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Abstract

With the development of digital imaging techniques over the last decade, there are now new opportunities 
to study complex behavioural patterns in fish (e.g. schooling behaviour) and to track a very large number of 
individuals. These new technologies and methods provide valuable information to fundamental and applied 
science disciplines such as ethology, animal sociology, animal psychology, veterinary sciences, animal wel-
fare sciences, statistical physics, pharmacology as well as neuro- and ecotoxicology. This paper presents a 
review of f ish video multitracking techniques. It describes the possibilities of tracking individuals and groups 
at different scales, but also outlines the advantages and limitations of the detection methods. The problem 
of occlusions, during which errors of individual identifications are very frequent, is underlined. This paper 
summarizes different approaches to improving the quality of individual identification, notably by the deve-
lopment of three-dimensional tracking, image analysis and probabilistic applications. Finally, implications 
for fish research and future directions are presented.
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Background

Aristotle f irst reported schooling behaviour in fish 
over 2400 years ago (Masuda and Tsukamoto 1999). 
However, the first real quantitative studies of their 
structures and dynamical properties were underta-
ken only <60 years ago (e.g. for the earlier paper : 
Breder 1954; Keenleyside 1955; Cullen et al.  1965; 
Pitcher 1973; Pitcher and Partridge 1979; Partridge 
et al.  1980). The initial measurements were manual 
and laborious. Since the 1980s and 1990s (e.g. for 
the earlier works: Aoki 1982, 1984; Reynolds 1987), 
many attempts have been made to replicate the 
patterns of moving animal groups using computer 
simulations (e.g. Parrish et al.  2002; Czirók and 
Vicsek 2006). Generally, this approach constituted 
an a posteriori study of these behaviours. It was 
based on predetermined interaction rules between 
individuals, which could be examined by compari-
sons with natural behavioural patterns. However, 
although a good fit was obtained between computed 
and natural patterns, the interaction rules in natu-
ral f ish groups remained less well explained.

With the recent developments in image analyses 
and computer sciences, there are now powerful tools 
that can substitute or complement traditional beha-
vioural observation tools. Video tracking, by defi-
nition, is the tracking of moving objects (here fish 
individuals) and the monitoring of their activities 
by image sequences obtained from video cameras 
(Maggio and Cavallaro 2011). It is an automatized 
procedure that determines animal position over 
time and gives the resulting tracks with a large array 
of data such as distance travelled, speed or space 
used (Noldus et al.  2001; Maggio and Cavallaro 
2011). The quantitative approach of this methodo-
logy has made it possible to collect straightforward 
data in fields as varied as ecotoxicology (Kanen et 
al.  2005; Jakka et al.  2007; Denoël et al.  2010), neu-
rotoxicology (Eddins et al.  2010), behavioural brain 
research (Mathur et al.  2010; Silverman et al.  2010), 
pharmacology (Pinhasov et al.  2005; Singh et al. 
2009; Cachat et al.  2010), genetic and behavioural 
screening (Orger et al.  2004; Egan et al.  2009; Blaser 
et al.  2010), animal well-being studies (Navarro-Jo-
ver et al.  2009; Winandy and Denoël 2011), beha-
vioural ontogeny (Fontaine et al.  2008; Fukuda et 
al.  2010), social behaviour (Newlands and Porcelli 
2008; Salierno et al.  2008), cognition (Bisazza et al. 
2010) and ethology and behavioural ecology (Prit-
chard et al.  2001; Speedie and Gerlai 2008).

With video multitracking, more than one indivi-
dual can be tracked simultaneously. Sensu stricto, 
this refers to tracks of individuals within the same 
space, which is called an arena in video-tracking 
procedures. Video multitracking can tackle the new 
challenge of integrating the interactive component 
in animal behaviour. This has important outcomes, 
because animals interact with others during their 
lifetime, such as when defending territories, cour-
ting sexual partners and taking care of progeny. 
There are also a large number of species living in 
groups in which the individuals orient their beha-
viour according to that displayed by other members 
of the group. All these interactions between indi-
viduals within groups are fundamental in the pro-
cesses of information transmission and social lear-
ning (Brown and Laland 2003; Hoare and Krause 
2003), collective decision-making (Conradt and 
Roper 2003; Couzin et al.  2005), and in the func-
tion of social behaviours (Pitcher and Parrish 1993). 
Interactions and links between the individuals and 
‘higher’ levels of biological organization (group, po-
pulations, species) are of utmost importance in the 

structures of social systems (Camazine et al.  2001; 
Anderson 2002), multispecies interactions (Ward et 
al.  2002a; Mathis and Chivers 2003) ,  self-organi-
zation (Camazine et al.  2001; Anderson 2002; Par-
rish et al.  2002), social synchronization and social 
amplification phenomena (Camazine et al.  2001; 
Anderson 2002; Canonge et al.  2009), and in the 
ontogeny of social behaviours (Masuda et al.  2003; 
Fukuda et al.  2010). Specifically, in situations where 
a large number of individuals are involved, the use 
of video-tracking data is essential, as manual ana-
lyses would be complicated, time-consuming and 
sometimes even impossible. Today, multitracking 
allows us to observe directly the behaviours of 
groups and to determine the real interaction rules 
by sampling data collected in nature or in the labo-
ratory, without any a posteriori rules (e.g. Ballerini 
et al.  2008; Cavagna et al.  2010; Herbert-Read et al. 
2011; Katz et al.  2011).

Among living organisms, f ish frequently form 
shoals, defined as a voluntary association of indi-
viduals, in both fresh and salt water environments 
(Pitcher and Parrish 1993). It has been estimated 
that more than 25% of the approximately 27 000 
species of teleosts adopt shoaling behaviours throu-
ghout their life, and over 50% do this as juveniles 
(Shaw 1978). These behaviours are also reported in 
many other animal taxa such as selachians (Klimley 
1985), cephalopods (Boal and Gonzalez 1998), crus-
taceans (Evans et al.  2007) and amphibians (d’Heur-
sel and Haddad 2002). In collective behaviours of 
f ish, gradients from swarm (unpolarized shoals) 
to school (polarized shoals) have been identified 
depending on the degree of polarization and the 
synchronization of speed (Pitcher 1983; Couzin et 
al.  2002; Parrish et al.  2002). Small teleost f ishes 
are used as laboratory models to study these collec-
tive behaviours (e.g. Wright and Krause 2006). For 
instance, the zebrafish (Brachydanio rerio ,  Cypri-
nidae), one of the most commonly used laboratory 
animals, which adopts shoaling and schooling beha-
viours, is the model organism par excellence for all 
the above-mentioned topics (e.g. Gerlai 2003; Guo 
2004; Hill et al.  2005; Rubinstein 2006).

As happened when single video techniques were 
launched, video multitracking has been underused 
even though it could be a pertinent tool for unders-
tanding the mechanisms of animal interactions and 
particularly of shoaling behaviours. Several initia-
tives of multitracking have been developed inde-
pendently, using a variety of technologies.

Aims and scope

Our objective is not to create a comparative list of 
all available video multitracking systems, commer-
cial or otherwise. In the present review, we provide 
a general outline of video multitracking methods 
applied in fish studies. It is addressed to fish resear-
chers, particularly those working on fish schools, to 
give them an overview of the available methodolo-
gies but also to support them in their choice of the 
most appropriate methodologies. In the first sec-
tion, we define the different characteristics of video 
systems in fish studies, their advantages and draw-
backs. In the second section, we tackle the problems 
of individual identifications of multitracking sys-
tems but also present directions towards optimiza-
tion of these procedures, particularly with regard to 
occlusions as explained in the third section. Final-
ly, the last section covers the applications of video 
multitracking in fish research, putting forward inte-
resting applications of these techniques that should 
have a wider use.



Basis of the video-tracking techniques

Experimental set-up and principles of video tracking

The basic set-up of a video-tracking system consists 
in filming organisms, such as fish in an aquarium, 
with a video camera. The signal from the camera 
is then either transformed into a numerical video 
file through a frame grabber linking the camera to 
a computer or is directly available if the camera is 
digital.  The signal can be processed in real time by 
video-tracking software. It can also be stored first 
and analysed later, which is safer as this avoids a 
system crash or experimenter errors of calibration 
(see later).

Individual f ish are free to move anywhere in 
the experimental space. This f ilmed experimental 
space is called the arena. Often it corresponds to 
the limits of the aquarium on the video frames. The 
experimenter can define this surface of analysis in 
the video-tracking programme. Thus, pixels outside 
the arena are not taken into account in the analy-
sis. From this defined arena, the experimenter can 
define different zones such as shelters and feeding 
areas, inside as related to the experimental protocol 
(see notably Noldus et al.  2001).

Video tracking consists in recognizing and fol-
lowing spatially over time moving objects or orga-
nisms on the basis of typical features, which could 
be body shape, body colour or body greyscale level 
and which are visible in each frame of a video se-
quence. An automatically detected characteristic 
must not be present as part of the background. If 
it is not possible to distinguish fish from the back-
ground, an easily visible and detectable tag can be 
used on the animal’s body. Marks can take the form 
of coloured tags such as a bead fixed on the body, as 
done by Ylieff (2002), or a subcutaneous injection 
of Visible Implant Elastomer, as in Delcourt et al. 
(2011). Further information on marks is discussed 
later.

