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Abstract

Background: The origin of functional innovation is among the key questions in biology. Recently,
it has been shown that new genes could arise from non-coding DNA and that such novel genes are
often involved in male reproduction.

Results: With the aim of identifying novel genes, we used the technique "generation of longer
cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI)"
to extend 84 sex-biased 3'end SAGE tags that previously could not be mapped to the D.
pseudoobscura transcriptome. Eleven male-biased and 33 female-biased GLGI fragments were
obtained, of which 5 male-biased and 3 female-biased tags corresponded to putatively novel genes.
This excess of novel genes with a male-biased gene expression pattern is consistent with previous
results, which found novel genes to be primarily expressed in male reproductive tissues. 5' RACE
analysis indicated that these novel transcripts are very short in length and could contain introns.
Interspecies comparisons revealed that most novel transcripts show evidence for purifying
selection.

Conclusion: Overall, our data indicate that among sex-biased genes a considerable number of
novel genes (~2—4%) exist in D. pseudoobscura, which could not be predicted based on D.
melanogaster gene models.

Background

Understanding functional innovation is one of the most
interesting questions in biology. One important mecha-
nism of functional innovation involves changes in gene
expression [1] caused by cis-regulatory mutations [2].
While structural mutations within existing genes are an
alternative mechanism to generate new functions [3],
another possibility is the emergence of new genes. Several
possible mechanisms are known to be involved in creat-
ing novel genes [4]. The best described origins of novel
genes are gene duplication [5] and exon shuffling [6,7].
Recently it has been shown that novel genes could also

originate de novo from non-coding regions [8]. Compara-
tive genome analyses permit the identification of previ-
ously uncharacterized genes through sequence
conservation, but the identification of rapidly evolving
genes or genes of very recent origin is frequently restricted
to in silico predictions. As novel genes are typically short
[8,9], these may be easily missed. Alternatively, gene
expression could serve as a good indicator for the presence
of a gene. Hence, either Expressed Sequence Tag (EST)
databases or reverse SAGE [10,11] could be used to iden-
tify novel transcripts.
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Drosophila served as model for the identification of novel
genes since the 1990s. One of first novel genes in this
genus was jingwei in D. melanogaster [12], which is a fusion
of two genes, a retroposed copy of the alcohol dehydroge-
nase (Adh) gene and a duplicated copy of the yellow
emperor (ymp) gene [13]. Since then several studies applied
phylogenetic methods to the growing databases aiming
for the identification of novel genes. The majority of the
novel genes have a sex-biased gene expression and some
reports suggested that sex-biased genes change their
expression pattern more rapidly than unbiased genes
[14,15]. Furthermore, male-biased genes were shown to
have a higher rate of protein evolution than unbiased
genes [16-18]. In a recent report comparing the pattern of
gene expression in D. melanogaster and D. pseudoobscura
we failed to find evidence for an unconditionally faster
rate of sequence evolution of male-biased genes. Rather,
only genes with a male-biased gene expression in D. mel-
anogaster were found to evolve faster. Genes with a male-
biased gene expression in D. pseudoobscura only were
evolving at a similar rate as unbiased genes [19]. As a large
proportion of the sex-biased tags could not be mapped to
the corresponding genes in D. pseudoobscura, the analysis
of these tags should shed further light onto the pattern of
protein evolution of sex-biased genes in D. pseudoobscura.

In this study, we identified eight novel genes with sex-
biased gene expression in D. pseudoobscura using GLGI
(Generation of longer cDNA fragments from serial analy-
sis of gene expression tags for gene identification). Con-
sistent, with previous results [8,9], we observed
significantly more novel genes with a male bias than with
a female bias in gene expression. Interestingly, we found
no significant excess of X-linked novel genes, as has been
reported in the previous studies [8,9].

