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The k -means clustering method

Xn = {x1, . . . , xn} a dataset in p dimensions;
Aim of clustering : Group similar observations in k
clusters C1, . . . ,Ck ;
The k -means algorithm constructs clusters in order to
minimize the within cluster sum of squared distances

The clusters centers (T n
1 , . . . ,T

n
k ) are solutions of

min
{t1,...,tk}⊂Rp

n
∑

i=1

(

inf
1≤j≤k

‖xi − tj‖
)2

;

The classification rule:

x ∈ Cn
j ⇔ ‖x − T n

j ‖ = min
1≤i≤k

‖x − T n
i ‖;

Let us focus on k = 2 groups:

Cn
1 =

{

x ∈ R
p : (T n

1 − T n
2 )

tx −
1
2

(

‖T n
1 ‖

2 − ‖T n
2 ‖

2 > 0
)

}

.
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The generalized 2-means clustering method

The clusters centers (T n
1 ,T

n
2 ) are solution of

min
{t1,t2}⊂Rp

n
∑

i=1

Ω

(

inf
1≤j≤2

‖xi − tj‖
)

for an increasing penalty function Ω : R+ → R
+ such

that Ω(0) = 0.
Classical penalty functions:

Ω(x) = x2 → 2-means method

Ω(x) = x → 2-medoids method

The classification rule:

x ∈ Cn
1 ⇔ Ω(‖x − T n

1 ‖) ≤ Ω(‖x − T n
2 ‖)

⇔ ‖x − T n
1 ‖ ≤ ‖x − T n

2 ‖.
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Result of 2-medoids with contamination
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Statistical functionals

The empirical
distribution Fn is
replaced by a
cumulative distribution
F ∈ F ;

A statistical functional

T : F → R
l : F 7→ T (F )

such that T (Fn) = T n. −3 −2 −1 0 1 2 3
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Classification setting

Suppose

X ∼ F arises from G1 and G2 with πi(F ) = IPF [X ∈ Gi ]

then

F is a mixture of two distributions

F = π1(F )F1 + π2(F )F2

with π1 + π2 = 1 and where F1 and F2 are the conditional
distributions under G1 and G2 with densities f1 and f2.
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The generalized 2-means statistical functionals

The clusters centers (T1(F ),T2(F )) are solution of

min
{t1,t2}⊂Rp

∫

Ω

(

inf
1≤j≤2

‖x − tj‖
)

dF (x)

for a suitable increasing penalty function Ω;
The classification rule is

RF : x 7→ j ⇔ ‖x − Tj(F )‖ = min
1≤i≤2

‖x − Ti(F )‖;

The clusters are

C1(F ) =
{

x ∈ R
p : A(F )tx + b(F ) > 0

}

C2(F ) = R
p\C1(F )

with A(F ) = T1(F )− T2(F )
and b(F ) = −1

2

(

‖T1(F )‖2 − ‖T2(F )‖2
)

.
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Mixture of spherically symmetric distributions

X ∼ F
µ,σ2 if its density is

f
µ,σ2(x) =

K
σp g

(

(x − µ)t(x − µ)

σ2

)

where g is a non-increasing generator function and with K a
constant such that the honesty condition holds.

Examples:

Multivariate Normal distribution: g(r) = exp(− r
2)

Multivariate Student distribution: g(r) =
(

1 + r
ν

)− ν+p
2
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Mixture of spherically symmetric distributions

X ∼ F
µ,σ2 if its density is

f
µ,σ2(x) =

K
σp g

(

(x − µ)t(x − µ)

σ2

)

where g is a non-increasing generator function and with K a
constant such that the honesty condition holds.

Examples:

Multivariate Normal distribution: g(r) = exp(− r
2)

Multivariate Student distribution: g(r) =
(

1 + r
ν

)− ν+p
2

Model (M):

(M) FM = π1F−µ,σ2 + π2F
µ,σ2

with µ = µ1 e1 and µ1 > 0.
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Position of T1(FM) and T2(FM)

2-means:

Proposition (Kurata and Qiu, 2011)

Under the model distribution (M), the 2-means centers are
on the first axis.

Generalized 2-means:

Conjecture (Ruwet and Haesbroeck, 2011)

Under the model distribution (M), the generalized 2-means
centers are on the first axis.
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2-means:

Proposition (Kurata and Qiu, 2011)

Under the model distribution (M), the 2-means centers are
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Error rate

Training sample according to F : estimation of the rule

Test sample according to Fm : evaluation of the rule

In ideal circumstances : F = Fm

Probability to misclassify data coming from Fm:

ER(F ,Fm) = π1(Fm)IPFm [RF (X ) 6= 1|G1]

+ π2(Fm)IPFm [RF (X ) 6= 2|G2]

=
2

∑

j=1

πj(Fm)IPFm

[

RF (X ) 6= j |Gj
]
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Optimality in classification

A classification rule is optimal if the corresponding error
rate is minimal;

The optimal classification rule is the Bayes rule :

x ∈ C1(F ) ⇔ π1(F )f1(x) > π2(F )f2(x)

(Anderson, 1958).
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Optimality in classification

A classification rule is optimal if the corresponding error
rate is minimal;

The optimal classification rule is the Bayes rule :

x ∈ C1(F ) ⇔ π1(F )f1(x) > π2(F )f2(x)

(Anderson, 1958).

