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Droplets sliding on fibres
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Abstract. We present the results of a combined experimental and theoretical investigation of oil droplets
sliding on fibres. First, both the axisymmetric shape and the motion of a droplet on a vertical fibre are
described. The motion is shown to result from a balance between the droplet weight and the viscous
stresses. On a long-term range, the droplet loses some mass through coating the fibre, which decreases its
velocity. In a second time, we rationalize the behaviour of a droplet that encounters a junction between
vertical and horizontal fibres. Depending on its size, the droplet may cross the junction or remain blocked.
The transition is well-described by an ordinary differential equation equivalent to a damped harmonic
oscillator truncated to the neighbourhood of the horizontal fibre. This simple system is the basic element
for more complex fiber networks that would be useful in microfluidic applications involving droplets.
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1 Introduction

In the early morning, the spider webs in our gardens are
often covered with a myriad of dew pearls. At dawn, the
fresh and humid air condenses into a thin water film on the
threads. Quickly, this film turns into a string of droplets,
the smallest of which stay on the web and wait for the
first sunbeams to evaporate again. The biggest slide and
roll along the web (Fig. 1), collide and fuse together, leave
pearls in their wake, and sometimes fall from the web. Can
these ’arachnidean’ constructions inspire new directions
for microfluidics?

Fig. 1. An oil droplet (ν = 100 cS) slides and rolls along a
fibre of diameter 140 µm. Snapshots are taken every 50 ms. The
background, including the originally dry fibre, is subtracted in
order to reveal the micrometric coating film left in the wake
of the droplet. The last picture corresponds to the sum of the
formers; the particles within the droplet follow some circular
paths, indicating that the droplet rolls on the fibre.

Droplets on fibres are omnipresent in nature, they are
already involved in many applications, e.g. the microscale
alignment of fibres [21] or the clogging of fibre filters [4,
26]. Nevertheless, since the pioneering work of Joseph Plateau
[18], physicists have rather investigated the flows of liquid
films on threads [10, 5, 8] and a relatively small number of
studies were dedicated to the interactions between individ-
ual droplets and fibres. Plateau [18] has already observed
that, due to surface tension only, a liquid covering a fibre
spontaneously turns into a string of pearls called unduloid.
A similar instability is observed for falling cylindrical jets,
as rationalised a few years later by Lord Rayleigh [20]. The
instability of a thin film on a fiber is developed extensively
in Yarin et al. [27] and references therein. Nevertheless,
droplets may take other shapes than the one proposed by
Plateau. For example, the axisymmetry of the shape is
broken down by gravity for large droplets on a horizontal
fibre. If the liquid does not perfectly wet the fibre (e.g.
pure water on nylon), the droplet cowers on one side of
the fibre without wrapping it [3, 17]. Such droplets often
hang at rest on a vertical fibre [11]; their weight is bal-
anced by a bottom-up difference in contact angle. Tiny
droplets may be set into motion on horizontal fibres in
several ways, e.g. with temperature gradients [25], thanks
to a gas flow [6], or when the fibre is conical [16]. Sliding
droplets have also been studied in other geometries, e.g.
on an inclined plane [13, 22] or as slugs in a tube [2].

In this manuscript, we observe experimentally the gravity-
induced motion of droplets on fibre networks, focusing on
droplets that perfectly wet the fibres and slide on them.
In section §3, we start by rationalising the behaviour of
a droplet sliding on a vertical fibre thanks to gravity.
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Fig. 2. (a) The droplet size is tuned by changing the height
of release and so the coating length. (b) Axisymmetric shape
of an oil droplet on a vertical nylon fibre. The dash-dotted and
solid lines correspond to the numerical solutions of Eq.(1) with
and without the gravity term respectively.

We proceed in §4 by observing the interaction between
a droplet and an intersection between two fibres.