Results

GLGI analysis

We used recently published SAGE data to identify sex-
biased tags in D. pseudoobscura [19]. Previous analysis
showed a substantially higher efficiency of tag to gene
mapping for male-biased tags than for female-biased tags
[19]. As the D. pseudoobscura genome annotation is heav-
ily based on D. melanogaster gene models, this may be due
to a higher proportion of novel genes among the genes
with a female-biased gene expression. To test this, we
selected 20 male-biased and 64 female-biased tags that
were previously not mapped, relatively highly expressed
and showed significant difference in expression between
the sexes (p < 0.001), for further analysis. Using the GLGI
method, we successfully generated longer 3'cDNA frag-
ments for 44 SAGE tags. This success rate is in agreement
with a previous GLGI analysis [20]. The GLGI fragments
include 11 male-biased and 33 female-biased tags (Table
1). Thirty female-biased (91%) tags were mapped close to
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Table I: Overall statistics of tags used in this analysis

Male biased Female biased

Total tags for GLGI analysis 20 64
Successfully amplified tags I 33
Putative novel genes 5 3

Successfully amplified novel genes 5 |

using 5'RACE

putative orthologs of D. melanogaster in the 3' end while
only six male-biased (55%) tags were in this category
(Additional file 1, Tables 1a and 1b). The remaining eight
tags are falling into genomic regions that show no
sequence conservation between D. melanogaster and D.
pseudoobscura and no genes are annotated in D. mela-
nogaster. Furthermore, we could not identify these regions
by either nucleotide or protein BLAST search in any other
species whose genome is completely sequenced except for
D. persimilis. This suggests that these tags potentially rep-
resent novel genes that arose in the obscura group and are
absent in other Drosophila species. Alternatively, these
genes may have diverged from their orthologs in other
Drosophila species to such an extent that they could not
be identified by BLAST algorithm. We identified five male-
biased and three female-biased transcripts that are puta-
tively novel. Hence, 46% of the male-biased and 9% of
the female-biased tags are putatively novel in the genome
of D. pseudoobscura. The difference between male- and
female-biased tags is significant (p = 0.02), suggesting that
the majority of the novel genes show male biased expres-
sion [8,9].

Modified SAGE-GLGI approach

As the GLGI analysis of sex-biased genes indicated a high
number of novel genes, we were interested if this applies
only to highly sex-biased genes or is a more general phe-
nomenon. We sequenced 126 clones using a cDNA library
that mimics the generation of GLGI fragments from SAGE
tags. Of the 126 clones sequenced, 89 were unique and
the remaining clones were redundant. From these 89
clones, 46 clones could be matched to the SAGE expres-
sion data [19]. Out of 89, 35 clones could be mapped to
the annotated genes of D. pseudoobscura. Thirty-two clones
mapped close to predicted genes in the 3' end. Six clones
fell unambiguously into genomic regions for which genes
are predicted in D. melanogaster but not in D. pseudoob-
scura. For these clones we noted that the incomplete anno-
tation in D. pseudoobscura is probably due to duplications
of the genes in these regions. One clone was mapped to a
mitochondrial TRNA gene that is not included in the
annotation of D. pseudoobscura. Three clones were missing
in the D. pseudoobscura genome assembly but exist in the
trace archive database [21] and have homologous
sequences in D. melanogaster. Four clones were too short

Page 2 of 9

(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:182

to be mapped unambiguously and two clones were anti-
sense transcripts. For four clones of the six remaining
ones, no prediction exists in either of the species despite
sequence conservation. Hence, these genes are not novel
to D. pseudoobscura. The remaining two clones are puta-
tively novel genes as these sequences are located in
genomic regions with no gene predicted in D. pseudoob-
scura and no orthologous region could be identified in D.
melanogaster by a BLAST search. Both of these clones map
to D. pseudoobscura chromosome arm XR. One of them
matched a SAGE tag that was present in the male and
female SAGE library [19] and showed female-biased
expression. This sequence is located 72-nucleotides away
from a predicted protein coding gene GA23511 in D. pseu-
doobscura. However, TBLASTN search of this protein
against other completely sequenced Drosophila genomes
did not reveal any hit except in the sibling species D. per-
similis. The other clone did not match to any of the SAGE
tags and was located in a region of the genome where no
gene is predicted.

