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Objective: An extrinsic cerebral network (encompassing 
lateral frontoparietal cortices) related to external/sensory 
awareness and an intrinsic midline network related to inter-
nal/self-awareness have been identified recently. This study 
measured brain metabolism in both networks in patients 
with severe brain damage. 
Design: Prospective [18F]-fluorodeoxyglucose-positron emis-
sion tomography and Coma Recovery Scale-Revised assess-
ments in a university hospital setting.
Subjects: Healthy volunteers and patients in vegetative state/
unresponsive wakefulness syndrome (VS/UWS), minimally 
conscious state (MCS), emergence from MCS (EMCS), and 
locked-in syndrome (LIS).
Results: A total of 70 patients were included in the study: 
24 VS/UWS, 28 MCS, 10 EMCS, 8 LIS and 39 age-matched 
controls. VS/UWS showed metabolic dysfunction in extrinsic 
and intrinsic networks and thalami. MCS showed dysfunc-
tion mostly in intrinsic network and thalami. EMCS showed 
impairment in posterior cingulate/retrosplenial cortices. LIS 
showed dysfunction only in infratentorial regions. Coma Re-
covery Scale-Revised total scores correlated with metabolic 
activity in both extrinsic and part of the intrinsic network 
and thalami.
Conclusion: Progressive recovery of extrinsic and intrin-
sic awareness network activity was observed in severely 
brain-damaged patients, ranging from VS/UWS, MCS, 
EMCS to LIS. The predominance of intrinsic network im-
pairment in MCS could reflect altered internal/self-aware-
ness in these patients, which is difficult to quantify at the 
bedside. 
Key words: vegetative state; minimally conscious state; positron 
emission tomography; consciousness; self-awareness; traumatic 
brain injury.
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INTRODUCTION

The assessment of consciousness in severely brain-damaged 
patients remains a major challenge (1). For clinicians, 
consciousness has two main components: arousal (i.e. 
wakefulness or vigilance) and awareness (i.e. comprising 
all subjective perceptions, feelings and thoughts) (2). Aware-
ness has recently been subdivided into “external or sensory 
awareness” (i.e. perceptual awareness of the environment) 
and “internal or self awareness” (i.e. stimulus-independent 
thoughts, mental imagery, inner speech, daydreaming or mind 
wandering) (3). At the bedside, arousal is typically measured 
by examining eye opening. External awareness is assessed 
by showing the presence of reproducible command following 
or “non-reflex”/voluntary movements (4). After severe brain 
damage and the acute setting of coma, 4 different clinical 
entities can be disentangled: (i) patients who “awaken” but 
remain without reproducible signs of command following 
(i.e. vegetative state (VS), now also called “unresponsive 
wakefulness syndrome” (UWS) (5); (ii) minimally conscious 
state (MCS) patients showing reproducible, albeit fluctua-
ting, signs of consciousness, but without functional commu-
nication (6); (iii) patients who emerge from MCS (EMCS) 
recovering functional communication or object use (6); and 
(iv) locked-in syndrome (LIS) patients who are fully aware 
yet completely paralysed with the exception of small eye-
movements permitting an eye-coded communication (7).

The behavioural assessment of consciousness in non-com-
municative brain-damaged patients is difficult because move-
ments can be very small, inconsistent and easily exhausted 
(8, 9). This issue is further complicated when patients have 
underlying deficits in the domain of verbal or non-verbal 
communication functions, such as aphasia, agnosia or apraxia 
(4, 10, 11). Quantifying internal or self-awareness is even 
more difficult than the assessment of external awareness in 
these patients. Most, if not all, of the employed conscious-
ness scales mainly assess command-following or the presence 
of non-reflex movements (i.e. orientation to pain or visual 
pursuit) (12, 13). Regarding the latter behaviour, some scales, 
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such as the Coma Recovery Scale-Revised (CRS-R) (14) 
explicitly require the use of a mirror (15), hence possibly 
assessing some form of self-recognition/internal awareness. 
Similarly, presentation of the patient’s own name, another 
auto-referential attention-grabbing stimulus, has been em-
ployed by some consciousness scales (e.g. the Wessex Head 
Injury Matrix (16)). Most behavioural scales, however, 
mainly, if not totally, assess external or sensory awareness 
and give little or no information about any possible form of 
internal or self-consciousness (17). 