The tracking system analyses the incoming video 
signal and in each frame distinguishes from the 
background pixels the pixels belonging to the fish 
image or to the tag if the fish is marked. Another 
means of obtaining a fish image is to eliminate all 
pixels characteristic of the background. This can 
be achieved by the subtraction method that com-
pares a reference image of the arena without the 
fish with the incoming video signal, and in each 
frame, it identifies all pixels with different values 
from the reference image as deriving from the live 
tracked targets. There are different ways to obtain 
a reference image of the background. The easiest is 
to take a picture of the arena without the animals. 
A second possibility is to choose randomly several 
frames from the experimental video sequence over 
a relatively long period of time during which the 
fish changed position, and afterwards to calculate 
for each pixel the value with the highest luminosity 
level. If the fish are darker than the background, 
an image with only the pixels from the background 
is obtained. Another possibility is to calculate the 
mean value (grey or colour levels) of pixels. In this 
case, the fish is expected not to be in the same place 
for a significant period of time. With the last two 
methods, dynamic subtraction can be applied. This 
consists in using the subtraction method, but the 
reference image is updated over time, preventing 
any change in the background image (displacement 
of gravel, faeces, etc.). Another method is motion 
detection. This method assumes that a change in 
the value of pixels (colour or greyscale) is a conse-
quence of the movement of a tracked animal (Lip-

ton et al.  1998; Bogomolov et al.  2003). In this case, 
the current frame is compared with the previous 
frame. This detection technique allows for a more 
heterogeneous environment, but there must always 
be sufficient contrast between the animal and the 
background.

In a treated frame in which only the detected 
pixels appear, which correspond to the tracked tar-
get, each individual represents an island of detected 
pixels. The programme then considers only these 
islands of pixels. It analyses the size of each island 
using a filtering processing, as discussed later, and 
determines the coordinates of each individual wit-
hin the arena for each image for a given time. The 
coordinates can be the centre of gravity of the pixel 
island defining an individual, but other coordinates 
can also be used, such as the beginning of the snout.

Detection thresholds

Different thresholds can be defined to improve the 
quality of detection and data collection. They can 
refine the background noise detected, improve the 
definition of the fish image and take into account 
fish displacement features.

Minimum threshold size

The image of the arena can include several pixels 
that are not the focal organisms such as faeces or a 
shadow, but all the objects creating an image have 
a similar contrast with the background. Although 
shadow problems can be avoided with good lighting, 
the presence of artefacts in the image needs to be 
dealt with accordingly to avoid errors in detection 
and identification. To this end, a minimum thres-
hold size can be imposed on the system, so that it 
automatically fails to register all surfaces smaller 
than the designated pixel size for the detection of 
the focal organism.

Body size and arena size

The available image resolution can determine the 
ideal dimension of the arena without the risk of lo-
sing the tracked animal because it is too small.  For 
example, if on one axis, the resolution of a video file 
is 480 pixels and if the image of the fish has a length 
of 15 pixels (minimum threshold size to be sure to 
detect a f ish) corresponding to a real size of 1 cm, 
then determined by a ratio, the maximum length of 
the arena would be 32 cm. Making the same calcu-
lation with the other axis gives the second dimen-
sion of the arena. The real detected size is generally 
smaller than in the theoretical calculation because 
the fins and the edges of the fish body are not detec-
ted, and thus a smaller arena may be needed. Gene-
rally, these pixels have an intermediate characteris-
tic between the colour (or greyscale) of the fish and 
the background (Fig. 1). However, detection of f ish 
on the basis of 3–4 pixels as body size is possible. In 
this case, a larger arena can be used, but the back-
ground noise must be very weak.

Activity threshold and frame rate

The displacement measured is the result of the real 
displacement of the fish and the displacement noise 
resulting from the crude measurement of the fish 
position. This noise increases when the apparent 
image of the fish is highly pixelated. If the fish swims 
at a low speed or is inactive, the effect of measuring 
the distance and the orientation of f ish displace-
ments can become biased. A threshold of activity 



can be determined to filter data when the animal 
is inactive: if the speed does not reach a minimum 
value, which is often proportional to fish body size, 
the fish is considered to have a null speed, thus re-
moving the artefact.

Moreover, the frame rate used by the recording 
unit is also very important. If the sample rate is too 
high, the noise caused by small movements of the 
animal will  be picked up and give an overestimate of 
parameters such as distance moved and velocity. If 
the sample is too low, data would be lost, giving an 
underestimate of the above parameters. The deter-
mination of the optimal sampling rate depends on 
the speed and complexity of the movements adopted 
by the tracked animals. Plotting the length of the 
pathway or velocity for different values of the frame 
rate with the same video file can help to decide on 
the best sampling rate (Fig. 2).

The specificity of multitracking: 
tracking groups

General comments

One of the new challenges in video tracking is the 
possibility to track the largest number of indivi-
duals at the same time. The interest here lies mainly 
in producing rapidly a battery of synchronized tests. 
Some of these video-tracking systems, called mul-
tiple arena video tracking, often represent ‘false’ 
multitracking because individuals are isolated from 
each other ; individuals moving in separate arenas 
are analysed simultaneously. This isolation greatly 
limits or excludes the study of social behaviours. 
A typical example comes from the multiwell plates 
used in zebrafish research (Baraban et al.  2005; Pro-
ber et al.  2006). Such systems, for example, Etho-
Vision® (Noldus Information Technology, Wagenin-
gen, The Netherlands) or VideoTrack® (ViewPoint, 
Lyon, France), are now able to track simultaneously 
more than 100 isolated individuals.

Real video multitracking systems, which track 
several individuals within a single arena, are a 
newly available technique offering great potential 
but there are also certain difficulties that need to be 
adequately dealt with. The first problem with these 
programmes is detecting each animal in the same 
arena individually and not merging individuals that 
are close to each other. The second is to clearly 
differentiate the identity of each animal from the 
others and to retain this identity throughout the 

recording process. Besides these specific problems 
in multitracking, the detection techniques have a 
direct influence on the possibility to track indivi-
duals, subgroups and the entire group.

Detection

The first systems developed using black-and-white 
image analyses could track two individuals on the 
basis of their relative size (Noldus et al.  2001), thus 
requiring that one individual was smaller than the 
other. With this method, Hansen et al.  (2008), stu-
dying the aggressive behaviours and the effects of 
food in Atlantic cod (Gadus morhua ,  Gadidae), were 
able to track two fish of significantly different size 
together in an arena.

Video multitracking based on colour detection 
can follow different individuals with different body 
pigmentations. An example is presented in Fig. 3, 
where two goldfish (Carassius auratus ,  Cyprini-
dae), a red one and a white one (in this case the 
detected pixels are light pink, because white is 
not a colour) are tracked using this feature (Ylieff 
2002). However, different body pigmentations in 

Figure 2 Theoretical example of trajectory of a f ish at 
different frame rates. When the frame sample is too low, 
both distance and speed are underestimated; when the 
frame is too high, the trajectory is overestimated because 
the imprecision to measure the referent point of f ish loca-
tion plays a too significant effect. In this latter case, the 
small movements are not the real behaviour of f ish.

Figure 1  Theoretical example of effect on pixelization on the detected size and filtering of background 
noise. (a) Recorded frame where each square is a pixel with a different intensity along a greyscale. (b) 
Using a small detection range, only the darker pixels are detected, the pixels from the fish outline are not 
detected. The size of detected island is significantly smaller than the real body size of the fish. (c) Using a 
large detection range, the detected grey range is larger, allowing the detection of more pixels from the fish 
image but also a detection of a background noise (represented here in black with white points). The fish 
shape is represented in dotted line.



a species are rare, and when this is the case, the 
level of colour differentiation is often not suffi-
cient for the system to differentiate the indivi-
duals. Consequently, the number of individuals 
that can be tracked simultanesously is very low.

With individual coloured tags, detecting the ani-
mal’s body is not necessary. If a colour is clearly 
associated with only one individual, identifica-
tion is easy without any other data required. With 
systems like Swistrack® (open source, holded by 
SourceForge) and EthoVision Color-Pro®(Noldus 
Information Technology, Wageningen, The Nether-
lands), the number of tracked individuals on the 
basis of differential colour tags can rise to 10 and 
16, respectively. However, because of the optical 
characteristics in water and the heterogeneity of 
light conditions within an aquarium, this number is 
usually lower than in theory. Ylieff (2002; Ylieff and 
Poncin 2003; Jadot et al.  2005) managed to track 
two damselfishes (Chromis chromis ,  Pomacentridae) 
or three salema porgy (Sarpa salpa, Sparidae) in the 
same tank using only an individual-specific colou-
red bead attached on the dorsal f in of each fish (Fig. 
4). Delcourt et al.  (2011) succeeded in tracking up 
to four translucent glass eels (Anguilla anguilla ,  An-
guillidae) at low luminosity using various f luores-
cent visible implant elastomer (VIE) tags.

Even though the number of tracked fish is very li-
mited, it is possible to follow several individuals in 
a larger group. In this case, it is impossible to track 
the entirety of the shoal, but individual behaviour 
can be studied within a social context. An example 
is shown in Fig. 4, where two of the four damsel-
fish are marked by a coloured bead attached to their 
backs (Ylieff 2002).

The possibility to track simultaneously a large 
number of unmarked individuals is a very recent 
development. Before this, and even recently, some 
researchers used manual detection consisting in a 
manual click on the screen at the position of the 
fish, frame by frame (e.g. Miller and Gerlai 2007, 
2008). Often, these researchers did not attribute an 
identity to each individual, their study being based 
on a global spatial parameter such as the average 
nearest neighbour distance for example. With Etho-
Vision Multi-Pro®, Buma et al.  (1996, 1998) trac-
ked up to 16 fish. Suzuki et al.  (2003) used another 
home-made system and tracked 25 individuals, but 
without explaining its functioning and its limits. 
Recently, Delcourt et al.  (2006, 2009); Becco et al. 
2006; Delcourt et al.  2008) were able to track up to 
100 individuals for several minutes (see example in 
Fig. 5).