Chromosomal distribution of novel sex-biased genes

Six of the eight GLGI sequences representing putatively
novel genes are located on autosomes, while only two
were located on the X-chromosome. Based on the number
of predicted genes on X- and autosomes in the D. pseudoo-
bscura annotation release 2.0, we tested for an overrepre-
sentation of novel genes on the X-chromosome and did
not find support for an enrichment of new genes on one
chromosome (p = 0.72, Fisher's exact test). Even after
accounting for the two novel genes identified by the mod-
ified GLGI approach, we still found no evidence for an
enrichment of novel genes on the X-chromosome (p =
0.75, Fisher's exact test).

Structure of the novel genes

In order to obtain full-length transcripts of the novel
genes identified by GLGI, we performed 5' RACE analysis.
All the five male biased tags were successfully amplified
with 5' RACE. Out of three female-biased clones, only one
could be cloned and sequenced. Based on the 5' RACE
analysis, we could show that the transcripts of these novel
genes are very short, ranging from 138 base pairs to 442
base pairs, yielding very short coding sequences ranging
from 29 amino acids to 95 amino acids (Figure 1). These
transcripts have start and stop codons at the same position
in the orthologous regions of the closely relatives D. persi-
milis and D. miranda and the complete ORF of these tran-
scripts is conserved in the three species. Interestingly, the
gene containing the shortest ORF was found to possess an
intron. Nevertheless, further experiments are required to
determine whether or not these short ORFs are translated
into peptides. For one of the male-biased transcripts
(SAGE_M_22_3), no potential coding sequence could be
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Gene Structure #AA Chr.
SAGE_M_99 > 29aa 4
SAGE_M_79 | 30aa 4
sace M 310 [ 33aa 3
SAGE_M_71 | 34aa 2%
SAGE_F_108 I o5 XL
sacéM 223 P> NC XL

Figure |

Novel genes in D. pseudoobscura. List of novel genes
obtained by analyzing SAGE, GLGI and 5'RACE with their
protein length and chromosomal location. Black boxes rep-
resent coding regions, grey boxes represent non-coding
regions and UTRs and white boxes represent introns. For
the gene SAGE_M_71 (*), the chromosome location is deter-
mined based on its synteny in D. persimilis.

obtained and hence we assumed that it could be a non
protein coding transcript.

Cross-species conservation of novel genes

We took advantage of the 12 sequenced Drosophila
genomes and performed TBLASTN searches with default
parameters provided by flybase [22] to identify orthologs
of the novel genes. Apart from D. persimilis, a very close
relative of D. pseudoobscura, we did not detect any
sequence similarity in the other species. Using PCR prim-
ers conserved between D. pseudoobscura and D. persimilis
(See Additional file 1, Table 2), we successfully amplified
the novel genes in D. miranda. Successful amplification of
orthologs of the new, putatively protein coding genes
from c¢DNA indicated their conservation in D. miranda.
This implies that the novel genes arose before the split of
D. pseudoobscura and D. miranda, which occurred about
2-5 MYA [23-25]. We assessed the protein coding poten-
tial of these short transcripts using the QRNA software,
which distinguishes between coding alignments, con-
served non-coding alignments and RNA secondary struc-
ture [26]. For none of the six transcripts did we find
support for a protein coding potential (Table 2). How-
ever, as the sequences were short and the divergence
between D. miranda and D. pseudoobscura is low, it is not
clear how powerful this method is. Furthermore, it has
been noted previously that failure of QRNA to identify a
coding potential does not exclude the possibility of small
ORFs [27]. Except for one (SAGE_M_79), all putatively
protein coding genes had a ratio of synonymous to non-
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Table 2: Synonymous (dS) and non-synonymous (dN) ratios
between D. pseudoobscura and D. miranda and QRNA predictions
of the novel genes

Gene dN ds dN/dS LRT# QRNA¥*
SAGE_M_99 0.029  0.063 0.462 0.570 0287
SAGE_M_79 0.045 0.000 - 0.208 0328
SAGE_M_310 0.014 0.036 0.394 0.270 0202
SAGE_M_71 0.013 0.134 0.097 0.049 Ol54
SAGE_M_22_3 - - - - 0416
SAGE_F_108 0.024  0.056 0.430 0.102 R460

#Likelihood ratio test was performed using D. pseudoobscura, D.
persimilis and D. miranda.