2 Experimental method

Fibers made of nylon (fishing thread) are tight on a metal-
lic frame. The tension in the fibres is supposed to be of
negligible influence on the droplet motion. Droplets are
made of silicon oil (Dow Corning 200) though the results
may be generalised to any liquid that completely wets
the fibre. Experiments involve fibres of 5 different diam-
eters (80, 100, 140, 200 and 250 µm) and droplets with
six different kinematic viscosities ν (1.5, 5, 10, 20, 50 and
100 cS); the corresponding density ρ is respectively (0.85,
0.91, 0.93, 0.95, 0.96 and 0.96 g/cm3). Droplets are di-
rectly released on the fibres with a syringe. The droplet
size is varied by changing the needle diameter. Moreover,
moving the release point on the fibre allows to tune the
volume of the droplet when it enters a specified region
of interest. Indeed, as explained below, the droplet loses
some mass by coating the fibre; so the greater the distance
between the release point and the region of interest, the
smaller the resulting droplet (Fig. 2a). About 500 droplets
have been filmed from the side with a high-speed camera
(recording frequency up to 1000 fps). Measurements are
made by image processing (Fig. 2b).

3 A droplet sliding on a vertical fibre

3.1 Geometry

On a vertical fibre of diameter dv, wetting droplets take an
axisymmetric shape of volume Ω, close to the unduloid of
Plateau (Fig. 2b), dimensions (width W and extension X)

of which are represented as a function of Ω in Fig. 3(a-b).
This shape is computed theoretically as [r(s), z(s), ϕ(s)],
where s is the curvilinear coordinate along a meridian
of the interface (Fig. 2b). If we suppose a balance be-
tween gravity g and surface tension σ, the Laplace equa-
tion yields











dsr = cos ϕ,
dsz = sin ϕ,

dsϕ =
P

σ
− sinϕ

r
+

z

λ2
σ

,
(1)

where P is the overpressure within the droplet at loca-
tion z = 0, and λσ =

√

σ/ρg is the capillary length.
Nevertheless, if this balance of gravity and surface ten-
sion was effective, the droplet would stay at rest on the
fibre. The observed sliding of the droplet suggests that
viscous stresses have to be taken into account. Therefore,
we may suppose that these stresses balance gravity, and
that surface tension forces balance themselves. To assess
this hypothesis, Eq. (1) is solved numerically as an ini-
tial value problem, the boundary condition in s = 0 being
r(0) = dv/2, z(0) = 0 and ϕ(0) = π/2. The integration is
stopped as soon as r = dv/2 again. The scenarios includ-
ing and neglecting the gravity term z/λ2

σ are considered
successively. The comparison with measurements (Fig. 2b
and 3b) clearly confirms this second scenario. The solu-
tion taking gravity into account cannot explain vertical
extensions X as large as those observed experimentally.
Gravity can thus be neglected in the Laplace equation
and the unduloid is a good approximation for the droplet
shape.

Although the unduloid cannot be described with a sim-
ple explicit equation, it is possible to find some analytical
expressions in the asymptotic regimes Ω ≫ d3

v and Ω ≪
d3

v. Large droplets (Ω/d3
v > 104) tend to keep their spher-

ical shape when they are hanged on a fibre. The sphere of
radius R, described by (r0, z0, s0) = R(sinϕ, 1 − cos ϕ,ϕ)
satisfies Eq. (1) for ∆p = 2σ/R ≪ 1 but not matching
conditions on the fibre. On the other hand, the matching
zone involves a very small amount of liquid so the volume
of the droplet is approximately equal to the volume of the
sphere. Therefore, we infer

W

dv
≃

(

3Ω

4πd3
v

)1/3

and X = 2W. (2)

These scalings are similar to those discussed in Lorenceau
et al. [16]. When the droplet size is smaller than dv, the
droplet spreads on the fibre in such a way that the curva-
ture of its interface is only slightly lower than the fibre cur-
vature 2/dv. Therefore, we can infer the asymptotic solu-
tion by perturbing the solution (r0, z0, ϕ0) = (dv/2, s, π/2)
when Ω = 0 (corresponding to the fibre itself). Supposing
that ∆p = 2σ(1 − ε)/dv and that the perturbations are
denoted by tilted variables, we obtain











dsr̃ ≃ −ϕ̃,
dsz̃ ≃ 0,

dsϕ̃ ≃ 4r̃

d2
v

− 2ε

dv
,

(3)
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Fig. 3. (a) Width W and (b) extension X of a droplet of volume Ω on a fibre of diameter dv. The dashed line represents
the asymptotic scalings (2) and (5). The solid line (resp. dash-dot line) corresponds to the numerical solution of (1) without
(resp. with) considering the gravity term z/λ2

