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1. Introduction

• Background :

— Parametric conditional heteroscedasticity models, as the

standard Student t GARCH model, are a customary tool for

analyzing financial data.

— If these models are routinely estimated in applications, diagnos-

tic testing of their specification, and more particularly of their

distributional specification, is in practice much less common.

• Objective :

— To provide a convenient and generally applicable diagnostic test

for checking the distributional aspect of these models.

• First idea :

— By analogy to the popular Jarque-Bera (1980) test for normality,

checking through a m-test that the third and fourth order sam-

ple moments of the (estimated) innovations of the model are in

accordance with their (estimated) theoretical values.

→Convenient since m-test are standard and easy to implement,

but not generally applicable because it requires existence of mo-

ments up to order eight (unlikely when working with a number of

popular models such as the standard Student t GARCHmodel).

• To overcome this problem while staying in the convenient m-testing

framework, this paper suggests :

— A m-test based, instead of the moments of the innovations them-

selves, on the moments of the probability integral transform (i.e.

cdf. transform) of the innovations.

→Characteristics : - (relatively) easy to implement.

- generally applicable.

- well-behaved both in terms of size and power.
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2. Model specification and estimation

• Notation :

— yt : (continuous) dependent variable of interest.

— zt : vector of explanatory variables.

— xt : information set xt ≡ (zt, yt−1, zt−1, ..., y1, z1). If no explana-

tory variables, xt ≡ (yt−1, ..., y1).

• Model specification :

yt = µ
t
(xt, γ) +

√
ht(xt, γ) εt, t = 1, 2, ...

where - γ is a vector of parameters,

- µ
t
(., .) and ht(., .) > 0 are known scalar functions,

- εt are i.i.d. zero mean and unit variance innovations

independent of xt with density g(ε; η), where η is a

vector of shape parameters.

• This specification defines a fully parametric model P for the condi-

tional densities of yt given xt :

P ≡
{
ft(yt|xt; θ) =

1√
ht(xt, γ)

g

(
yt − µ

t
(xt, γ)√

ht(xt, γ)
; η

)
: θ = (γ′, η′)′ ∈ Θ

}

whose, by construction, E(yt|xt) = µ
t
(xt, γ) and V (yt|xt) = ht(xt, γ),

t = 1, 2, ...

• In typical applications :

— µ
t
(xt, γ) is specified according to an AR, MA or ARMA process.

— ht(xt, γ) is specified according to some autoregressive scheme

such as ARCH, GARCH, EGARCH, ...

— g(ε; η) is chosen among standardized continuous distributions

allowing for fat tails and possibly further for asymmetry.
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• A customary example : the pure time-series Student t(ν) AR(1) -

GARCH(1,1) model obtained by setting

µ
t
(xt, γ) = γ1 + γ2yt−1, ht(xt, γ) = γ3 + γ4u

2

t−1 + γ5ht−1

and
g(ε; η) = bg∗(bε; ν)

where ut−1 = yt−1 − µ
t−1(xt−1, γ), ht−1 = ht−1(xt−1, γ), b =

√
ν

ν−2

and g∗(w; ν) is the usual Student t density with ν degrees

of freedom.

• Maximum likelihood estimator :

θ̂n = (γ̂′
n
, η̂′

n
)′ = Argmaxθ∈Θ

1

n

n∑
t=1

lt(yt, xt, θ)

where

lt(yt, xt, θ) = −0.5 lnht(xt, γ) + ln g

(
yt − µt(xt, γ)√

ht(xt, γ)
; η

)

• Under general regularity conditions, if model P is correctly specified,

i.e. if there exists some true value θo in Θ such that

ft (yt|xt; θ
o) = po

t
(yt|xt), t = 1, 2, ...

where po
t
(yt|xt) denotes the true conditional density of yt given xt,

the ML estimator θ̂n yields a consistent, efficient and asymptotically

normal estimator of the unknown true value θo = (γo′, ηo′)′ of P :

V o
−

1
2

n

√
n
(
θ̂n − θo

)
d−→ N (0, Ik)

where

V o

n = −1

n

n∑
t=1

E [Ho

t ] =
1

n

n∑
t=1

E [sots
o′

t ]

with

sot =
∂lt(yt, xt, θ

o)

∂θ
and Ho

t =
∂2lt(yt, xt, θ

o)

∂θ∂θ′
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3. Testing distributional specification through

moments of probability integral transform

• We consider testing :

H0 : model P is correctly specified

against
H1 : model P is misspecified due to

distributional misspecification

It is implicitly assumed that the conditional mean and variance

specifications have successfully been checked in a previous stage.

• By analogy to Jarque-Bera (1980), a natural strategy would be to

check through a m-test that the misspecification indicator

M̂n =
1

n

n∑
t=1

[
ê3
t
− φ3(η̂n)

ê4t − φ4(η̂n)

]
where

êt = et(yt, xt, γ̂n) =
yt − µt(xt, γ̂n)√

ht(xt, γ̂n)
and φr(η) =

∫
+∞

−∞

εrg(ε; η)dε

is not significantly different from zero.