* O — other conserved non-coding sequences; R — RNA secondary
structure. The number after the letter indicates the number of
nucleotides assigned by QRNA to this category, which is in all cases
equivalent to length of the full transcript.

synonymous substitutions smaller than one, indicating
purifying selection on a protein sequence. SAGE_M_79
contained only non-synonymous substitutions and no
synonymous substitutions (Table 2). Supporting this
hypothesis, the ratio of polymorphic non-synonymous
substitutions to synonymous substitutions is also smaller
than one for the polymorphic loci (Table 3). On the other
hand, the likelihood ratio test (LRT), which tests if the
dN/dS ratio is significantly lower than 1, was not signifi-
cant for any of the loci except SAGE_M_71 (Table 2).
However, it should be noted that the power of LRT is
affected by sequence length, divergence and number of
species [28] and may lead to a lower power in our case.

Evolution of novel genes

Recently evolved novel genes were shown to be under
adaptive evolution in D. melanogaster lineage species
[8,9]. To understand the pattern of variation and to test
the deviations from neutral expectations in the novel
genes of D. pseudoobscura, we sequenced the protein cod-
ing genes in one D. pseudoobscura population from Mesa-
Verde (Colorado, USA, n = 8). Neutrality tests like
Tajima's D (Table 3), Fu & Li's D, Fu & Li's F and Fu's Fs
did not show a significant deviation from neutral expecta-
tions. We also performed a McDonald-Kreitman test [29]
using D. miranda, which basically assumes that under
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neutrality, the ratio of fixed differences between species to
polymorphic differences within species should be similar
for both the synonymous and non-synonymous sites.
None of the novel loci showed significant deviations from
neutral expectations (Table 4). It should be noted, how-
ever, that due to the short sequence of the loci analyzed
the statistical power to detect selection is limited. A multi
locus HKA test [30], which tests for the deviations
between the polymorphism within species versus diver-
gence between species across different loci was also not
significant, suggesting that none of the genes deviates sig-
nificantly from the remaining ones.

Discussion
In this report we showed that the extension of SAGE tags
by GLGI is a powerful approach for the identification of
novel genes.

Origin of the novel genes

Novel genes can be generated through different evolution-
ary trajectories: retrotransposition [31], gene/genome
duplication [5,32] and exon shuffling [7]. All these proc-
esses have in common that novel genes are built from
existing genes or exons. Hence, it is expected that these
building blocks should be detectable in the genome. We
performed BLAST search of the novel genes against the D.
pseudoobscura genome and detected only for one gene
(SAGE_M_310) two BLAST hits. These two hits with com-
plete sequence conservation were separated by 4.2-kilo-
base and the entire duplicated region spans
approximately 1.1-kilobase with 92% identity. While we
cannot rule out an assembly error, this observation sug-
gests a recent duplication of the entire region encompass-
ing the novel gene. Nevertheless, it is also apparent that
both copies qualify as novel genes by our criteria.

Given that we lack support for the origin of the described
novel genes from already existing ones, we favour the
hypothesis that they are derived from previously non-cod-
ing regions. Recently, several cases of such novel genes
derived from non-coding sequences were described in
other Drosophila species [8,9]. Like in our study, the func-
tional evidence came from gene expression in the focal

Table 3: Neutrality tests for the novel genes in Mesa-Verde population (n = 8)

Gene H T Tajima's D* 7N nS 7N/nS
SAGE_M_71 6 0.012 0.687 0.0000 0.0725 0.000
SAGE_M_79 | 0.000 0.000 0.0000 0.0000 0.000
SAGE_M_99 5 0.006 -0.503 0.0061 0.0153 0.393
SAGE_M_310 I 0.000 0.000 0.0000 0.0000 0.000
SAGE_F_108 7 0.007 -0.414 0.0025 0.0155 0.163
H = Number of Haplotypes.
7 = Nucleotide diversity.
*p>0.05
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Table 4: McDonald-Kreitman test contingency table for the novel genes