σ. In (b), the solution with gravity does not predict extensions X as large as those
measured.

from which we find a droplet shape close to a sinusoid.
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The vertical extension X is equal to πdv, which corre-
sponds to the fibre perimeter. Both the thickness and the
volume of the droplet are easily computed from (4):

W

dv
= ε =

8Ω

π2d3
v

and
X

dv
= π. (5)

As seen in figure 3, the asymptotic laws (2) and (5) give an
accurate picture of the dimensions of both large and small
droplets sliding on a vertical fiber. The droplet shape has
a direct influence on the sliding motion, as shown in the
next section.

3.2 Short-term steady motion

The motion of a droplet on a vertical fibre involves several
effects, each of them having a specific timescale. Starting
from rest, the droplet first accelerates and quickly reaches
(in less than 0.1 s) a limit speed V where viscous effects
balance gravity, as shown indirectly in the previous sub-
section. The trajectory of the droplet center of mass is
given by the Newton law:

ρΩ
dV

dt
= ρΩg − Fν , (6)

where Fν is the friction force coming out from viscous
effects. This friction is due to velocity gradients within the

droplet, that Lorenceau et al. [15] proposed to estimate as
CνV X/2Wz. Here, z is the distance to the nearest contact
line and Cν a proportionality factor that may depend on
surface tension among others. The resulting viscous force
is

Fν = 2πdv

∫ X/2

0

Cν
µV

z

X

2W
dz, (7)

where µ = ρν is the dynamic viscosity of the droplet.
This integral diverges due to the singularity at contact
point (z = 0). In order to solve this paradox, De Gennes
[7] proposed to integrate from z = a ∼ 10−9 m – the
characteristic length of the molecular film covering the
fibre – instead of z = 0. This yields

Fν = πCναµdv
X

W
V, (8)

where
α = ln(X/2a) ≃ 15. (9)

Balancing this force with the droplet weight ρgΩ gives

νV

gd2
v

=
1

πCνα

W

X

Ω

d3
v

. (10)

A similar scaling is found in [16] and [9]. As previously seen
(Fig. 3), the dependence of W/X on Ω/d3

v is complex in
the general case, but droplets sufficiently large compared
to the fibre tend to be spherical so W/X → 0.5. Equation
(10) is in excellent agreement with experimental results
(Fig. 4), whatever the fibre diameter dv, provided that Cν

satisfies

Cν = cν

√

λσ

dv
⇒ νV

gd2
v

= πcνα

√

dv

λσ

W

X

Ω

d3
v

. (11)
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Fig. 4. Short-term balance: normalized velocity νV/gd2

v as a
function of the normalized volume Ω/d3

v. Black (resp. white)
symbols correspond to viscosity ν ≥ 10 cS (resp. ν < 10 cS).
(◦,•) dv = 80 µm, (N) dv = 100 µm, (¥) dv = 140 µm,
(¨) dv = 200 µm, (H,▽) dv = 250 µm. The solid line rep-
resents Eq. (11) where cν takes its high-viscosity value (0.33).
The dashed line is Eq. (11) in the low-viscosity regime, i.e.
cν > 0.33. (Inset) Coefficient cν as a function of the normalised

viscosity ν/
√

gλ3
σ. The solid line corresponds to Eq. (12).