• Statistical rationale of this strategy :

— Under H0, θ̂n → θo and E [(eot )
r − φr(η

o)] = 0, t = 1, 2, ...

— Under H1, θ̂n → θ∗
n
and (usually) E [(e∗

t
)r − φr(η

∗

n
)] �= 0, t = 1, 2, ...

• Problemof this strategy :

— To be applicable, it requires that E

[(
(eo

t
)4 − φr(η

o)
)2]

< ∞,

i.e. that under H0, at the true value θ
o = (γo′, ηo′)′, the assumed

density g(ε; ηo) possesses finite moments up to order 8.

→This is beyond what we can expect to be fulfilled in applications

when working with a number popular models (e.g. the standard

Student t GARCH model).
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• Proposed alternative strategy :

— To check the moments of a (judiciously chosen) transformation

of the (estimated) innovations rather than the moments of the

(estimated) innovations themselves.

• Probability integral transform of the estimated innovations êt :

v̂t = vt(yt, xt, θ̂n) = G(et(yt, xt, γ̂n); η̂n) = G(êt; η̂n)

where
G(ε; η) =

∫
ε

−∞

g(w; η)dw

is the cdf. associated to the assumed density g(ε; η).

• Regardless of g(ε; η), under H0, v
o
t = vt(yt, xt, θ

o) = G(eot ; η
o) must

be independent of xt and identically and independently distributed

as a continuous uniform r.v. over [0, 1], whose central moments (all

finite) are

δ(r) =

{
1

2r(r+1) if r is even

0 if r is odd

• It follows that :

— Under H0, we must have E [(vot − 0.5)r − δ(r)] = 0, t = 1, 2, ...

— Under H1, we will (usually) have E [(v∗t − 0.5)r − δ(r)] �= 0, t = 1, 2, ...

• This suggests checking through a m-test the closeness to zero of a

(q × 1) misspecification indicator of the form

M̂n =
1

n

n∑
t=1




v̂t − 0.5

(v̂t − 0.5)2 − δ(2)
...

(v̂t − 0.5)q − δ(q)




→ This strategy is applicable without any restriction on the existence

of the moments of the true innovations and for any choice of q.

→ Theoritically, setting q = 2 already allows to detect departures from

the assumed density both in terms of skewness and kurtosis.
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4. Test statistics

• Given the assumed statistical setup, under general regularity condi-

tions, a proper m-test statistic for checking the closeness to zero of

the q × 1 misspecification indicator

M̂n =
1

n

n∑
t=1

mt(yt, xt, θ̂n), where mt(yt, xt, θ̂n) =




v̂t − 0.5

(v̂t − 0.5)2 − δ(2)
...

(v̂t − 0.5)q − δ(q)




is given by the asymptotically chi-square statistic

Mn = nM̂nK̂
−1
n M̂n

d→ χ2(q)

where K̂n is any consistent estimator of

Ko
n =

1

n

n∑
t=1

E
[(
mo

t −Do
nA

o−1
n sot

) (
mo

t −Do
nA

o−1
n sot

)
′

]

=
1

n

n∑
t=1

E [mo
tm

o′
t ]−

1

n

n∑
t=1

E [mo
ts

o′
t ]

(
1

n

n∑
t=1

E [sots
o′
t ]

)
−1

1

n

n∑
t=1

E [sotm
o′
t ]

where

mo
t = mt(yt, xt, θ

o), Ao
n =

1

n

n∑
t=1

E [Ho
t ] , D

o
n =

1

n

n∑
t=1

E

[
∂mt(yt, xt, θ

o)

∂θ′

]

• Remarks :

— The equality of the two expressions of Ko
n follows from the

so-called information matrix (i.e. Ao
n = − 1

n

∑n
t=1E [sots

o′
t ]) and

cross-information matrix (Do
n = − 1

n

∑n
t=1E [mo

ts
o′
t ]) equalities.

— Numerous consistent estimators of Ko
n are conceivable, but only

few (essentially the two ones outlined hereafter) have the highly

desirable property to always deliver at least semi-positive

definite (and usually positive definite) estimates.
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• The simplest operational form of Mn is obtained by taking as a

consistent estimator of Ko
n

K̂OPG
n =

1

n

n∑
t=1

m̂tm̂
′

t −
1

n

n∑
t=1

m̂tŝ
′

t

(
1

n

n∑
t=1

ŝtŝ
′

t

)
−1

1

n

n∑
t=1

ŝtm̂
′

t

This yields

MOPG
n = nM̂n

(
K̂OPG

n

)
−1

M̂n

which in practice may be computed as n minus the residual sum of

squares (= nR2
u) of the OLS artificial regression

1 = [m̂′

t

... ŝ′t] b+ residuals, t = 1, 2, ..., n

→The statistic MOPG
n is particularly easy to implement. Unfortu-

nately, it is well-known for often exhibiting (very) poor finite sample

properties (tendency to over-reject when the null is true).