Gene Fixed differences Polymorphic differences
Synonymous Non-synonymous Synonymous Non-synonymous
SAGE_M_71 2 2 0 4
SAGE_M_79 0 4 0 0
SAGE_M_99 0 2 | I
SAGE_M_310 I | 0 0
SAGE_F_108 5 4 3 I

species. In order to obtain additional support for func-
tionality of these transcripts, we also tested for gene
expression in a related species and found all of the novel
genes also to be transcribed in D. miranda. But, we cannot
exclude that these transcripts are non-coding or the
regions are spuriously expressed in the closely related spe-
cies. However, such small ORFs were previously reported
in Drosophila and other species and are known to be
functional [33-36]. The generation of novel genes by
mutation appears a very unlikely event and the chance of
generating a functional gene by random mutations
decreases with the length of a gene. Hence, it is particu-
larly interesting that all the novel genes identified in this
study and previous ones [8,9] tend to be very short. Once
more novel genes become available in combination with
information about their date of origin, it will be possible
to infer the probability to generate novel genes by random
mutations. In particular, we will gain more insight if some
sequences are more prone to develop into functional
genes.

Novel genes are male-biased

In this report we searched for novel genes among SAGE
tags showing either a strong male or female expression
bias. Despite that we screened a considerably larger
number of female-biased SAGE tags, the majority of the
novel genes had a male-biased gene expression pattern.
This pattern is consistent with previous results [8,12,37-
39]. It appears to be a general trend that many novel genes
possess functional significance in males relative to
females, but the reason for this trend is still not com-
pletely clear. Possible reasons include a higher transcrip-
tion rate in male germline, greater functional pleiotropy
of genes expressed in females and/or sexual competition
[40]. Alternatively, there could be more testis specific pro-
moter sequences in the genome.

Non-preferential X chromosomal location of novel genes

There has been considerable controversy about the
genomic location of male-biased genes. Earlier theoretical
predictions [41] as well as expression studies in mice [39]
suggested that recessive genes conferring an advantage to
males should be located on the X-chromosome. Expres-

sion studies in Drosophila [42] and C. elegans [43]
showed, however, that male biased genes are preferen-
tially located on the autosomes. This discrepancy could be
explained by X-chromosome inactivation during sperma-
togenesis [44-46]. The preferential X-linkage of novel
genes, which show a male expression pattern [8] requires
further explanation. It has been suggested that genes con-
ferring an advantage to males first originate on the X-chro-
mosome and move to an autosomal location later in
evolution [42,47]. Hence, it is conceivable that these
novel male-biased genes do not serve functions that are
essential during male spermatogenesis. Once such novel
genes become essential, they could move to the auto-
somes. It was also suggested that mutations generating de
novo genes might occur more often on the X chromosome
or fix more readily [8]. The novel genes we identified in
this analysis can be dated from a minimum of 2-5 MYA
(D. pseudoobscura and D. miranda divergence time [23-
25]) to a maximum of 13-15 MYA (divergence of obscura
group [25,48]). It is possible that the novel genes identi-
fied in this study may be older compared to the novel
genes reported by Levine et al. [8], which was 2.5 MYA
and if this is true, then these genes might have already
moved to autosomes [42]. More data are required to see if
the discrepancy between our study and the results of Lev-
ine et al. [8] are related to the difference in age or could be
simply attributed to sampling effects due to the small
number of genes in both studies.

High incidence of novel genes in D. pseudoobscura

The discovery of previously uncharacterized transcripts is
an observation common to many SAGE and EST sequenc-
ing experiments [11,39,49,50]. Nevertheless, the identifi-
cation of evolutionary novelties requires also the absence
of sequence conservation in related species. This approach
was pioneered by Schmid and Tautz [51], who studied the
conservation of c¢DNAs across various species using
hybridization to genomic Southern blots. More recently,
Levine et al. [8] specifically searched for lineage specific
genes by BLAST search of all cDNA sequences available in
D. melanogaster against D. yakuba, D. erecta and D. ananas-
sae. A similar approach was also pursued for D. yakuba by
BLAST search of ESTs against the genomic sequences of D.