The factor
√

dv/λσ clearly indicates that gravity is not
perfectly balanced by viscous effects, and that surface ten-
sion also plays a role in the droplet limit velocity. The co-
efficient cν is of the order of unity; it slightly depends on
the viscosity when this one is lower than 10 cS. The fol-
lowing empirical law is proposed to fit the measurements
(inset of Fig. 4),

cν = 0.33

(

1 + 0.01

√

gλ3
σ

ν

)

. (12)

The viscosity ν is here made dimensionless by the factor
√

gλ3
σ, which only involves g, σ and ρ.

We can now estimate the acceleration time of the droplet
from Eq.(6):

ta ∼ V

g
=

1

πcνα

√

dv

λσ

W

X

Ω

dvν
, (13)

and check that, for a maximal velocity of 1 m/s, the steady
regime is reached after 0.1 s. The balance (10) between
gravity and viscous forces is therefore quickly effective, it
determines the droplet velocity along the fiber.

3.3 Long-term mass loss

The coating of a solid by a liquid has been deeply inves-
tigated since the pioneering work of Landau and Levich
[12]. The so-called LLD theory rationalises the coating of

a plate slowly pulled out of a liquid bath. It was general-
ized later to other geometries, including a fiber pulled out
from a bath ([19] and references therein). In that case, the
thickness δ of the coating film is given by

δ

dv
= cwCa2/3 with Ca =

µV

σ
, (14)

where Ca is the capillary number and the wetting constant
cw = 0.67 according to the authors. Many corrections
(gravity, inertia, geometry, wetting, etc.) can be imple-
mented by simply changing this factor cw [19]. For exam-
ple, cw = 1.07 when the fibre crosses the interface between
two immiscible liquids [1, 2].

Sliding droplets are observed to coat fibres in the same
way as if these latter were pulled out of a bath. Conse-
quently, the droplets lose some mass through coating and
progressively slow down as they move on the fibre. Equa-
tion (14) may be applied to predict the mass loss and be
coupled to (11) in order to get the long-term trajectory
of the droplet. Denoting by Z the vertical position of the
droplet mass centre (so Ż = V ), the volume variation Ω̇
is

Ω̇ = −πdvδŻ = −πcwd2
v

(

µ

σ

)2/3

Ż5/3. (15)

We proceed by differentiating (11) with respect to time,
supposing that W/X is constant:

Ω̇ = πcνα
X

W

√

λσ

dv

νdvZ̈

g
. (16)

Both equations yield

Z̈ = −wŻ5/3 with w = − cw

cνα

W

X

√

dv

λσ

(

µ

σ

)2/3
gdv

ν
, (17)

where the parameter w only depends on physical con-
stants. This equation is integrated twice;

Z =

Żi
1/3 −

(

Żi
−2/3

+ 2
3wt

)

−1/2

w/3
, (18)

where Żi is the initial velocity of the droplet. The long-
term trajectory (vertical position on the fiber as a function
of time) is measured for droplets with various parameters
(size and viscosity). The experimental results are com-
pared to the predictions of Eq. (18) in Fig. 5. The initial

velocity Żi is fitted on the experiments, and w is computed
by successively taking cw = 0.67 and cw = 1.5. This sec-
ond value gives an accurate description of the long-term
trajectory, whatever the droplet viscosity or size. Finally,
we check a posteriori that the ratio W/X is approximately
constant during the measurement period. Typically, W/X
variations become significant when Ω is varied by a factor

10, which happens after about 5.5/(wŻi
2/3

), i.e. after 89 s
for the (H)-curve in Fig. 5.
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Fig. 5. Long-term trajectories Z(t) of droplets with various
viscosities and initial sizes on a fibre of diameter dv = 250 µm:
(•) ν = 10 cS, (N) ν = 20 cS, (¥) ν = 50 cS, and (H)
ν = 100 cS. The solid line (resp. dashed line) corresponds
to Eq. (18) in which cw = 1.5 (resp. cw = 0.67). The initial
velocity Żi in Eq. (18) is fitted on the experimental data.