In systems such as EthoVision®, VideoTrack® or 
SwisTrack®, the track of f ish given as a displacement 
during a time period is traced by the connection 
over time of the unique position of the animal as 
detected in each frame. This is the case for simple 
tracking with one individual in one arena or for 
multitracking based on different tag detection. In 
individual-based unmarked multitracking systems, 
such detailed tracking is not possible because of the 
larger number of coordinates corresponding to each 
fish for each image. Frame after frame, the tracking 
programme must identify correctly each individual 
in all detected positions. However, perfect identifi-
cation without error does not exist because of oc-
clusions.

Occlusions: difficulties and solutions

An occlusion is the phenomenon of two or more 
tracked target images becoming one during a time 
period. This mergence–splitting phenomenon leads 
to many identification problems. These are parti-
cularly frequent when the targets are more similar 
in appearance, which is often the case in animal 
groups.

Figure 3 Two goldfish (Carassius auratus) are individual-
ly tracked in an aquarium based on their different pig-
mentation; one fish is red (black track) and the other is 
white (white track) (Ylieff 2002, Ylieff and Poncin 2003). 
However, white is not a colour, the tracking of white fish 
is based on the detection of very light pink pixels.

Figure 4  (a) Example of colour tags with a pearl f ixed on the back (attached by surgical thread just in the 
front of the dorsal f in) of damselfish (Chromis chromis), a species with dark pigmentation (Ylieff 2002). (b) 
Example of two marked individuals in a group of four individuals, showing the possibility to track several 
individuals in a social context without the need to track the entire group. In this example, one bead is pink, 
the other one is blue.



The main problem of all video multitracking sys-
tems is the error of individual identification. These 
errors lead to two types of misidentification: loss 
of f ish identity and swapping identity between in-
dividuals (Delcourt et al.  2009). Generally, when 
the fish are clearly distant from each other, and the 
frame sample rates are high, the errors are very rare 
or absent. The two successive individual positions 
are very close to each other and distant from other 
fish positions, so it is easy to correctly identify 
individuals over time. However, during occlusion 
events, identification errors can arise (i.e. Delcourt 
et al.  2009). Indeed, when the trajectories of two 
fish cross each other and their images merge, ter-
med occlusion, it is difficult to identify who is who 
after crossing. This makes these automatized sys-
tems without marked individuals imperfect, leading 
to possible identification errors if no corrections 
are made (Buma et al.  1996, 1998; Khan et al.  2005, 
2006; Delcourt et al.  2009).

With EthoVision Multi-Pro®, the programme is 
unable to attribute the correct identity to each fish 
after crossing (Buma et al.  1996, 1998). In a recent 
study, Delcourt et al.  (2009) use two parameters to 

determine the successful identification: (i) the Re-
cognition ratio of individual f ish (see also Kato et al. 
2004) = A*TO  + B*TS  + C*TN ,  where TO  = number 
of identity assignments in the context of occlusion/
total number of identity assignments; TS = number 
of identity assignments when separation occurs/
total number of identity assignments; TN = number 
of identity assignments in other cases/total number 
of identity assignments; A  = successful identifica-
tion ratio when there is occlusion; B = successful 
identification ratio when there is separation; and C 
= successful identification ratio in other cases; (ii) 
the Separation ratio (after occlusion) = successful 
number of separations/total number of occlusions. 
In Kato et al.  (2004), separation was defined during 
the occlusion, using a method of erosion/dilatation 
of f ish images. In Delcourt et al.  (2009), the reco-
gnition ratio was >99.5%, but successful identifica-
tion (separation ratio) immediately after occlusion 
was very poor at between 50% and 85%. If the goal 
of the experiment is a statistical analysis of indi-
vidual performance, the results of recent systems 
are excellent; the errors are submerged in the data 
and have little effect. In contrast, if the goal is a 

Figure 5  (a) Partial view of a circular arena with a shoal of 29 individuals of early juvenile Nile tilapia 
(Oreochromis niloticus): (a) initial frame of the sequence; (b) frame 30 (the previous individual trajecto-
ries are shown); (c) initial frame where only the detected pixels are shown, each individual is identified 
by a number; (d) treated frame 30: individuals are identified by a unique number and their speed is 
shown by the length of the arrows with the largest being for the fastest f ish. (Delcourt et al.  2008, 2009).



rigorous analysis of the individual behaviours, notably 
to detect differences between fish, a single error can 
affect the results dramatically. This implies the need 
to be able to edit data manually to correct the errors if 
this is necessary.

Occlusions cause problems in two steps: f irst, du-
ring the occlusion; second, after the occlusion when 
the fish are clearly separated on the image. To solve 
these problems, different solutions have been proposed 
such as the addition of three-dimensional information 
(Isard and MacCormick 2001; Zhao and Nevatia 2004) 
or using the animals’ characteristics on the screen, for 
example the shape of the target (Isard and Blake 1996; 
MacCormick and Blake 1999; Branson and Belongie 
2005). Using the change in shape and/or the specific 
topology makes the system more robust (Rasmussen 
and Hager 2001; Sanchez and Dibos 2004; Sigal et al. 
2004; Khan et al.  2006), notably by application of a 
predictive statistical model.

Detection of occlusions

The first difficulty is to detect the occlusion events 
automatically. In an experiment with a fixed number 
of f ish, an individual lost by the tracking programme 
will be lost because the system is detecting two fish 
as one so long as there are no detection faults in the 
system itself.  Another way of detecting occlusions is 
based on the apparent size of f ish image. The tracking 
programme can detect occlusions by the analysis of 
the size of the pixel island defining the fish images. If 
the size of the image of a detected fish increases signi-
ficantly, it is because the programme detects two or 
more fish together.

Th ree-dimensional tracking

An interesting perspective that can be used to study 
social animals is tracking in three spatial dimensions. 
The movement of an aerial or pelagic animal is rarely 
limited to a simple two-dimensional plan. The struc-
ture of animal groups such as a f ish school (Partridge 
et al.  1980; Axelsen et al.  2001; Paramo et al.  2010), 
a bird f lock (Ballerini et al.  2008) or an insect swarm 
(Ikawa et al.  1994) is typically three-dimensional.

Contrary to manual methods, three-dimensional au-
tomatic video multitracking systems are only in their 
f irst developmental stages (Grünbaum 2003; Viscido et 
al.  2004; Hemelrijk et al.  2010). These new systems are 
keenly awaited particularly because they can improve 
the quantification of displacements by taking into ac-

count the three axes of the entire space used by the 
fish, but also because they can resolve the large majo-
rity of occlusions.

In constrast, numerous manual methods have been 
developed since the 1960s with which to study the 
three-dimensional structure of schools (examples of 
significant earlier works: Cullen et al.  1965; Hunter 
1966; Graves 1977; Pitcher 1973, 1975; Partridge et al. 
1980). These methods can give information needed for 
automatic three-dimensional tracking.

Graves (1977), who assumed invariant fish size, used 
the size of each individual’s image on the screen or on 
a photograph as a measure of its distance from the 
camera, so including the third dimension. However, 
generally, the individual size composition in a group 
is variable.

The other techniques are of two major types: ‘sha-
dow’ and ‘stereo’ (Fig. 6). The shadow method uses 
the shadows of the fish projected onto the substrate 
as a second point of view of the school. This method 
needs to use only one camera. For example, Laurel et 
al.  (2005) used the projection of f ish shadows (Fig. 
6a): two spotlights placed slightly on the side of the 
aquarium projected two shadows per individual on the 
substratum. Two light sources were redundant in most 
circumstances, but it assured that one shadow was cast 
on the substratum as objects approached the aquarium 
walls. With the two-dimensional position of these sha-
dows and the two-dimensional position of the fish, it is 
possible to know the three-dimensional position of the 
fish using trigonometric computations. This method 
can be applied to track several f ish simultaneously 
(Cullen et al.  1965; Partridge et al.  1980; Laurel et al. 
2005). Video analysis needs to detect each fish and 
each shadow, and must accurately connect each fish 
with its shadows. When the number of f ish increases, 
this analysis quickly becomes very difficult, notably 
because the shadows can be in occlusion, and several 
f ish can hide the shadows with their body.