Page 5 of 9

(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:182

yakuba, D. melanogaster, D. erecta and D. ananassae [9]. In
this study, we focused on novel genes in D. pseudoobscura.
Our previous SAGE analysis indicated that about 12% of
the genes surveyed showed a significant sex bias. Of these,
73% could not be mapped to the D. pseudoobscura tran-
scriptome and the majority of them possessed female-
biased gene expression. This discrepancy could arise from
a high number of novel female-biased genes in D. pseudoo-
bscura. Contrary to our expectations and in agreement
with the other studies we observed a high number of
male-biased novel genes compared to female-biased
novel genes. This result could be the outcome of different
rates of evolution of male and female-biased genes
[15,18] in D. pseudoobscura.

In this study, we showed that 18% of the unmapped SAGE
tags originate from putatively novel genes that arose in the
obscura group. Hence, among the sex-biased genes approx-
imately 2% are novel. In a cDNA library from D. pseudoo-
bscura females we observed about 4% novel genes. This
high incidence of novel genes in D. pseudoobscura under-
lines the need to supplement available genomic
sequences with a thorough characterization of their tran-
scriptome. In wake of the recent advances in the sequenc-
ing technology, we anticipate that this is already in close
reach.

Conclusion

We identified eight novel genes with sex-biased gene
expression in D. pseudoobscura from unmapped SAGE tags
using the GLGI method. In agreement with previous
results from the other Drosophila species, a majority of
these novel genes are male-biased in gene expression.
Interestingly, we found no significant excess of X-linked
novel genes. Overall, our data show that a considerable
number of novel sex-biased genes exists in D. pseudoob-
scura that could not be predicted based on D. melanogaster
gene models, which underlines the need to supplement
available genomic sequences with a thorough characteri-
zation of their transcriptome.

Methods

GLGI analysis

D. pseudoobscura SAGE tags were obtained from Metta et
al. [19]. The GLGI procedure for the 3' extension of the
SAGE tags was performed according to Chen et al. [52]. In
brief, total RNA was extracted separately from 15 male
and 15 female virgin flies using Trizol (Invitrogen,
Carlsbad, CA) and treated with DNAsel (MBI Fermentas)
to digest the genomic DNA residues. PolyA mRNA was
isolated using a 5' biotinylated and anchored oligo dT
primer (5' biotin-ATCTAGAGCGGCCGC(T),,V) and
streptavidin beads (Dynal). Double strand cDNA was syn-
thesized using the "Double strand ¢cDNA synthesis kit"
(Invitrogen, Carlsbad, CA) and digested with the Nlalll
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isoschizomer Hin1II (MBI Fermentas). The 3' end frag-
ments of the digested cDNA was recovered with Dynal
beads. PCR amplification was performed using SAGE tag
as 5' primer and anchoring sequence to the polyA was
used as 3' primer. The PCR product was then cloned into
TA vector (Invitrogen, Carlsbad, CA) and sequenced.

Modified SAGE-GLGI method for detecting novel genes
To verify the consistency of the abundance of novel genes,
we also performed an independent analysis, which is a
modification of the SAGE-GLGI approach. We used
mRNA isolated from virgin females. Double stranded
cDNA was digested with Nlalll and an adapter (5'-
GCCTCCCTCGCGCCATCAGCATG-3' and 5'-CTGAT-
GGCGCGAGGGAGGC-3') was ligated to the 5' end of the
digested cDNA fragments. The resulting template was
amplified using an adapter specific primer and the primer
anchoring to oligo dT. The products were cloned into TA
vector and sequenced using M13 primers.