3.4 Shape transition

The droplet shape on a fibre is not always axisymmet-
ric and unique; several equilibrium configurations may co-
exist, some being more stable than others [17]. We have
seen that some 100 cS droplets sliding on a vertical fibre
can remain in a metastable asymmetrical shape. At any
moment, these droplets quickly switch to the well-known
axisymmetrical configuration. By the way, the friction is
considerably increased and the droplets immediately slow
down (Fig. 6a). The inverse transition has never been ob-
served and is likely impossible. The transition point seems
to be arbitrary, the exact nature of the transition is still
unknown.

The velocity Vf of the final symmetrical shape has
been measured as a function of the initial velocity Vi be-
fore the transition, for 100 cS droplets on various fibres
(Fig. 6b). Data suggest

Vf ≃ 0.30Vi, (19)

so the friction coefficient cν is about 3.3 times less in the
asymmetrical configuration.

We have observed a similar transition on inclined fi-
bres, though both configurations are asymmetric in that
case (Fig. 7). The centre of mass of the droplet slightly
moves toward the fiber, which leads to increased veloc-
ity gradients and consequently an increase in the friction
force. However, the resulting velocity is only decreased by
a factor 2 during the transition.
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Fig. 6. (a) A 100 cS droplet slides along a vertical fibre of
diameter dv = 160 µm. Snapshots are taken every 160 ms.
The initially asymmetrical shape suddenly becomes symmet-
ric, which decreases the droplet velocity from 18 mm/s to
5.7 mm/s. (b) Velocity of the symmetrical shape Vf as a func-
tion of the velocity of the corresponding asymmetrical shape
Vi. The solid line corresponds to Eq. (19). (Inset) Typical tra-
jectory Z(t) of a droplet experiencing a shape transition in
t = 0. The solid lines represent constant velocity trajectories.

4 Intersection between two fibres

We proceed by discussing the behaviour of droplets as
they encounter an intersection between two fibres. The
junction is simply made by placing a horizontal fibre next
to the vertical one so they just touch each other; contact
is ensured by the tension of both fibres.

Droplets are released on the vertical fibre, upstream
from the intersection. As already noted in [9], two scenar-
ios are observed: small droplets remain pinned on the node
(Fig. 8a) while larger droplets cross the intersection and
keep sliding downwards (Fig. 8b). The trapping of small
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Fig. 7. A 100 cS droplet slides along an inclined fibre of di-
ameter dv = 140 µm. Snapshots are taken every 320 ms and
superposed together. The shape transition increases the fric-
tion, so decreasing the velocity from 6 mm/s to 3 mm/s.

droplets is mainly due to the capillary forces developed by
the horizontal fibre. On the other hand, large droplets are
likely too heavy to hang on the horizontal fibre. Lorenceau
et al. [15] have already investigated a problem that involve
nearly the same mechanism, i.e. falling droplets that im-
pact a horizontal fibre. We note however that droplets in
free fall have a much larger velocity, so in addition the
droplet inertia has to be considered.

The balance between gravity and surface tension is the
Bond number related to the fibre, defined as

Bo =
ρΩg

2πσdh
, (20)

where dh is the diameter of the horizontal fibre. A sharp
transition is observed between blocking and crossing regimes
(Fig. 9a); there is a critical Bond number Bo∗ ∼ 1 above
which droplets cross the node and below which they are
blocked. The intersection behaves as a fluidic diode. This
Bo∗ depends on the droplet viscosity ν, at least when this
latter is small.

When crossing, a tiny amount of liquid is still trapped
by the horizontal fibre, so the droplet mass (and cor-
responding Bond number Bof ) after crossing is slightly
lower than before (Boi). Although this volume cannot be
accurately measured, it should scale as the ”volume” of
the intersection, namely dhdv(dh + dv).

Large high viscosity droplets may experience signifi-
cant delays (sometimes as long as several seconds) when
they cross the intersection (Fig. 10). This delay time th
is shown to diverge as Bo → Bo∗, as often in physics
when a potential barrier is just crossed (Fig. 9b). Accord-
ing to the experimental data, th is proportional to the
kinematic viscosity ν of the droplet, so the data collapse
on a single curve when the dimensional group th/ν (mea-
sured in s2m−2) is represented instead of th. Note that
the divergence is not observed for low viscosity droplets
whose crossing time remains small.