The alternative stereo method is to use stereo-ci-
nematography techniques, which requires two simul-
taneous images from different angular positions. This 
is possible with two or more video cameras (Aoki et 
al.  1986; Pereira and Oliveira 1994; Hughes and Kelly 
1996, Zhu and Weng 2007), one video camera and a 
mirror (Fig. 6b,c), a periscope (Pitcher 1975) or a ste-
reo prism lens (Cullen et al.  1965) based on the pa-
rallax principle of different view angles. Studies have 
multitracked groups of 30 giant danios (Devario aequi-
pinnatus, Cyprinidae) using two cameras (Grünbaum 
2003; Viscido et al.  2004). Hemelrijk et al.  (2010) used 

Figure 6  Three methods to measure the 3D position of a f ish in an aquarium. (a) measuring the position 
of the fish and its shadows produced by two lamps (inspired by Laurel et al.  2005); (b) stereo-cinemato-
graphy using cameras; (c) using a mirror and a camera.



a mirror to find the three-dimensional positions of 
individuals in a shoal with one camera. Finally, ano-
ther possibility consists in creating light f lashes. These 
light f lashes reveal the objects present in a single plane 
at a time. The f lashes appear with a rapid variation in 
the third dimension. The technique requires a high-
speed camera and must not be invasive for the fish. 
This laser f lash technique is already used in multitrac-
king inanimate particles, notably in the hydrodynamic 
study of f ish locomotion (e.g. Nauen and Lauder 2002; 
Wilga and Launder 2002). The three-dimensional spa-
tial coordinates can also be determined using hologra-
phic techniques with laser (Malkiel et al.  2006; Hobson 
et al. ,  2000; Sheng et al.  2007). Here, the method is 
based on the interference between two laser beams: the 
referent beam is perceived directly by the measurement 
machine, and the object beam is perceived indirectly 
by the diffusion of the beam by the object. In measu-
ring the phase and amplitude of the object beam, it is 
possible to obtain the three-dimensional structure of 
this object, in this case a group of individuals.

Merge–split and straight-through approaches

Several methods not employing three-dimensional 
analysis were developed to resolve the identification 
problems created by occlusions. Two approaches were 
undertaken: the merge–split approach and the straight-
through approach (Gabriel et al.  2003). In the former, 
the characteristic of the occlusion state, such as its 
shape for example, is taken into account to identify 
the different tracked objects (e.g. Kato et al.  2004). In 
the latter, information is used just before the occlusion 
event, which might include the direction and speed of 
the tracked objects (Delcourt et al.  2009). However, in-
teraction between individuals is an important parame-
ter in the multitracking study (Ying 2004; Khan et al. 
2005, 2006), as an individual can modify its behaviours 
drastically during and after an interaction. Simple pro-
jection of behaviours is not neccessarily a sufficient 
approach, and more in-depth analysis is needed by a 
statistical approach. These methods are discussed in 
the next few sections.

Identifying individuals during occlusion

Kato et al.  (2004), using an erosion–dilatation process, 
managed to resolve the occlusion issue in several cases. 
In this process, the occluded image was reduced by its 
body edge until it was divided into two segments, and 
the separated images were labelled as two objects. If 
the separation is successful, the image is individually 
labelled as two fish and enlarged (dilatation) again to 

the original image size (Fig. 7). This system is accurate 
when the movements of animals are strictly limited to 
two dimensions. In a three-dimensional shoal, when 
the number of f ish increases up to 4, the efficiency 
of this process decreases dramatically. Delcourt et al. 
(2009) suggested attributing to the merged spot the 
identity of both fish during the occlusion. The major 
difficulty is to identify correctly each individual after 
uncrossing.

A way to improve the quality of individual detec-
tion during occlusion is by using a system based on 
the shape-identification characteristics of the animal 
body. This shape can be a particular geometric shape 
or a reference image (see below). In occlusions, the 
visible parts of one fish behind another can be used 
to reconstitute the complete shape of the fish (Fig. 8). 
However, the efficiency of this method depends on the 
image resolution (Fig. 8).

Probabilistic applications

Another way to resolve the identification errors caused 
by occlusions is to apply a probabilistic approach. This 
method generally presents two essential processes: a 
predictive or dynamic part and an observational or 
corrective part (Ying 2004; Egerstedt et al.  2005; Khan 
et al.  2005, 2006).

In the studies reported by Becco et al.  (2006) and 
Delcourt et al.  (2006, 2009), the identity of each fish 
was determined by extrapolating the previous move-
ment of f ish (Fig. 5). The programme begins to detect 
the position, without taking into account the identi-
ty of each fish. Then, with the data of the previous 
positions of each individual, the programme assigns 
the identity number. How is this done? At instant t0, 
the fish is at position (X0,  Y0); at instant t1, the fish is 
at position (X1,  Y1). At instant t2,  the system detects 
numerous targets: each one is potentially the tracked 
fish. Then, the system estimates a theoretical position 
at instant t2,  because the direction of movement and 
the speed of the fish between t0 and t1 are known (pre-
dictive part). By this extrapolation, the computer finds 
a theoretical point that can be compared with the real 
detected positions. The nearest real position to the 
theoretical position is attributed to the tracked fish 
(observational part). To improve the video-processing 
time, the software searches within a fixed circular area 
parameterized by the user. The limits of this searching 
area can be adapted and refined in relation to the pre-
vious movement. For a given velocity, a searching sur-
face can be obtained where the peripheral limit corres-
ponds to a threshold of occurrence probability. This 

Figure 7  Process of erosion–dilatation to resolve an occlusion in 2D (inspired by Kato et al.  2004). (a) 
Case where the image of two fish is occluded; (b) the occluded image is eroded to obtain two significant 
pixels islands (erosion process); (c) if the process allows to obtain clearly two pixels islands, each spot 
is considered as a f ish and each is enlarged to previous eroded close pixels (dilatation process) to obtain 
the original image size.



method is very accurate when fish are not occluded. 
However, when they are occluded, the system produces 
errors, thus requiring manual corrections for each case 
of occlusion (Delcourt et al.  2009).

A more sophisticated system was developed for in-
sect tracking (Ying 2004; Egerstedt et al.  2005; Khan et 
al.  2005, 2006). It applies the succession of observatio-
nal and predictive parts. The basic idea of the approach 
is to use the information from the previous observa-
tions to predict the position of targets in a statistical 
way in subsequent observations. To be more precise, 
the predictive part employs a Markovian model, that 
is, a model that uses information on a target from only 
the immediately preceding observation (Lawler 1996; 
Ying 2004), to predict possible locations, or ‘sampling 
zones’ for a target or individual. In the observational 
part, each of the sampling zones is compared with a 
reference image of a target (e.g. an image of an indi-
vidual), and the sampling zone that best agrees with 
the reference image (by some measure of correlation 
between images) is considered to be the present loca-
tion of the tracked target. Figure 9 illustrates this ap-
proach.

The predictive model used can be updated and im-
proved throughout the tracking process by incorpo-
rating additional observations and data that become 
available. Repeated corrections produce a more refined 
and robust predictive model (Ying 2004; Khan et al. 
2005).

Predicting many different possible sampling zones 
for large numbers of tracked individuals quickly be-
comes computationally demanding. Sophisticated fil-
tering processess that assess the likelihood of sampling 
zones in the predictive part in more detail have been 
suggested to reduce the computational load (see Ying 
2004 and Khan et al.  2005 for details).

The approach outlined above is highly successful in 
tracking large groups of ants (up to 100 individuals). 
Unfortunately, there remain errors of occlusion despite 
the high tracking efficiency (>99% correct identifica-
tions).

Tracking fish in this way would provide an interes-
ting perspective. However, the dynamic properties of 
f ish appearance and fish movements are very different 
to those of an insect such as an ant. First, the appa-
rent image of an ant is relatively constant with the 
tagmata, or body segments, clearly evident in contrast 
to the moving legs. When observed from the side, the 
shape of f ish is highly variable (Fig. 10). Observed 
from above the aquarium, the apparent image of the 

fish is more constant but the animal shape is not easily 
identifiable. In fact, during swimming, the body shape 
of the fish undulates along the body axis and varies 
according to the type of swimming adopted by the fish 
(e.g. Sfakiotakis et al.  1999). Butail and Paley (2010) 
have developed a probabilistic model able to estimate 
the shape and position of several f ish in a school. This 
model is based on the capacity to identify a f ish shape 
as an ellipsoid with a curvature coefficient that can 
incorporate bending of the fish body. This system is 
original in that it allows one to develop an observa-
tional model of a three-dimensional shape projected 
on a plane accompanied by the stereo cinematographic 
methods with two cameras. Second, f ish movement 
can be more difficult to predict than insect movement 
because the fish adopts a large range of speed values, 
and the fish can employ a rapid burst of swimming at 
anytime. This is particularly the case for species adop-
ting mainly a burst-and-glide swimming mode (e.g. 
Gadidae and Clupeidae, in Blake 1983). Using a high 
frame rate would improve the capacity of such systems. 
However, other species, with a more constant swim-
ming speed such as members of the Tetraodontidae, 
or Diodontidae (Blake 1983), have more predictable 
movements.

 
Applications of multitracking

Scale of analysis: from individual to group patterns

With the multitracking system, animal groups can be 
studied at multiscale levels, where the focus is on one 
individual within a group (Ylieff and Poncin 2003; 
Delcourt et al.  2011) or considering the group as a 
single entity (Miller and Gerlai 2007, 2008) or as seve-
ral subgroups (Couzin et al.  2002; Ward et al.  2002b; 
Hemelrijk and Kunz 2005). For the two latter cases, 
global analysis consists of measuring a parameter that 
is characteristic of the group but not of the individual. 
This would be characterized by the displacement of the 
central position of the group, its speed and the area 
covered by the group.

Analysing individuals provides more detailed infor-
mation on two levels. First, it gives information on 
the variability in the inter-individual behaviours, and 
second, it allows detection of subgroups. For instance, 
in self-organization theories, if two animal subgroups 
are characterized by different degrees of attractive so-
cial force, segregation can appear (Couzin et al.  2002; 
Grégoire and Chaté 2004; Hemelrijk and Kunz 2005). 

Figure 8  Increasing image resolution provides better evaluation of f ish shape during the occlusion. 
Above, cases when the images of two individuals are clearly separated, and beneath, when the two images 
are occluded, for an increasing in resolution from the left to the right (a). (b) Theoretical example of 
identification of individuals on the basis of the shape of their image, notably during the occlusion.



