLE Yb(III) parameters in MOPAC 2009

Yb³⁺ bis-complex with BTBP: mobile alkyl substituents

Yb³⁺ BTBP complexes: NO₃⁻ vs. ClO₄⁻

- Partially solvated
- Model, solution : similar structure (CIO_4^{-})
- Different NMR spectra for CIO_4^- and NO_3^- !!!
- Less crowded
 - flexible cyclohexenyl substituents
 - flexible alkyl chains

Small paramagnetic shifts

- Small magnetic moments
- Small anisotropy for 1:3 complexes

Actinide DPA complexes: small magnetic anisotropy

Unpaired spin density through the ligand system due to covalence / polarization

$$\delta_i = \frac{A}{\hbar} \frac{\mu_B}{3\gamma_I kT} < S_Z >$$

$$A = \frac{2\mu_0}{3} \hbar \gamma_I g_e \mu_B \rho$$

 ρ : spin density = $\psi_{-1/2}(0)^2 - \psi_{1/2}(0)^2$

 $\langle S \rangle_z$: thermal average of the value of S

1.66 1.64 1.62 1.60 1.58 1.56 1.54 1.52 1.50 1.48 1.46 1.44 1.42 1.40 1.38 1.36 1.34 1.32 1.30 1.28 1.26 1.24 1.22 1.20 fl (ppm)

Thank you

Univ. of Liège Dr. Nouri Bouslimani Dr. Damien Braekers Prof. Jean F. Desreux *Univ. of Reading* Dr. Frank Lewis Prof. Laurence M. Harwood Prof. Michael J. Hudson

European Community: - ACSEPT, EUROPART, ACTINET.

Belgian Science Foundation, FNRS.

Institut Interuniversitaire des Sciences Nucléaires, I.I.S.N.