As already seen in Fig. 9, the threshold Bond number
Bo∗ increases with the droplet viscosity, and saturates to

(a)

(b)

Fig. 8. A 5 cS oil droplet interacts with a junction between
two nylon fibres (diameter 140 µm). Snapshots are taken every
10 ms. The intersection behaves as a fluidic diode: (a) A small
droplet is pinned on a junction that (b) a large droplet is able
to cross. In that latter case, a tiny amount of liquid is left at
the intersection.

a limit value in the high viscosity regime where delays are
observed. The critical viscosity above which Bo∗ is con-
stant depends on the fibre diameter (Fig. 11a). In general,
Bo∗ decreases with increasing fibre diameter (Fig. 11b) in
a non-obvious way.

4.1 Modelling

In order to model the behaviour of a droplet interact-
ing with a junction between two fibres, we have first to
measure and analyse the droplet trajectory. Observations
are again qualitatively different depending on the viscos-
ity regime. As already mentioned, high viscosity droplets
cross the junction with a delay time that increases as they
approach the threshold Bo∗ (Fig. 12a). Small droplets are
smoothly blocked, and the trajectory is always monotonic.
Low viscosity droplets do not experience any significant
delay when crossing is allowed. Moreover, small blocked
droplets largely oscillate before coming to rest on the node
(Fig. 12b).

These experimental results strongly suggest to model
the droplet as a damped harmonic oscillator whose restor-
ing force is truncated to the neighbourhood of the node.
Assuming that the position Z of the droplet mass centre is
counted from the intersection (thus corresponding to Z =
0), we introduce a characteristic function χ[−Z1,Z2](Z) equal
to 1 when −Z1 < Z < Z2 and 0 otherwise. The droplet
starts touching the node when Z = −Z1 < 0 and detaches
in Z = Z2 > 0. The governing equation for this truncated
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Fig. 9. (a) Relationship between the volume of liquid allowed
to cross the node and the initial droplet volume, expressed in
terms of Bond numbers Bof (Boi). The solid lines correspond
to equations Bof = 0 when Boi < Bo
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∗ (crossing). (b) Time th[s] needed by
the droplet to cross the intersection, as a function of Boi. The
solid line is the empirical law th/ν = 900/(Boi − Bo
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the dimensional prefactor is 900 s2 m−2. (a-b) Experimental
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ν = 5 cS, (¤) ν = 10 cS, (▽) ν = 20 cS, (♦) ν = 50 cS and
(⊳) ν = 100 cS. Error bars typically correspond to the symbol
size. The dashed lines correspond to the Bo

∗ values.

oscillator is

ρΩZ̈ + CµµΩ1/3Ż + kZχ[−Z1,Z2](Z) = ρΩg, (21)

where Cµ is the friction coefficient and k is the stiffness of
the spring mechanism related to the horizontal fibre, so

k = cσ
dh

Ω1/3
σ, (22)

Fig. 10. A delay of about 0.5 s is observed when a 50 cS
droplet with Bo → Bo

∗ crosses the intersection between two
fibres of diameter 140 µm. Snapshots are taken every 120 ms.
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Fig. 11. (a) Variation of Bo
∗ with the droplet viscosity ν for

(•) dh = dv = 80 µm, (¥) dh = 80 µm and dv = 250 µm, and
(N) dh = 250 µm and dv = 80 µm. (b) Variation of Bo

∗ with
the fibre diameters, for ν = 50 cS. (•) dh = 80 µm and dv is
varied, (¥) dv = 80 µm and dh is varied, and (N) dh = dv are
both varied.
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Fig. 12. (a) Droplet trajectory in the high-viscosity regime,
namely for dh = dv = 80 µm and ν = 100 cS, so Bo

∗

≃ 1.67.
(•) Blocking for Boi = 1.54, (N) crossing for Boi = 1.87, and
(¥) crossing with delay for Boi = 1.68. (b) Droplet trajectory
in the low-viscosity regime, namely for dh = 250 µm, dv =
80 µm and ν = 1.5 cS, so Bo

∗

≃ 0.41. (•) Blocking for Boi =
0.38, and (N) crossing for Boi = 0.52. In both (a) and (b), the
solid line corresponds to the fit of Eq. (21), while the dash-
dot line represents the linear trajectory that the droplet would
have taken if it had not been delayed by the horizontal fibre.
The cross indicates the delay time th.

where cσ is the stiffness coefficient. Both Cµ and cσ have
to be estimated from experimental measurements.