The central zone of the group is occupied by the indi-
viduals adopting a strong attractive social force defi-
ned as an individual’s tendency to be attracted by other 
individuals, and the peripheral zone where individuals 
adopt the weakest attractive social force. When sim-
plification is required, most notably in computer si-
mulations, a group may be considered to be composed 
of identical individuals. However, in a natural group, 
heterogeneity in group composition is very frequent 
(e.g. Peuhkuri et al.  1997; Krause et al.  2000a,b; Ward 
et al.  2003).

The current multitracking systems allow the simul-
taneous tracking of a large number of individuals. In 
their f ish study, Delcourt et al.  (2006, 2009), Delcourt 
(2008) and Becco et al.  (2006) studied up to 100 indi-
viduals within the same aquarium. The experimenter 
usually prefers to track an entire shoal, but in some 
cases focuses rather on a marked fraction of the group 
(e.g. Ylieff 2002; Delcourt et al.  2011).

Implications in fi sh research and future directions

Video multitracking tools have several implications 
in basic research of social behaviours. These implica-
tions are ref lected in the four fundamental ethological 
questions determining proximal and ultimate causes 
of behaviour (Tinbergen 1963; Dewsburry 1999): (i) 
the mechanisms of social behaviour as physiological, 
cognitive and stochastic processes; (ii) the ontogene-

tic processes; (iii) the adaptive significance; and (iv) 
the evolution of the organisms. Multitracking could be 
used to study the genesis (evolution, cultural inheri-
tance and development), control (external and internal 
to the group and to the individual) and consequences 
(for the individual, environment, and differential re-
production between individuals, and between groups) 
of social behaviours adopted by the individuals.

Studying the relationship between the positions of 
individuals in the group would significantly improve 
our knowledge of whether the schooling behaviours 
have a hydrodynamic function using the inverted von 
Kármán street (succession of turbulences produced 
by the swimming of other conspecifics) (Weihs 1973; 
Weihs and Webb 1983; Sfakiotakis et al.  1999). Video 
multitracking opens interesting study perspectives on 
the acquisition (Brown and Laland 2003; Hoare and 
Krause 2003) and transmission of information in a 
group (Treherne and Foster 1981; Godin and Morgan 
1985). It could improve our understanding of the rules 
of synchronized movements, notably during prey–pre-
dator interactions (Pitcher and Wyche 1983; Pitcher 
and Parrish 1993; Axelsen et al.  2001) and in the inte-
raction between parents and fingerlings within species 
(e.g. Keenleyside 1991).

Studying the synchronization of individual spatial 
positions during shoaling behaviours and the synchro-
nization of speed and orientation in schooling beha-
viours (Pitcher 1983; Pitcher and Parrish 1993) would 

Figure 9  Example of a system based on statistical observation and prediction (inspired by Egerstedt et 
al. 2005; Khan et al. 2005, 2006).



make it possible to test and verify the theoretical re-
sults of artificial computer simulations (Parrish et al. 
2002; Viscido et al.  2004; Hemelrijk et al.  2010; Katz et 
al.  2011) so as to understand whether the mechanisms 
of these behaviours are based on global or external in-
formation (rheotaxis, luminotaxis, etc.) (Camazine et 
al.  2001) or on a self-organization process where indi-
viduals take into account only the nearest individuals 
of the group (Camazine et al.  2001; Anderson 2002).

Moreover, studying the group at the different scales 
of the individual, the subgroup and group, would ex-
plain the connection between individual behaviours, 
subgroup behaviours and group behaviours. It would 
be possible to test whether the global behaviours 
are a direct consequence of individual behaviours or 
whether they are emergent, properties contingent on 
the probabilistic interactions between individuals. 
Investigations could be conducted to determine the 
likelihood of the super-organism theory, a theory that 
considers the group as a unified entity (Marshall 2002; 
Hölldobbler and Wilson 2008).

Tracking whole groups would make it possible to un-
derstand the despotic, egoistic or democratic decision-
making processes in an animal group (Conradt and 
Roper 2003; Couzin et al.  2005) and to identify pos-
sible leaders in shoals (Krause et al.  2000a,b; Camazine 
et al.  2001; Reebs 2001; Leblond and Reebs 2006). The 
impact of the interactions between individuals in rela-
tion to the characteristics of a group could be better 
highlighted: features that could be recorded are group 
size, the types of interactions in adopted behaviours, 
the heterogeneity in the composition of a group or the 
relative size of each subgroup (e.g. Couzin and Krause 
2003).

The multitracking tool offers new perspectives for 
the study of the ontogeny of collective behaviours and 
for the phenotyping of social animals in the laboratory, 
particularly using interesting strains in aquaculture. 
Video tracking could become a valuable tool in medi-
cal research for studying diseases in social behaviours 
(Guo 2004) using social animal models in the labora-
tory.

Video multitracking can also make important contri-
butions to the applied sciences. First, it can be used to 
test potential drugs or pollutants at the social level. 
Second, it can be used to characterize the parameters 
controlling social behaviours. In fact, the possibility 
to modify animal social behaviours could contribute 
towards the management of f ish stocks, with possible 
applications in fisheries and aquaculture. One interes-
ting future perspective in such applications is to create 

interactions between animal individuals and robotic 
individuals so as to drive the social behaviours in a 
given direction (Corell et al.  2006; Halloy et al.  2007). 
Third, multitracking would allow for phenotyping of 
strains of model species on the basis of social beha-
viour. Fourth, by monitoring the social behaviours, 
one could study quantitatively the well-being of social 
species, notably in the laboratory, in fish farms and in 
zoos.

A final challenge would be leaving the laboratory 
to track fish and other animals individually in nature. 
The researcher could solve the problem of calibration 
of distance to measure the individual’s position using 
reference marks in the environment (metric distance) 
or measuring relative distance (topologic distance) 
(Hoare et al.  2001; Ballerini et al.  2008; Newlands and 
Porcelli 2008). The problem of noise detection caused 
by the heterogeneity of the environmental background, 
particularly if the species is cryptic, would also need 
to be solved.

The implications and applications of multitracking 
concern all social animals, not only fishes. However, 
f ishes are among the more frequently studied orga-
nisms for understanding social behaviours. Moreover, 
f ishes are a diversified group with more species than 
any other vertebrate class. And, last but not least, the 
third most important laboratory animal, after mice and 
rats, is the zebrafish, a cyprinid fish adopting shoaling 
and schooling behaviours.

Acknowledgements

J. Delcourt and M. Denoël are respectively postdocto-
ral researcher and research associate at the F.R.S.-FNRS 
– Fonds de la Recherche Scientifique (Belgium). This 
research was supported by F.R.F.C. grants 2.4.617.08.F, 
2.4.507.08.F and 2.4.569.10.F of the F.R.S.-F.N.R.S. 
Special thanks go to Nikolai Bode for his advice.

References

Anderson, C. (2002) Self-organization in relation to several similar 
concepts: are the boundaries to self-organization indistinct? Biology 
Bulletin 202, 247–255. 

Aoki, I. (1982) A simulation study on the schooling mechanism in fi sh. 
Bulletin of the Japanese Society for the Science of Fish 48, 1081–1088. 

Aoki, I. (1984) Internal dynamics of fi sh schools in relation to inter-fi sh 
distance. Bulletin of the Japanese Society for the Science of Fish 50, 
751–758. 

Aoki, I., Inagaki, T. and Long, L.V. (1986) Measurements of the three-
dimensional structure of free-swimming pelagic fi sh schools in a 

Figure 10  The apparent image of a f ish varies with the orientation of the individual and the position of 
the observer (a–c), with fish morphology and locomotion mode (c, d), and with the shutter speed of the 
camera and the swimming speed of the fish (e–g). For a given shutter speed, the more a fish swims rapidly, 
the more its apparent image is deformed (like a retinal impregnation) and the less visible it is (represented 
here by the greyscale).



natural environment. Bulletin of the Japanese Society of Fisheries 
Oceanography 52, 2069–2077. 

Axelsen, B.E., Anker-Nilssen, T., Fossum, P., Kvamme, C. and Nøttes-
tad, L. (2001) Pretty patterns but a simple strategy: predator-prey 
interactions between juvenile herring and Atlantic puffi  ns obser-
ved with multibeam sonar. Canadian Journal of Zoology 79, 1586–
1596. 

Ballerini, M., Cabibbo, N., Candelier, R. et al. (2008) Interaction ruling 
animal collective behavior depends on topological rather than me-
tric distance: evidence from a fi eld study. Proceedings of the Natio-
nal Academy of Sciences USA 105, 1232–1237. 

Baraban, S.C., Taylor, M.R., Castro, P.A. and Baier, H. (2005) Pentyle-
netetrazole induced changes in zebrafi sh behavior, neural activity 
and C-fos expression. Neuroscience 131, 759–768. 

Becco, C., Vandewalle, N., Delcourt, J. and Poncin, P. (2006) Experi-
mental evidences of a structural and dynamical transition in fi sh 
school. Physica A 365, 487–493. 

Bisazza, A., Piff er, L., Serena, G. and Agrillo, C. (2010) Ontogeny of 
numerical abilities in fi sh. PLoS ONE 5(11), e15516. 

Blake, R.W. (1983) Functional design and burst-and-coast swimming 
in fi shes. Canadian Journal of Zoology 61, 2491–2494. 