Recent studies have started to identify the neural corre-
lates of internal and external awareness. An increasing body 
of evidence, mainly coming from functional neuroimaging 
(positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) studies) and electrophysio-
logy point to the critical role of a widespread fronto-parietal 
network in the emergence of conscious awareness, also called 
“global neuronal workspace” (18–20). Within this widespread 
fronto-parietal network, two separate systems can be identi-
fied: (i) an extrinsic/lateral network encompassing lateral 
parietal and dorsolateral prefrontal cortices, mainly related 
to external awareness (i.e. stimulus-dependent or perceptual 
awareness of the environment) and (ii) an intrinsic/midline 
network encompassing midline precuneus/posterior cingulate 
and mesiofrontal/anterior cingulate cortices, mainly related 
to internal awareness (i.e. stimulus-independent thoughts 
and self-related thoughts) (3). Given our clinical limitation 
to objectively measure internal awareness, we here employed 
objective brain metabolism data obtained from PET in pa-
tients with disorders of consciousness (i.e. VS/UWS, MCS, 
EMCS) and conscious LIS and controls, aiming to measure 
differences in activity in extrinsic and intrinsic network 
activity. 

METHODS
Brain metabolism was studied by means of [18F]-fluorodeoxy-
glucose-PET (FDG-PET). The clinical diagnosis was based on the 
best response obtained by repeated CRS-R (14) assessments the day 
of the PET study and the two days before and after the PET acquisi-
tion. We applied the diagnostic criteria, as published by the Multi 
Society Task Force on PVS (21), the Aspen Neurobehavioral Confer-
ence Workgroup (22) and the American Congress of Rehabilitation 
Medicine (7). Exclusion criteria for the present study were: (i) the 
presence of pre-morbid neurological disease; (ii) the presence of am-
biguous behavioural signs not permitting reliable clinical diagnosis; 
(iii) the presence of large structural brain damage exceeding 25% of 
the whole brain volume not permitting reliable spatial normalization 
to the standardized stereotaxic brain template; and (iv) the absence of 
good quality PET data not permitting reliable image reconstruction 
or correction for attenuation. The control population consisted of 
age-matched healthy volunteers (n = 39; mean age 45 years (median 
45) (range 18–80); 18 men). 

FDG-PET data were acquired after intravenous injection of 5–10 
mCi of FDG on a Siemens CTI 951 R16/31 scanner (as described 
in 23) at the University Hospital of Liège, Belgium. Data were 
pre-processed and analysed using Statistical Parametric Mapping 
(SPM8; http://www.fil.ion.ucl.ac.uk/spm) as described elsewhere 

(24–26). In brief, FDG-PET data from each subject were normalized 
to a standard stereotactic space (using a spatial template adapted to 
severe brain damage, as previously described in 27) and smoothed 
with a 14-mm full-width half-maximum isotropic kernel. The design 
matrix included the VS/UWS, MCS, EMCS and LIS patients’ and 
control subjects’ scans. Global normalization was performed by ap-
plying proportional scaling. The analyses identified brain regions 
where glucose metabolism was lower in each patient population 
compared with the control group. The resulting set of voxels values 
for each contrast, constituting a map of the t statistics (SPMt), was 
transformed to the unit normal distribution (SPMZ) and thresholded 
at p < 0.001. Results were considered significant at p < 0.01 family-
wise correction for multiple comparisons. Next, we identified brain 
areas showing a linear correlation with CRS-R total scores. Here, 
results were thresholded for significance at p < 0.001 with small 
volume correction (8 mm radius) for multiple comparisons around 
the previously identified areas (24–26).

Informed consent was obtained from all control subjects and for LIS 
and EMCS patients, and from the legal representative of all non-com-
municative patients. The study was approved by the ethics committee 
of the University and University Hospital of Liège, Belgium.

RESULTS

A total of 132 patients were prospectively enrolled, of whom 62 
were excluded because of: (i) pre-morbid neurological disease 
(8 patients); (ii) ambiguous behavioural signs not permitting 
reliable clinical diagnosis (12 patients); (iii) large structural 
brain damage (19 patients) and (iv) technical problems related 
to the FDG-PET acquisition (23 patients). Hence, 70 patients 
of the initial cohort were included for further analysis: 24 VS/
UWS (mean age 51 years (median 50.5) (range 20–78); 10 
men, 2 traumatic), 28 MCS (mean age 41 years (median 36.5) 
(range 17–81); 19 men, 16 traumatic), 10 EMCS (mean age 41 
years (median 41) (range 14–76); 8 men, 4 traumatic) and 8 
LIS (mean age 40 years (median 43) (range 22–53); 2 men, 1 
traumatic). Patients were studied after a median of 26 months 
(interquartile range 24 months). Demographic and clinical data 
are summarized in Table I. 