Bioinformatics

BLASTN search was performed using the D. pseudoobscura
database to identify the location of the GLGI (and modi-
fied SAGE-GLGI) fragments in the genome. As the D. pseu-
doobscura genome is only coarsely annotated we re-
annotated the D. pseudoobscura genome for the regions of
interest. We noted that a GeneWise analysis using the D.
melanogaster gene model often results in a more complete
protein prediction than the one available in the annota-
tion database [22]. Hence we first performed GeneWise
using those D. melanogaster genes that mapped in the
proximity of the GLGI fragments to test if the D. pseudoo-
bscura gene prediction may have been incomplete and the
GLGI fragment matches to the extended protein coding
region. As neither our GeneWise annotations nor the
available annotation of D. pseudoobscura contained UTR
sequences for most genes, we also used ab initio gene pre-
dictions. Specifically, we submitted the genomic region
spanning the 5' part of the closest gene in the correct ori-
entation and the genomic region matching to the GLGI
fragment to a Genescan prediction. The coding potential
of the transcripts was assessed using QRNA program [26].

Structure of novel genes

To identify the 5' boundaries of the novel GLGI
sequences, we performed 5' RACE (rapid amplification of
cDNA ends) using GeneRacer RACE ready cDNA kit (Inv-
itrogen, Carlsbad, CA). The 5' RACE analysis was per-
formed on an independent extraction of total RNA.

Evolution of novel genes

Eight individuals of D. pseudoobscura from Mesa-Verde
(Colarado, USA) were sequenced for the five novel genes
putatively coding for a protein (see Additional File 1,
Table 2 for the primer sequences). Orthologous regions in
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D. persimilis were obtained from flybase [22]. One indi-
vidual of D. miranda, a close relative of D. pseudoobscura,
was obtained from the Tucson stock center (stock
number: 14011-0101.08) and sequenced for these loci at
both genomic as well as transcriptomic level. A typical
cycling profile consisted of 3 min denaturation at 94°C
followed by 35 cycles of 94°C for 40 sec, 50°C for 50 sec,
and extension at 72°C for 1 min. PCR products were
sequenced for both strands using DYEnamic ET Termina-
tor Sequencing Kit (GE Health care Bio-Sciences AB, Swe-
den) according to manufacturer's instructions. The
extension products were purified with Sephadex G-50 fine
(GE Health care Bio-Sciences AB, Sweden) and separated
on a MegaBACE 500 automated capillary sequencer. For-
ward and reverse strands were assembled using Codon-
Code Aligner version 2.0.1 [53]. The sequences were
aligned using clustalW [54] and standard neutrality tests
and McDonald-Kreitman test were performed using
DnaSP version 4.10 [55]. The pair wise synonymous and
non synonymous substitutions between D. pseudoobscura
and D. miranda were obtained using yn00 program of
PAML [56]. Likelihood ratio test was performed using
codeml program of PAML using three species tree to test if
the dN/dS ratio is significantly lower than 1. Multi locus
HKA test [30] was performed using HKA program written
by Jody Hey [57]. All the sequences were submitted to
GenBank (accession numbers EU379026-EU379076).

Abbreviations

SAGE: serial analysis of gene expression; GLGI: generation
of longer cDNA fragments from serial analysis of gene
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Additional material

Additional file 1

1a - List of female-biased tags with successful GLGI amplification. 1b
- List of male-biased tags with successful GLGI amplification. {The
gene is not predicted in the database of D. pseudoobscura. "Within the
gene" indicates that the tag is located within the transcript but as it
belongs to a mitochondrial gene or an unpredicted gene, it was not
mapped previously. "Splice form" indicates that the SAGE tag is falling
within an intron of a gene and so it is likely to be a splice variant. "Anti-
sense" indicates that the GLGI sequence is matched in the anti-sense
direction of the predicted gene. *This tag did not give any hit in D. pseu-
doobscura genome assembly but exists in the trace archive. The chromo-
some location is determined based on the sequence synteny in D.
persimilis. "Sequencing artefact" indicates that the tag is falling within
the gene but the region is having no sequence coverage (represented by 'n'
in the database). 2 — Primers used for cross-species amplification as
well as population analysis of D. pseudoobscura.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-182-S1.doc|
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