Blaser, R.E., Chadwick, L. and Mcginnis, G.C. (2010) Behavioral mea-
sures of anxiety in zebrafi sh (Danio rerio). Behavioural Brain Re-
search 208, 56–62. 

Boal, J.G. and Gonzalez, A. (1998) Th e social behaviour of individual 
oval squids (Cephalopoda, Teurhoidea, Loliginidae, Sepioteuthis 
lessoniana) within a captive school. Ethology 104, 161–178. 

Bogomolov, Y., Dror, G., Lapchev, S., Rivlin, E. and Rudzsky, M. (2003) 
Classifi cation of moving targets based on motion and appearance. 
In: British Machine Vision Conference 03, 2003. 

Branson, K. and Belongie, S. (2005) Tracking multiple mouse contours 
(without too many samples). In: IEEE Conference on Computer 
Vision (CVPR), vol. 1, pp. 1039–1046. 

Breder, C.M. (1954) Equations descriptive of fi sh schools and other 
animal aggregations. Ecology 35, 361–370. 

Brown, C. and Laland, K.N. (2003) Social learning in fi shes: a review. 
Fish and Fisheries 4, 280–288. 

Buma, M.O.S., Moskal, J., Th omas, G. and Jongbloed, S. (1996) Auto-
matic video tracking of multiple animals without the need for mar-
king. Paper presented at Measuring Behavior’96, 1st International 
Conference on Methods and Techniques in Behavioral Research. 
Utrecht, Th e Netherlands. 

Buma, M.O.S., Moskal, J. and Liang, D. (1998) Ethovision Multipro: 
improved animal identifi cation during automatic multiobject trac-
king. Paper presented at Measuring Behavior’98, 2nd International 
Conference on Methods and Techniques in Behavioral Research. 
Groningen, Th e Netherlands. 

Butail, S. and Paley, D.A. (2010) 3D reconstruction of fi sh schooling 
kinematics from underwater video. In: Proc. IEEE Int. Conf. on 
Robotics and Automation, pp. 2438–2443, Anchorage, Alaska, May 
2010. 

Cachat, J., Stewart, A. and Grossman, L. et al. (2010) Measuring beha-
vioral and endocrine responses to novelty stress in adult zebrafi sh. 
Nature Protocols 5, 1786–1799. 

Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Th eraulaz, G. 
and Bonadeau, E. (2001) Self-Organization in Biological Systems. 
Princeton studies in complexity. Princeton University Press, Prin-
ceton, NJ. 

Canonge, S., Sempo, G., Jeanson, R., Detrain, C. and Deneubourg, J.L. 
(2009) Self-amplifi cation as a source of interindividual variability: 
shelter selection in cockroaches. Journal of Insect Physiology 55, 
976–982. 

Cavagna, A., Cimarelli, A., Giardina, I. et al. (2010) Scale-free corre-
lations in starling fl ocks. Proceedings of the National Academy of 
Science USA 107, 11865–11870. 

Conradt, L. and Roper, T.J. (2003) Group decision-making in animals. 
Nature 421, 155–158. 

Corell, N., Sempo, G., de menses, Y.L. et al. (2006) SwisTrack: a trac-
king tool for multi-unit robotic and biological systems. In: 2006 
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 2185–2191. 

Couzin, I. and Krause, J. (2003) Self-organization and collective beha-
vior in vertebrates. Advances in the Study of Behavior 32, 1–75. 

Couzin, I.D., Krause, J., James, R., Ruxton, G.D. and Franks, N.R. 
(2002) Collective memory and spatial sorting in animal groups. 
Journal of Th eoretical Biology 218, 1–11. 

Couzin, I.D., Krause, J., Franks, N.R. and Levin, S.A. (2005) Eff ective 
leadership and decision-making in animal groups on the move. 
Nature 433, 513–516. 

Cullen, J.M., Shaw, E. and Baldwin, H.A. (1965) Methods for measuring 
the three-dimensional structure of fi sh schools. Animal Behaviour 
13, 534–545. 

Czirók, A. and Vicsek, T. (2006) “Collective behavior of interacting self-
propelled particles”. Physica A 281, 17–29. 

Delcourt, J. (2008) Structure et ontogenése des comportements de banc 
chez deux poissons Cichlidés: approche quantitative par l’utilisation 
du vidéotracking automatisé chez Oreochromis niloticus et Pelvica-
chromis pulcher, PhD thesis, Université de Liège, Belgique. 333 p. [in 
french]. 

Delcourt, J., Becco, Ch., Vandewalle, N., Ylieff , M.Y., Caps, H. and 
Poncin, P. (2006) Comparing the EthoVision®2.3 system and a new 
computerized multi-tracking prototype system to measure the swim-
ming behavior in fry fi sh. Behavior Research Methods 38, 704–710. 

Delcourt, J., Becco, C., Vandewalle, N. and Poncin, P. (2008) Advantages 
and limits of a video multitracking system for quantifi cation of indi-
vidual behavior in a large fi sh shoal. In: Proceedings in Measuring 
Behavior 2008 (Maastricht, Th e Netherlands, August 26–29, 2008). 
(eds A.J. Spink, M.R. Ballintijn, N.D. Bogers, F. Grieco, L.W.S. Loi-
jens, L.P.P.J. Noldus, G. Smit and P.H. Zimmerman), pp. 294–295. 

Delcourt, J., Becco, C., Vandewalle, N. and Poncin, P. (2009) A video 
multitracking system for quantifi cation of individual behavior in a 
large fi sh shoal: advantages and limits. Behavior Research Methods 
41, 228–235. 

Delcourt, J., Ylieff , M., Bolliet, V., Poncin, P. and Bardonnet, A. (2011) 
Videotracking in the extreme: new possibility for tracking noctur-
nal underwater transparent animals with fl uorescent elastomer tags. 
Behavior Research Methods 43, 590–600. 

Denoël, M., Ficetola, G.F., Delcourt, J., Ylieff , M., Kestemont, P. and 
Poncin, P. (2010) Cumulative eff ects of road de-icing salt on amphi-
bian behavior. Aquatic Toxicology 99, 275–280. 

Dewsburry, D.A. (1999) Th e proximate and the ultimate: past, present, 
and future. Behavioural Processes 46, 189–199. 

Eddins, D., Cerutti, D., Williams, P., Linney, E. and Levin, E.D. (2010) 
Zebrafi sh provide a sensitive model of persisting neurobehavioural 
eff ects of developmental chlorpyrifos exposure: comparison with ni-
cotine and pilocarpine eff ects and relationship to dopamine defi cits. 
Neurotoxicology and Teratology 32, 99–108. 

Egan, R.J., Bergner, C.L., Hart, P.C. et al. (2009) Understanding behavio-
ral and physiological phenotypes of stress and anxiety in zebrafi sh. 
Behavioural Brain Research 205, 38–44. 

Egerstedt, M., Balch, T., Dellaert, F., Delmotte, F. and Khan, Z. (2005) 
What are the ants doing? Vision-based tracking and reconstruction 
of control programs. IEEE Conference on Robotics and Automation, 
Barcelona, Spain, April 2005. 

Evans, S.R., Finnie, M. and Manica, A. (2007) Shoaling preferences in 
decapod crustacean. Animal Behaviour 74, 1691–1696. 

Fontaine, E., Lentink, D., Kranenbarg, S. et al. (2008) Automated visual 
tracking for studying the ontogeny of zebrafi sh swimming. Journal of 
Experimental Biology 211, 1305–1316. 

Fukuda, H., Torisawa, S., Sawada, Y. and Takagi, T. (2010) Ontogene-
tic changes in schooling behaviour during larval and early juvenile 
stages of Pacifi c bluefi n tuna Th unnus orientalis. Journal of Fish Bio-
logy 76, 1841–1847. 

Gabriel, P.F., Verly, J.G., Piater, J.H. and Genon, A. (2003) Electrical 
engineering the state of art in multiple object tracking under occlu-
sion in video sequences. Advanced Concepts for Intelligent Vision 
Systems 2003, 166–173. 

Gerlai, R. (2003) Zebra fi sh: an uncharted behaviour genetic model. 
Behavior Genetics 33, 461–468. 

Godin, J.-G. and Morgan, M.J. (1985) Predator avoidance and school 
size in a cyprinodontid fi sh, the banded killifi sh (Fundulus diapha-
nous Lesueur). Behavioural Ecology and Sociology 16, 105–110. 

Graves, J. (1977) Photographic method for measuring spacing and den-
sity within pelagic fi sh schools at sea. US Fishery Bulletin 75, 230–
234. 

Grégoire, G. and Chaté, H. (2004) La forme des groupements animaux. 
Pour la Science (hors série), July–September 2004. [in French]

Grünbaum, D. (2003) Tracker 3D Movement Analysis Soft ware. User’s 
guide. University of Washington, Seattle, USA. 

Guo, S. (2004) Linked genes to brain, behaviour and neurobiological 
diseases: what can we learn from zebrafi sh? Genes Brain and Beha-
vior 3, 63–74. 

Halloy, J., Sempo, G., Caprari, G. et al. (2007) Social integration of ro-
bots into groups of cockroaches to control self-organized choices. 
Science 318, 1155–1158. 

Hansen, L.A., Skajaa, K. and Damsgard, B. (2008) Measuring aggression 
and threat-sensitive behavior in cod diff ering in size and nutritional 
state. In: Proceedings in Measuring Behavior 2008 (Maastricht, Th e 
Netherlands, August 26–29, 2008). (eds A.J. Spink, M.R. Ballintijn, 
N.D. Bogers, F. Grieco, L.W.S. Loijens, L.P.P.J. Noldus, G. Smit and 
P.H. Zimmerman), pp. 169. 