• An interesting alternative statistic is obtained by taking as a consis-

tent estimator of Ko
n

K̂PML

n =
1

n

n∑
t=1

(
m̂t − D̂nÂ

−1

n ŝt

)(
m̂t − D̂nÂ

−1

n ŝt

)
′

This yields

MPML

n = nM̂n

(
K̂PML

n

)
−1

M̂n

which in practice may also be computed as n minus the residual sum

of squares (= nR2
u) of the an OLS artificial regression, namely

1 =
[
m̂′

t − ŝ′tÂ
−1

n D̂′

n

]
b+ residuals, t = 1, 2, ..., n

→ If somewhat less computationally convenient, the statistic MPML
n

is usually (much) better behaved in finite sample than the statistic

MOPG
n .
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5. Monte-Carlo Evidence

• Questions :

— Is the proposed distributional m-testing strategy effective ?

— What is the best way to implement it in practice ?

→ Simulation study of the finite sample performance of six versions

of the proposed test (its MOPG
n and MPML

n forms with q = 2, 4
and 6) for checking the distributional specification of two models.

• Considered models :

yt = γ1 + γ2yt−1 +
√
γ3 + γ4u

2
t−1

+ γ5ht−1 εt (1)

with - Model 1 : εt ∼ (standardized) Student t(ν)

- Model 2 : εt ∼ (standardized) skewed Student t(ν, κ)

• Considered DGP:

Equation (1) where γ1 = 0, γ2 = 0.1, γ3 = 0.05, γ4 = 0.1, γ5 = 0.8

with - DGP 1 : εt ∼ (standardized) Student t(5)

- DGP 2 : εt ∼ (standardized) skewed Student t(5, 1.15)

- DGP 3 : εt ∼ (standardized) GED(1.3)

- DGP 4 : εt ∼ mixture of two (standardized) skewed Student t



10

• Monte-Carlo results (tests at 5%, 5000/2000 replications) :

n = 400 n = 800 n = 1600
Model Test Tested moments Tested moments Tested moments

/DGP stat. q = 2 q = 4 q = 6 q = 2 q = 4 q = 6 q = 2 q = 4 q = 6

1 / 1
OPG

PML

8.5
3.9

11.4
5.0

12.0
5.1

7.8
4.3

9.3
5.5

10.6
5.7

6.2
3.8

7.2
4.9

7.8
4.9

2 / 1
OPG

PML

10.0
4.0

14.5
5.3

17.1
5.7

7.0
3.8

9.0
5.3

11.6
5.6

6.5
3.6

8.3
5.4

10.0
6.1

2 / 2
OPG

PML

9.4
3.5

13.3
5.3

17.2
6.0

7.7
4.3

10.6
5.6

12.0
6.1

5.7
3.0

7.8
4.7

8.8
5.1

1 / 2
OPG

PML

15.5
(9.7)

4.9
(6.3)

35.9
(19.7)

24.2
(24.1)

36.9
(17.6)

23.6
(22.9)

15.8
(11.1)

6.9
(8.3)

58.5
(46.2)

51.0
(49.4)

58.3
(43.0)

51.2
(48.4)

19.4
(17.0)

9.2
(12.1)

88.2
(84.3)

86.5
(86.7)

87.0
(82.3)

84.4
(84.7)

1 / 3
OPG

PML

37.8
(28.5)

27.3
(31.1)

36.2
(22.1)

23.6
(23.4)

37.3
(20.8)

22.0
(21.1)

61.9
(54.4)

56.3
(59.2)

55.3
(44.7)

47.8
(46.0)

55.2
(40.5)

45.4
(43.4)

88.2
(86.1)

85.6
(88.3)

82.8
(78.9)

80.6
(81.0)

81.1
(75.9)

76.9
(77.3)

2 / 3
OPG

PML

39.9
(28.1)

26.6
(30.6)

44.3
(23.4)

27.0
(25.9)

45.7
(22.9)

25.2
(23.2)

60.9
(56.0)

54.5
(57.8)

59.1
(46.8)

50.2
(49.1)

57.1
(40.9)

45.1
(43.2)

87.6
(85.4)

85.6
(87.9)

84.5
(77.6)

81.8
(81.0)

82.2
(73.0)

78.4
(75.1)

2 / 4
OPG

PML

30.9
(18.6)

12.9
(17.0)

41.0
(19.3)

26.6
(25.8)

39.1
(11.9)

22.4
(19.0)

60.1
(51.5)

46.1
(48.9)

67.0
(50.7)

58.4
(56.8)

62.9
(39.9)

53.4
(49.8)

93.4
(92.5)

90.0
(93.0)

95.5
(92.9)

94.2
(94.8)

93.2
(89.1)

91.5
(91.4)

• Tests size :

— OPG tests are systematically over-sized (size range : [5.7%, 17.2%] ).

— PML tests are in all cases pretty well-sized (size range : [3.0%, 6.1%] ).

→ Unless n is large and q small, the MPML

n
statistic should be preferred.

• Tests power :

— Size-corrected power of OPG and PML tests are similar.

— Setting q = 2 is not enough and q = 6 does not seem to pay off.

→ Setting q = 4 seems to be ‘the best’ and appears to ensure

‘good’ power against various alternatives.