VS/UWS patients showed metabolic dysfunction in both 
thalami and in a widespread cortical network encompassing 
the extrinsic/lateral network (i.e. bilateral posterior parietal 
and prefrontal areas) and the intrinsic/medial network (i.e. the 
precuneus and adjacent posterior cingulate cortex and mesiof-
rontal and adjacent anterior cingulate cortex), compared with 
controls (Fig. 1). MCS patients showed metabolic dysfunction 
in both thalami and in the intrinsic/medial network. EMCS pa-
tients showed metabolic dysfunction in the posterior cingulate 
cortex and adjacent retrosplenial cortex. LIS patients showed 
metabolic dysfunction only in infratentorial regions (i.e. the 
cerebellum) (Table II). 

At the group level, CRS-R total scores showed a positive 
correlation with a widespread cortical network encompassing 
both extrinsic/lateral network (i.e. bilateral posterior parietal 
and prefrontal areas) and part of the intrinsic/medial network 
(i.e. the precuneus and adjacent posterior cingulate cortex) 
(see Table III).
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Table I. Patient demographic, clinical and Coma Recovery Scale-Revised subscore data

State
Age, 
sex Aetiology Time of PET Audition Visual Motor Verbal Comm Arousal

VS/UWS 1 30, M ARCA 25 months Startle reflex None Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 2 44, M ARCA 11 days None None Abnormal posturing 
to pain

None None With 
stimulation

VS/UWS 3 69, M ARCA 24 days None None Abnormal posturing 
to pain

Oral reflexes None With 
stimulation

VS/UWS 4 62, M Anoxia 9 months Startle reflex None Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 5 53, M Basilar stroke 16 days None None Flexion 
to pain

None None With 
stimulation

VS/UWS 6 34, F ARCA 18 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 7 47, M ARCA 55 days Startle reflex None None Oral reflexes None With 
stimulation

VS/UWS 8 63, F ARCA 40 months Startle reflex None Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 9 65, F Anoxia 12 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 10 54, M ARCA 6 months Startle reflex None Abnormal posturing 
to pain

Oral reflexes None With 
stimulation

VS/UWS 11 42, M Anoxia 20 days Startle reflex None Abnormal posturing 
to pain

Vocalization None Without 
stimulation

VS/UWS 12 43, M ARCA 29 days Startle reflex None Abnormal posturing 
to pain

None None Without 
stimulation

VS/UWS 13 73, F Stroke 45 days Startle reflex None Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 14 41, M ARCA 6 months Startle reflex Visual 
fixation

Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 15 56, F ARCA 43 days Startle reflex None Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 16 70, F Anoxia 52 days Startle reflex None Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 17 49, F ARCA 4 months Startle reflex None None Oral reflexes None Without 
stimulation

VS/UWS 18 52, M Anoxia 10.5 months Startle reflex Blink 
to threat

Abnormal posturing 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 19 78, F Aneurysm 32 days None None Flexion 
to pain

Oral reflexes None None

VS/UWS 20 48, M Anoxia 30 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None With 
stimulation

VS/UWS 21 53, M Stroke 66 days Startle reflex Blink 
to threat

Flexion 
to pain

None None Without 
stimulation

VS/UWS 22 46, F Traumatism 37 days Startle reflex None None Oral reflexes None With 
stimulation

VS/UWS 23 34, F Anoxia 260 months Startle reflex Blink 
to threat

Flexion 
to pain

Oral reflexes None Without 
stimulation

VS/UWS 24 20, M Traumatism 15 days None None Flexion 
to pain

Oral reflexes None None

MCS 1 35, F Traumatism 101 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Vocalization None Without 
stimulation

MCS 2 28, F Traumatism 80 months Localization 
to sound

Visual 
pursuit

Automatic motor 
reaction

Vocalization None Without 
stimulation

MCS 3 81, F Stroke 44 days Reproducible 
movement 
to command

Object 
localization

Automatic motor 
reaction

Vocalization Intentional Without 
stimulation

MCS 4 37, M Traumatism 87 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes Intentional Without 
stimulation
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Table I. Condt.