Hemelrijk, C.K. and Kunz, H. (2005) Density distribution and size sor-
ting in fi sh schools: an individual-based model. Behavioral Ecology 
16, 178–187. 

Hemelrijk, C.K., Hildenbrandt, H., Reinders, J. and Stamhuis, E.J. 
(2010) Emergence of oblong school shape: models and empirical 
data of fi sh. Ethology 116, 1099–1112. 

Herbert-Read, J.E., Perna, A., Mann, R.P., Schaerf, T.M., Sumpter, D.J.T. 
and Ward, A.J.W. (2011) Inferring the rules of interaction of shoa-
ling fi sh. Proceedings of the National Academy of Sciences USA 108, 
18726–18731. 

d’Heursel, A. and Haddad, C.F.B. (2002) Schooling and swimming 
behaviors of Hyla semilineata tadpoles (Anura, Hylidae). Iheringia, 
Séria Zoologia, Porto alegre 92, 99–104. 

Hill, A.J., Teraoka, H., Heidemann, W. and Peterson, R.E. (2005) Zebra-
fi sh as model vertebrate for investigating chemical toxicity. Toxicolo-
gical Sciences 86, 6–19. 

Hoare, D.J. and Krause, J. (2003) Social organisation, shoal structure 
and information transfer. Fish and Fisheries 4, 269–279. 

Hoare, D.J., Ward, J.W., Couzin, I.D., Croft , D.P. and Krause, J. (2001) A 
grid-net for the analysis of fi sh positions within free-ranging shoals. 
Journal of Fish Biology 59, 1667–1672. 

Hobson, P.R., Lampitt, R.S., Rogerson, A., Watson, J., Fang, X. and 
Krantz, E.P. (2000) Th ree-dimensional spatial coordinates of indivi-
dual plankton determined using underwater hologrammetry. Lim-
nology and Oceanography, 45, 1167–1174. 

Hölldobbler, B. and Wilson, E.O. (2008) Th e Super-Organism: Th e 
Beauty, Elegance, and Strangeness of Insect Societies. Ed. W.W. Nor-
ton & Company, New York-London, p. 576. 

Hughes, N.F. and Kelly, L.H. (1996) New techniques for 3-D video trac-
king of swimming movements in still or fl owing water. Canadian 
Journal of Fisheries and Aquatic Sciences 53, 2473–2483. 

Hunter, J.R. (1966) Procedure for analysis of schooling behavior. Journal 
of the Fisheries Research Board Canada 23, 547–562. 

Ikawa, T., Okabe, H., Mori, T., Urabe, K. and Ikesshoji, T. (1994) A 
method for reconstructing the three-dimensional positions of swar-
ming mosquitoes. Journal of Insect Behavior 7, 237–248. 

Isard, M. and Blake, A. (1996) Contour tracking by stochastic propaga-
tion of conditional density. In: European Conference on Computer 
Vision (ECCV), pp. 343–356. 

Isard, M. and MacCormick, J. (2001) BraMBLe: a Bayesian multiple-
blob tracker. In: International Conference on Computer Vision 
(ICCV), pp. 34–41. 

Jadot, C., Donnay, A., Ylieff , M.Y. and Poncin, P. (2005) Impact implan-
tation of a transmitter on Sarpa salpa behaviour: study with a com-
puterized video tracking system. Journal of Fish Biology 67, 589–595. 

Jakka, N.M., Rao, T.G. and Rao, J.V. (2007) Locomotor behavioral res-
ponse of mosquitofi sh (Gambusia affi  nis) to subacute mercury stress 
monitored by video tracking system. Drug and Chemical Toxicology 
30, 383–397. 

Kanen, A.S., Salierno, J.D. and Brewer, S.K. (2005) Fish models in beha-
vioral toxicology: automated techniques, updates and perspectives. 
In: Methods in Aquatic Toxicology, vol.2 (ed. G.K. Ostrander). Lewis 
Publishers, Boca Raton, FL, pp. 559–590. 

Kato, S., Nakagawa, T., Ohkama, M. et al. (2004) A computer image pro-
cessing system for quantifi cation of zebrafi sh behaviour. Journal of 
Neuroscience Methods 134, 1–7. 

Katz, Y., Tunstrøm, K., Ioannou, C.C., Huepe, C. and Couzin, I.D. 
(2011) Inferring the structure and dynamics of interactions in schoo-
ling fi sh. Proceedings of the National Academy of Sciences USA 108, 
18720–18725. 

Keenleyside, M.H.A. (1955) Aspects of schooling behaviour in fi sh. 
Behaviour 8, 83–248. 

Keenleyside, M.H.A. (1991) Parental care. In: Cichlid Fishes: Behaviour, 
Ecology and Evolution. Fish and Fisheries series 2 (ed. M.H.A. Keen-
leyside). Chapman & Hall, London, pp. 191–208. 

Khan, Z., Balch, T. and Dellaert, F. (2005) MCMC-based particle fi ltering 
for tracking a variable number of interacting targets. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27, 1805–1918. 

Khan, Z., Balch, T. and Dellaert, F. (2006) MCMC data association and 
sparse factorization updating for real time multitarget tracking with 
merged and multiple measurements. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 28, 1960–1972. 

Klimley, A.P. (1985) Schooling in Sphyrna lewini, a species with low risk 
of predation: a non-egalitarian state. Zeitschrift  für Tierpsychologie 
70, 297–319. 

Krause, J., Hoare, D., Krause, S., Hemelrijk, C.K. and Rubenstein, D.I. 
(2000a) Leadership in fi sh shoals. Fish and Fisheries 1, 82–89. 

Krause, J., Hoare, D., Croft , D. et al. (2000b) Th e shoal composition: 
mechanisms and constraints. Proceedings of the Royal Society of 
London B 267, 2011–2017. 

Laurel, B.J., Laurel, C.J., Brown, J.A. and Gregory, R.S. (2005) A new 
technique to gather 3-D spatial information using a single camera. 
Journal of Fish Biology, 66, 429–441. 

Lawler, G.F. (1996) Introduction to Stochastic Process. Probability Se-
ries. Chapman & Hall, New York. 

Leblond, C. and Reebs, S. (2006) Individual leadership and boldness in 
shoals of golden shiners (Notemigonus crysoleucas). Behaviour 143, 
1263–1280. 

Lipton, A.J., Fujiyoshi, H. and Patil, R.S. (1998) Moving target classi-
fi cation and tracking from real-time video. In: IEEE Workshop on 
Applications of Computer Vision (WACV), Princeton, NJ, pp. 8–14, 
October 1998. 

MacCormick, J. and Blake, A. (1999) A probabilistic exclusion principle 
for tracking multiple objects. In: International Conference on Com-
puter Vision (ICCV), pp. 572–578. 

Maggio, E. and Cavallaro, A. (2011) Video Tracking: Th eory and Prac-
tice. Wiley, Chischester, West Sussex, UK. p. 292. 

Malkiel, E., Abras, J.N., Widder, E.A. and Katz, J. (2006) On the spatial 
distribution and the nearest neighbour distance between particles 
in the water column determined from in situ holographic measure-
ments. Journal of Plankton Research 28, 149–170. 

Marshall, A. (2002) Th e Unity of Nature. Imperial College Press, Lon-
don. 

Masuda, R. and Tsukamoto, K. (1999) School formation and concur-
rent developmental changes in carangid fi sh with reference to dietary 
conditions. Environmental Biology f Fishes 56, 243–252. 

Masuda, R., Shoji, J., Nakayama, S. and Tanaka, M. (2003) Development 
of schooling behavior in Spanish mackerel Scomberomorus niphonius 
during early ontogeny. Fisheries Science 69, 772–776. 

Mathis, A. and Chivers, D.P. (2003) Overriding the oddity eff ect in 
mixed-species aggregations: group choice by armored and nonar-
mored prey. Behavioral Ecology 14, 334–339. 

Mathur, P., Berberoglu, M.A. and Guo, S. (2010) Preference for ethanol 
in zebrafi sh following a single exposure. Behavioural Brain Research 
217, 128–133. 

Miller, N.Y. and Gerlai, R. (2007) Quantifi cation of shoaling behaviour 
in zebrafi sh (Danio rerio). Behavioural Brain Research 184, 157–166. 

Miller, N.Y. and Gerlai, R. (2008) Oscillations in shoal cohesion in ze-
brafi sh (Danio rerio). Behavioural Brain Research 193, 148–151. 

Nauen, J.C. and Lauder, G.V. (2002) Hydrodynamics of caudal fi n lo-
comotion by chub mackerel, Scomber japonicus (Scombridae). Th e 
Journal of Experimental Biology 205, 1709–1724. 

Navarro-Jover, J.M., Alcaniz, M., Gomez, V. et al. (2009) An automatic 
colour-based computer vision algorithm for tracking the position of 
piglets. Spanish Journal of agricultural Research 7, 535–549. 

Newlands, N.K. and Porcelli, T.A. (2008) Measuring of the size, shape 
and structure of Atlantic bluefi n tuna schools in the open ocean. 
Fisheries Research 91, 42–55. 

Noldus, L.P.J.J., Spink, A.J. and Tegelenbosch, R.A.J. (2001) EthoVision: 
a versatile video tracking system for automation of behavioural expe-
riments. Behavior Research Methods, Instruments, & Computers 33, 
398–414. 