Equation (21) is put in a dimensionless form by using

y = Z/Z1 (23)

and τ =
√

k/Mt;

ÿ + 2βẏ + yχ[−1,κ](y) = Θ, (24)

where

κ = Z2/Z1, β =
Cµ√
cσ

µ√
ρσdh

andΘ =
ρΩg

kZ1
=

2πΩ1/3

cσZ1
Bo.

(25)
We note that the damping factor β is equivalent to an
Ohnesorge number based on dh, and the forcing parameter
Θ is proportional to the Bond number.

This equation may be solved starting from the initial
conditions y(0) = −1 and ẏ(0) = Θ/2β, i.e. when the
droplet, evolving at the limit speed Θ/2β as described
in sec. 3, touches the horizontal fibre. As in the classical
damped oscillator, two regimes are observed in Eq. (24)
according to the value of β. For β > 1, the system is
overdamped and corresponds to the high-viscosity regime,
while it is underdamped otherwise.

In the overdamped regime β > 1, the solution is

y(τ) = Θ−e−βτ

[

(1+Θ) cosh(ωτ)+
2β2(1 + Θ) − Θ

2βω
sinh(ωτ)

]

,

(26)
where

ω =
√

|β2 − 1|. (27)

The solution always tends monotonically towards y = Θ.
Nevertheless, the solution is not valid anymore when y > κ
due to the truncation; Θ∗ = κ is therefore the threshold
that separates blocking (Θ < κ) and crossing (Θ > κ)
behaviours. The crossing time obviously diverges when
Θ → κ+, as in experiments.

In the underdamped regime β < 1, the solution is

y(τ) = Θ−e−βτ

[

(1+Θ) cos(ωτ)+
2β2(1 + Θ) − Θ

2βω
sin(ωτ)

]

.

(28)
The solution also tends towards y = Θ, but with damped
oscillations. The critical point y = κ is necessarily reached
at the first oscillation, so the crossing delay cannot be
larger than the oscillator period. The blocking/crossing
threshold Θ∗ is obtained when the first maximum of Eq. (28)
coincides with y = κ, which yields

y(τ∗, Θ∗) = κ with tan(ωτ∗) =
−Θ∗ω

β(Θ∗ + 2)
, (29)

where τ∗ is the time of first maximum when Θ = Θ∗. This
system of implicit equations with unknowns (τ∗, Θ∗) can-
not be solved analytically. Nevertheless, it can be shown
that (τ∗, Θ∗) → (π, 0) when β → 0.

When crossing occurs and y passes the κ-point in τκ,
the droplet starts accelerating again until it reaches its
terminal velocity:

y(τ) = κ +
Θ

2β
(τ − τκ) − Θ − 2βẏ(τκ)

4β2

[

1 − e−2β(τ−τκ)

]

,

(30)
where ẏ(τκ) is the velocity at the exit point y = κ.

Equations perfectly fit experimental trajectories (Fig. 12).
As seen in Fig. 13, the fitting parameters Cµ and cσ ap-
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dh = 80 µm dh = 250 µm
cµ 13 ± 20% 27 ± 12%
cσ 16 ± 18% 9.9 ± 22%

proximately satisfy














Cµ = cµ

(

dh

λσ

, dv

λσ

)

λ3

σ

Ω ,

cσ = cσ

(

dh

λσ

, dv

λσ

)

.
(31)

The coefficients cµ and cσ are given in Table 4.1 for various
dh and for dv = 80 µm, Dimensionless parameters Θ and
β are computed for each experiment, starting from these
values of cµ and cσ. The agreement with the theoretical
equation (29) is rather good (Fig. 14), considering the
significant error made by converting the measured physical
parameters into dimensionless quantities β and Θ 1.