State
Age, 
sex Etiology Time of PET Audition Visual Motor Verbal Comm Arousal

MCS 5 33, M ARCA 39.5 months Startle reflex Visual 
pursuit

Automatic motor 
reaction

Vocalization None Without 
stimulation

MCS 6 64, M Aneurysm 6 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
verbalization

Intentional With 
stimulation

MCS 7 50, F Aneurysm 28 days Startle reflex Visual 
pursuit

Flexion to pain Oral reflexes None Without 
stimulation

MCS 8 38, M Anoxia 4 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 9 81, M meningitis 
encephalopathy

46 days Localization ton 
sound

Visual 
pursuit

Localization to pain Oral reflexes None Without 
stimulation

MCS 10 19, F Traumatism 30 months Startle reflex Visual 
pursuit

Flexion 
to pain

Vocalization None Without 
stimulation

MCS 11 46, M Traumatism 17 months Startle reflex Visual 
pursuit

Flexion 
to pain

None None Without 
stimulation

MCS 12 36, M Traumatism 270 months Reproducible 
movement 
to command

Visual 
pursuit

Automatic motor 
reaction

None None Without 
stimulation

MCS 13 29, M Traumatism 46 days Startle reflex Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 14 50, F ARCA 65 days Reproducible 
movement 
to command

Blink 
to threat

Flexion 
to pain

Vocalization None With 
stimulation

MCS 15 40, M Traumatism 70 days Reproducible 
movement 
to command

Visual 
fixation

Localization to pain None None Without 
stimulation

MCS 16 50, M ARCA 7 months Reproducible 
movement 
to command

Object 
localization

Automatic motor 
reaction

Intelligible 
vocalization

Intentional Without 
stimulation

MCS 17 56, F Hydrocephaly 75 days Startle reflex Visual 
pursuit

None Oral reflexes None Without 
stimulation

MCS 18 63, F Stroke 17 days Consistent 
movement 
to command

Visual 
fixation

None None None With 
stimulation

MCS 19 17, M Traumatism 4 months Reproducible 
movement 
to command

Visual 
fixation

Localization to pain Oral reflexes None Without 
stimulation

MCS 20 32, F Anoxia 15 months Startle reflex Visual 
pursuit

Abnormal posturing 
to pain

Oral reflexes None With 
stimulation

MCS 21 50, M Anoxia 85 months Reproducible 
movement 
to command

Object 
localization

Automatic motor 
reaction

None Intentional With 
stimulation

MCS 22 23, M Traumatism 11 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 23 22, M Traumatism 99 months Startle reflex Visual 
fixation

Automatic motor 
reaction

None None Without 
stimulation

MCS 24 27, M Traumatism 4 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 25 30, M Traumatism 131 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None With 
stimulation

MCS 26 36, M Traumatism 4 months Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

Oral reflexes None Without 
stimulation

MCS 27 65, M Traumatism 21 months Reproducible 
movement 
to command

None Abnormal posturing 
to pain

Vocalization None With 
stimulation
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Table I. Condt.

State
Age, 
sex Etiology Time of PET Audition Visual Motor Verbal Comm Arousal

MCS 28 23, M Traumatism 73 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Intentional Attention

EMCS 1 38, M ARCA 45 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

EMCS 2 45, F Traumatism 6 months Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

EMCS 3 32, M Traumatism 26 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 4 37, M ARCA 9 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 5 14, M Traumatism 14 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 6 56, M Stroke 64 days Consistent 
movement 
to command

Object 
localization

Functional use of 
object

Intelligible 
vocalization

Intentional Attention

EMCS 7 25, M Traumatism 9 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 8 44, M Stroke 7.5 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

EMCS 9 44, M ARCA 88 days Consistent 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

EMCS 10 76, F Intoxication 81 days Reproducible 
movement 
to command

Object 
recognition

Automatic motor 
reaction

Intelligible 
vocalization

Functional Attention

LIS 1 53, M Basilar stroke 81 days Reproducible 
movement 
to command

Visual 
pursuit

Abnormal posturing 
to pain

Vocalization Intentional None

LIS 2 47, F Basilar stroke 20 days Reproducible 
movement 
to command

Object 
recognition

Flexion to pain Oral reflexes Intentional Without 
stimulation

LIS 3 39, M Traumatism 51 months Reproducible 
movement 
to command

Object 
recognition

Flexion to pain Oral reflexes Intentional Attention

LIS 4 44, F Basilar stroke 52 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