Orger, M.B., Gahtan, E., Muto, A., Page-McCaw, P., Smear, M.C. and 
Baier, H. (2004) Behavioral screening assays in zebrafi sh. Methods 
Cell Biology 77, 53–68. 

Paramo, J., Gerlotto, F. and Oyarzun, C. (2010) Th ree dimensional 
structure and morphology of pelagic fi sh schools Issue. Journal of 
Applied Ichthyology 26, 853–860. 

Parrish, J.K., Viscido, S.V. and Graübaum, D. (2002) Self-organized fi sh 
schools: an examination of emergent properties. Biological Bulletin 
202, 296–305. 

Partridge, B.L., Pitcher, T., Cullen, J.M. and Wilson, J. (1980) Th e three-
dimensional structure of fi sh schools. Behavioral Ecology and Socio-
biology 6, 277–288. 

Pereira, P. and Oliveira, R.F. (1994) A simple method using a single video 
camera to determine the three-dimensional position of a fi sh. Beha-
vior Research Methods, Instruments, & Computers 26, 443–446. 

Peuhkuri, N., Ranta, E. and Seppä, P. (1997) Size-assortative schooling 
in free-ranging sticklebacks. Ethology 103, 318–324. 

Pinhasov, A., Crooke, J., Rosenthal, D., Brennema, D. and Malatynska, 
E. (2005) Reduction of submissive behaviour model for antidepres-
sant drug activity testing: study using a video-tracking system. Beha-
vioural Pharmacology 8, 657–664. 

Pitcher, T.J. (1973) Th e three dimensional structure of schools in the 
minnow, Phoxinus phoxinus (L.). Animal Behaviour 21, 673–686. 

Pitcher, T.J. (1975) A periscopic method for determining the three di-
mensional positions of fi sh in schools. Journal of the Fisheries Re-
search Board Canada 32, 1533–1538. 

Pitcher, T.J. (1983) Heuristic defi nitions of fi sh shoaling behavior. Ani-
mal Behaviour 31, 611–613. 



Pitcher, T.J. and Parrish, J.K. (1993) Functions of shoaling behaviour in 
teleost fi shes. In: Th e Behaviour of Teleost Fishes (ed T.J. Pitcher), 
2nd edn. Croom Helm, London & Sydney, pp. 364–439. 

Pitcher, T.J. and Partridge, B.L. (1979) Fish school density and volume. 
Marine Biology 54, 383–394. 

Pitcher, T.J. and Wyche, C.J. (1983) Predator and prey in fi shes Predator-
avoidance behaviors of sand-eel schools: why schools seldom split. 
In: Predators and Prey in Fishes (eds D.L.G. Noakes, D.G. Lindquist, 
G.S. Helfman and J.A. Ward). Dr. W Junk, Th e Hague, pp. 193–204. 

Pritchard, V.L., Lawrence, J., Butlin, R.K. and Krause, J. (2001) Shoal 
choice in zebrafi sh (Danio rerio): the infl uence of shoal size and acti-
vity. Animal Behaviour 62, 1085–1088. 

Prober, D.A., Rihel, J., Onah, J.A.A., Sung, R.-J. and Schier, A.F. (2006) 
Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phe-
notype in Zebrafi sh. Journal of Neuroscience 26, 13400–13410. 

Rasmussen, C. and Hager, G.D. (2001) Probabilistic data association 
methods for tracking complex visual objects. IEEE Transactions on-
Pattern Analysis and Machine Intelligence 23, 560–576. 

Reebs, S.G. (2001) Infl uence of body size on leadership in shoals of Gol-
den Shiners, Notemigonus crysoleucas. Behaviour 138, 797–809. 

Reynolds, C.W. (1987) Flocks, herds, and schools: a distributed behavio-
ral model. Computer Graphics, 21(4), 25–34. 

Rubinstein, A.L. (2006) Zebrafi sh assays for drug toxicity screening. 
Expert Opinion on Drug Metabolism & Toxicology 2, 231–240. 

Salierno, J.D., Gipson, E.G.T. and Kane, E.A.S. (2008) Quantitative mo-
vement analysis of social behavior in mummichog. Fundulus hetero-
clitus. Journal of Ethology 26, 35–42. 

Sanchez, O. and Dibos, F. (2004) Displacement following of hidden ob-
jects in a video sequence. International Journal of Computer Vision 
57(2), 91–105. 

Sfakiotakis, M., Lane, D.M. and Davies, J.B.C. (1999) Review of fi sh 
swimming modes for aquatic locomotion. IEEE Journal of Oceanic 
Engineering 24(2), 237–252. 

Shaw, E. (1978) Schooling fi shes. American Scientist 66, 166–175. 
Sheng, J., Malkiel, E., Katz, J., Adolf, J., Belas, R. and Place, A.R. (2007) 

Digital holographic microscopy reveals prey-induced changes in 
swimming behavior of predatory dinofl agellates. Proceedings of the 
Natural Academy of Sciences USA 104, 17512–17517. 

Sigal, L., Bathia, S., Roth, S., Black, M.J. and Isard, M. (2004) Tracking 
loose-limbed people. In: IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 421–428. 

Silverman, J.L., Yang, M., Lord, C. and Crawley, J.N. (2010) Behaviou-
ral phenotyping assays for mouse models of autism. Nature Reviews 
Neuroscience 11, 490–502. 

Singh, R., Pittas, M., Heskia, I., Fengyun, X., McKerrow, J. and Caff rey, 
C.R. (2009) Automated image-based phenotypic screening for high-
throughput drug discovery. Computer-based Medical Systems, 2009, 
CBMS 2009, 22nd IEEE International Symposium on Computer, pp. 
1–8. 

Speedie, N. and Gerlai, R. (2008) Alarm substance induced behavioral 
responses in zebrafi sh (Danio rerio). Behavioural Brain Research 
188, 168–177. 

Suzuki, K., Tsumonu, T. and Hiraishi, T. (2003) Video analysis of fi sh 
schooling behavior in fi nite space using a mathematical model. 
Fisheries Research 60, 3–10. 

Tinbergen, N. (1963) On aims and methods of ethology. Zeitschift  für 
Tierpsychologie 20, 410–433. 

Treherne, J.E. and Foster, W.A. (1981) Group transmission of predator 
avoidance in a marine insect: the Trafalgar eff ect. Animal Behaviour 
62, 617–621. 

Viscido, S.V., Parrish, J.K. and Grünbaum, D. (2004) Individual beha-
viour and emergent properties of fi sh schools: a comparison of ob-
servation and theory. Marine Ecology Progress Series 273, 239–249. 

Ward, A.J.W., Axford, S. and Krause, J. (2002a) Mixed-species shoaling 
in fi sh: the sensory mechanisms and costs of shoal choice. Behaviou-
ral Ecology and Sociobiology 52, 182–187. 

Ward, A.J.W., Hoare, D.J., Couzin, I.D., Broom, M. and Krause, J. (2002b) 
Th e eff ects of parasitism and body length on positioning within fi sh 
shoals. Journal of Animal Ecology 71, 10–14. 

Ward, A.J.W., Axford, S. & Krause, J. (2003) Cross-species familiarity in 
shoaling fi shes. Proceedings of the Royal Society of London B 270, 
1157–1161. 

Weihs, D. (1973) Hydromechanics of fi sh schooling. Nature 241, 290–
291. 

Weihs, D. and Webb, P.W. (1983) Optimalization of locomotion. In: Fish 
Biomechanics (eds P.W. Webb and D. Weihs). Praeger, New York, pp. 
339–371. 

Wilga, C.D. and Launder, G.V. (2002) Function of the heterocercal 
tail in sharks: quantitative wake dynamics during steady horizontal 
swimming and vertical maneuvering. Th e Journal of experimental 
Biology 205, 2365–2374. 

Winandy, L. and Denoël, M. (2011) Th e use of visual and automatized 
behavioral markers to assess methodologies: a study case on PIT-tag-
ging in the Alpine newt. Behavior Research Methods 43, 568–576. 

Wright, D. and Krause, J. (2006) Repeated measures of shoaling tenden-
cy in Zebrafi sh (Danio rerio) and other small teleost fi shes. Nature 
Protocols 4, 1828–1831. 

Ying, F. (2004) Visual Ants Tracking. Department of Computer Science, 
Faculty of Engineering, University of Bristol, University of Bristol, 
Bristol, UK. 

Ylieff , M.Y. (2002) Validation et exploitation de nouvelles techniques 
d’imagerie numérique pour la caractérisation des profi ls comporte-
mentaux chez les poissons: Etude de l’infl uence de facteurs abiotiques 
et biotiques chez Symphodus ocellatus (Forsskål, 1775) et Chromis 
chromis Linné, 1758, Labridé et Pomacentridé méditerranéens. PhD 
thesis, Université de Liège, 169p. [in French]

Ylieff , M.Y. and Poncin, P. (2003) Quantifying spontaneous swimming 
activity in fi sh with a computerized color video tracking system, a 
laboratory device using last imaging techniques. Fish Physiology & 
Biochemistry 28, 281–282. 

Zhao, T. and Nevatia, R. (2004) Tracking multiple humans in crowded 
environment. In: IEEE Conference on Computer Vision and pattern 
recognition (CVPR). 

Zhu, L. and Weng, W. (2007) Catadioptric stereo-vision system for the 
real-time monitoring of 3D behavior in aquatic animals. Physiology 
and Behavior 91, 106–119. 

Received 27 Apr 2011
Accepted 26 Jan 2012