Finally, we note that the parameter cσ may be related
to the critical Bond number Bo∗. Indeed, in the over-
damped regime, Θ∗ = κ, so

Z2 = 4π
Ω∗1/3

cσ
Bo∗

ν→∞
. (32)

Measurements of Bo∗(dh, dv) (directly from the experi-
ments) and cσ(dh, dv) (from the trajectory fitting) suggest
that Z2 = 0.68Ω1/3, whatever dh and dv. Therefore,

cσ ≃ 9.24Bo∗

ν→∞
. (33)

5 Conclusion

In this paper, we have discussed the behaviour of silicon
oil droplets that slide along a vertical fibre and intercept
a horizontal fibre. The shape and the trajectory of the
droplets were measured experimentally. The size of both
the droplet and the fiber was varied, as well as the droplet
viscosity.

On a vertical fibre, the axisymmetric shape of the
droplet is shown to be close to an unduloid, namely the so-
lution of Laplace equation when gravity is not taken into
account. Indeed, gravity is balanced by viscous stresses
when the droplet slides along the fibre; this balance sets
the droplet velocity. Asymmetric shapes were observed,
with a smaller friction coefficient and a consequently greater
velocity. However, these configurations are unstable and
the droplets quickly switch to the axisymmetric configu-
ration. As they slide down, the droplets leave a coating
film in their wake, on the fibre. Consequently, they lose
some mass so they slowly decelerate.

Large droplets are observed to cross the intersection
between two fibres, while smaller ones are blocked at the
junction. The threshold size is prescribed by a Bond num-
ber, namely a balance between the droplet weight and

1 Relative errors from each variables and fitting parameters
are summed when multiplying the variable to get dimensionless
parameters.
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Fig. 13. Coefficients Cµ and cσ of the dimensional model
(21). Symbol data are obtained by fitting this model to the
experimental trajectories. The lines correspond to Eq. (31),
the shaded areas represent standard deviations. The (•) and
solid line (resp. (N) and dashed line) correspond to dh =
80 µm (resp. dh = 250 µm), while dv = 80 µm in both cases.

the capillary force mainly exerted by the horizontal fibre.
This number is shown to increase with increasing viscos-
ity; a saturation is observed at high viscosity. The blocking
vs. crossing transition has been rationalised, starting from
the Newton law for the centre of mass of the droplet. The
resulting differential equation is equivalent to a damped
harmonic oscillator, for which the restoring force is trun-
cated to the neighbourhood of the junction. The param-
eters of the model are deduced by fitting the solutions
of the differential equation on the measured trajectories.
The model predictions are in very good agreement with
the experimental observations.
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Fig. 14. Dimensionless threshold curve Θ(β) given by Eq. (29).
Symbols represent the experimental data for dv = 80 µm and
(•) dh = 80 µm or (N) dh = 250 µm. The conversion from
dimensional measurements to dimensionless variables is made
through Eq. (25).

In a recent paper [9], it has been shown that droplets
may be divided into N micro-droplets by using a fibre
network made of one vertical fibre and N horizontal fi-
bres. The initial droplet is sufficiently large to cross ev-
ery junction. The coating film left in its wake destabilises
into small pearls that are progressively collected at the N
nodes since they are usually too small to cross them. The
droplet division is the key step towards multiplexing and
more complex microfluidic operations [14, 24, 23]. Conse-
quently, a microfluidic technology based on fibres may be
a promising way to handle droplets for biochemical uses. It
is hoped that our study will inform ongoing investigations
and developments of droplets on fibre networks.

T.G. thanks FRIA/FNRS for financial support. We
gratefully acknowledge Stéphane Dorbolo, Hervé Caps and
John W.M. Bush for fruitful discussions.
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