None Functional Attention

LIS 5 44, F Basilar stroke 19 days Consistent 
movement 
to command

Object 
recognition

Flexion 
to pain

Oral reflexes Functional Attention

LIS 6 22, F Basilar stroke 14 days None None Flexion 
to pain

Oral reflexes None None

LIS 7 27, F Basilar stroke 71 months Consistent 
movement 
to command

Object 
recognition

Functional use of 
object

Intelligible 
vocalization

Functional Attention

LIS 8 42, F Brain stem 
haemorrhage

56 days Reproducible 
movement 
to command

Visual 
pursuit

Flexion 
to pain

None Intentional With 
stimulation

PET: positron emission tomography; VS/UWS: vegetative state/unresponsive wakefulness syndrome; MCS: minimally conscious state; EMCS: 
emergence from MCS: LIS: locked-in syndrome; M; male; F: female; Comm: communication; ARCA: cardiac arrest. 
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form of internal/self-awareness: visual pursuit in response 
to a moving mirror (36). 

In our view, the current data could shed some light on im-
paired internal/self-awareness in MCS via the study of patients’ 
residual brain function. An increasing body of evidence points 
to the critical role of the intrinsic network in the emergence of 
internal/self-awareness including stimulus-independent cogni-
tive processes, such as daydreaming, mental imagery, inner 
speech and self-oriented thoughts (37–40). In fMRI studies, 
the latter network, recorded during the so-called “resting state” 
condition has also been coined “default mode network” (41–
43). In both VS/UWS and MCS patients a significant thalamic 
metabolic impairment was identified, in line with previous PET 
(29, 30, 44) and diffusion tensor imaging (45) MRI studies, 
and post-mortem neuropathology (46). This finding can also 
be related to the clinical observation that both patient groups 
have fluctuating arousal levels. Indeed, in our cohort 10 out of 
24 (42%) VS/UWS and 7 out of 28 (25%) MCS showed CRS-R 

DISCUSSION

Our results in VS/UWS of different aetiologies show a wide-
spread fronto-parietal cortical dysfunction, in agreement with 
previous studies (9, 28–30). We observed a hypometabolism 
in the external network encompassing left and right lateral 
parietal and lateral prefrontal cortices and in the internal 
network encompassing midline precuneus/posterior cingu-
late and mesiofrontal/anterior cingulate cortices. In MCS 
patients it seems that the extrinsic/lateral network is less 
impaired than is the intrinsic/medial network. This result 
is consistent with the clinical finding that these patients 
show evidence of external/sensory awareness, known to 
depend upon the functional integrity of the extrinsic/lateral 
fronto-parietal system (3, 31–35). The predominance of 
intrinsic/midline network impairment in MCS could reflect 
an impaired internal/self-awareness in these patients, which 
is very difficult to quantify at the bedside. Indeed, CRS-R 
assessments only have one item possibly assessing some 

Table II. Coordinates of peak voxels of hypometabolic areas in vegetative 
state/unresponsive wakefulness syndrome (VS/UWS), minimally conscious 
state (MCS), emergence from MCS (EMCS) and locked-in syndrome 
(LIS)

Areas x (mm) y (mm) z (mm) Z p

VS/UWS
Right thalamus 8 –18 4 5.21 < 0.0001
Left thalamus –2 16 2 4.94 < 0.0001
Right lateral parietal 50 18 0 4.5 < 0.0001
Left lateral parietal –38 –72 42 7.29 < 0.0001
Right lateral prefrontal 52 –4 52 Inf < 0.0001
Left lateral prefrontal –34 4 54 7.56 < 0.0001
Precuneus/posterior 
cingulate 

2 –36 34 Inf < 0.0001

Mesiofrontal/anterior 
cingulate 

2 –36 34 Inf < 0.0001

MCS
Right thalamus 4 –18 2 7.37 < 0.0001
Left thalamus –4 –20 2 4.2 < 0.0001
Precuneus/posterior 
cingulate 

0 –36 32 Inf < 0.0001

Mesiofrontal/anterior 
cingulate 

6 18 30 6.22 < 0.0001

EMCS
Posterior cingulate/
restrosplenial 

–2 –48 22 5.49 < 0.0001

LIS
Cerebellum –38 –68 –38 3.88 < 0.0001

Inf: inferior than 0.0001.

Table III. Coordinates of peak voxels from areas showing a linear positive 
correlation with Coma Recovery Scale-Revised total scores

Regions x (mm) y (mm) z (mm) Z p

Right lateral parietal 50 18 0 4.5 <0.0001
Left lateral parietal –58 –50 38 4.85 <0.0001
Right lateral prefrontal 52 –4 52 Inf <0.0001
Left lateral prefrontal –34 4 54 7.56 <0.0001
Precuneus/posterior cingulate 2 –36 34 Inf <0.0001

Inf: inferior than 0.0001.

Fig. 1. Areas with significant metabolic impairment (blue) in vegetative 
state/unresponsive wakefulness syndrome (VS/UWS, n = 24), minimally 
conscious state (MCS, n = 28), emergence from MCS (EMCS, n = 10) and 
locked-in syndrome (LIS, n = 8) compared with age-matched controls 
(n = 39) (thresholded at p < 0.01 family-wise correction for multiple 
comparisons). The lower panel shows the areas where metabolic 
activity correlated with Coma Recovery Scale-Revised (CRS-R) scores 
(thresholded at uncorrected p < 0.001; red). Note that in VS/UWS there is a 
metabolic dysfunction in the thalamus (T) external network encompassing 
left and right lateral parietal (LP) and lateral prefrontal (LF) cortices and in 
the internal network encompassing midline precuneus/posterior cingulate 
(MP) and mesiofrontal/anterior cingulate (MF) cortices. In MCS the 
thalamus (T) and intrinsic network is impaired (MP, MF). EMCS shows 
partly impaired intrinsic network activity (MP) and LIS fully preserved 
awareness networks, with only impairment in the cerebellum (C). The 
behavioural assessment scores correlate with activity in the extrinsic 
network (LP, LF) and part of the intrinsic network (MP). 
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arousal subscores of 1, meaning that patients needed tactile or 
noxious stimulation at least once during the examination in 
order to obtain sustained eye opening (47).

EMCS patients showed a near-normal brain metabolism 
with preserved extrinsic network activity and only dysfunc-
tion of posterior cingulate cortex and adjacent retrosplenial 
cortex. This area, part of the intrinsic network, is known to 
be involved in autobiographical memory and self-reflexion 
(48, 49). Clinically, EMCS patients indeed classically experi-
ence confusion and amnesia syndromes (50, 51). Finally, our 
studied LIS patients failed to show metabolic dysfunction in 
any supratentorial brain area. Both the extrinsic and intrinsic 
network activity was preserved in LIS and only the cerebellum 
was shown to be impaired, in line with previous studies (52, 
53). Previous neuropsychological studies have indeed shown 
that classical LIS patients have no deficit in cognitive func-
tioning (54). Despite the fact that 6/8 LIS patients experienced 
basilar artery stroke and showed structural lesions on MRI in 
the ventral pontine region (encompassing the corticospinal 
and adjacent corticobulbar pathways) the resulting metabolic 
impairment was localized not in the brainstem, but in the 
cerebellum. This can be explained by the fact that PET-FDG 
functional imaging, in contrast to MRI structural imaging, does 
not show white matter structural damage (i.e. in brainstem), but 
rather the cortical metabolic consequences (i.e. in cerebellar 
hemispheres), reflecting de-afferentation. 

The observed progressive recovery of intrinsic network 
metabolic activity, as measured by FDG-PET in severely brain-
damaged patients, ranging from VS/UWS, MCS, EMCS to LIS, 
corroborates previous fMRI “resting state” studies showing a pro-
gressive recovery of functional connectivity in the “default mode 
network” in these patients (55). The latter study also identified a 
linear correlation between CRS-R total scores and functional con-
nectivity in the default mode network. We expand these findings 
here, showing an additional correlation with the extrinsic/lateral 
network metabolic activity and CRS-R total scores. 

In conclusion, the objective measurement of extrinsic/
lateral and intrinsic/midline metabolic activity in severely 
brain-injured patients following coma, permits us to better 
understand the residual external/sensory and internal/self-
awareness in disorders of consciousness. Our data show, for 
the first time, that patients with MCS, in contrast to those with 
VS/UWS, show cortical dysfunction of the intrinsic/internal 
awareness system more than of the extrinsic/external awareness 
networks. If confirmed, these findings indicate an impairment 
of a clinically barely measurable dysfunction of internal or 
self-awareness in MCS. 

ACKNOWLEDGEMENTS

This study was supported by the Fonds de la Recherche Scientifique 
(FRS), Fonds pour la Recherche Industrielle et Agronomique (FRIA), 
French Speaking Community Concerted Research Action, University 
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