Proposition (Ruwet and Haesbroeck, 2011)

The 2-means procedure is optimal under the model

FO = 0.5 F−µ,σ
2 + 0.5 F

µ,σ
2 with µ = µ1 e1 and µ1 > 0.

With the Conjecture, the generalized 2-means procedures
are also optimal under FO.
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Contaminated distribution

A contaminated distribution is defined by

Fε

""
D

D
D

D
D

D
D

D

zzuu
uu

uu
uu

uu

1 − ε : F ε : G

where G is a arbitrary distribution function.
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Contaminated distribution

A contaminated distribution is defined by

Fε

""
D

D
D

D
D

D
D

D

zzuu
uu

uu
uu

uu

1 − ε : F ε : G

where G is a arbitrary distribution function.

To see the influence of one singular point x , G = ∆x leading
to

Fε,x = (1 − ε)F + ε∆x
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Error rate under contamination

Contaminated training sample according to Fε :
estimation of the rule

Test sample according to Fm : evaluation of the rule

ER(Fε,Fm) =
2

∑

j=1

πj(Fm)IPFm

[

RFε
(X ) 6= j |Gj

]
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Definition and properties of the first order
influence function

Hampel et al. (1986) : For any statistical functional T and
any distribution F ,

IF(x ;T,F ) = lim
ε→0

T((1 − ε)F + ε∆x)− T(F )

ε

=
∂

∂ε
T((1 − ε)F + ε∆x)

∣

∣

∣

∣

ε=0
(under condition of existence);

EF [IF(X ;T,F )] = 0;

First order Taylor expansion of T at F :

T(Fε,x) ≈ T(F ) + εIF(x ;T,F )

for ε small enough.
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First order influence function of the error rate

Now, the training sample is distributed as Fε,x .
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First order influence function of the error rate

Now, the training sample is distributed as Fε,x .

If the model distribution is FO,

ER(Fε,x ,FO) ≈ ER(FO,FO) + εIF(x ;ER,FO)

ER(Fε,x ,FO) ≥ ER(FO,FO)

EFO
[IF(X ;ER,FO)] = 0
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First order influence function of the error rate

Now, the training sample is distributed as Fε,x .

If the model distribution is FO,

ER(Fε,x ,FO) ≈ ER(FO,FO) + εIF(x ;ER,FO)

ER(Fε,x ,FO) ≥ ER(FO,FO)

EFO
[IF(X ;ER,FO)] = 0

⇒ IF(x ;ER,FO) ≡ 0

A second order term is necessary in the Taylor expansion !
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Definition of the second order influence function

For any statistical functional T and any distribution F ,

IF2(x ;T,FO) =
∂2

∂ε2 T((1 − ε)FO + ε∆x)

∣

∣

∣

∣

ε=0

(under condition of existence).
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Definition of the second order influence function

For any statistical functional T and any distribution F ,

IF2(x ;T,FO) =
∂2

∂ε2 T((1 − ε)FO + ε∆x)

∣

∣

∣

∣

ε=0

(under condition of existence).

Second order Taylor expansion of ER at FO :

ER(Fε,x ,FO) ≈ ER(FO,FO) +
ε2

2
IF2(x ;ER,FO)

for ε small enough.
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First order influence function of the error rate
under FM

Proposition (Ruwet and Haesbroeck, 2011)

Under FM , the first order influence function of the error rate
of the generalized 2-means classification procedure is given
by

IF(x ;ER,FM) =
π2 − π1

2
f
µ,σ2(0)

(

IF(x ;T1,FM)+IF(x ;T2,FM)
)t e1

for all x such that A(FM)t x + b(FM) 6= 0.

This influence function is bounded as soon as the influence
functions of the generalized 2-means centers (see next
slide) are bounded.
The influence function is also available for any model
distribution F .
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First order influence function of the generalized
2-means centers

Proposition (García-Escudero and Gordaliza, 1999)

The influence function of the generalized 2-means centers
T1 and T2 is given by

(

IF(x ;T1,Fm)
IF(x ;T2,Fm)

)

= M−1
(

ω1(x)
ω2(x)

)

where ωi(x) = − gradyΩ(‖y‖)
∣

∣

∣

y=x−Ti (Fm)
I(x ∈ Ci(Fm)) and

where the matrix M depends only on the distribution Fm.

This influence function is bounded as soon as M−1 exists
and as soon as the gradient of Ω is bounded.
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Univariate second order influence function of
the error rate under FO

Proposition (Ruwet and Haesbroeck, 2011)

Under FO, the univariate second order influence function of
the error rate of the generalized 2-means classification
procedure is given by

IF2(x ;ER,FO) = −
1
4

f ′−µ,σ2(0)
(

IF(x ;T1,FO)+IF(x ;T2,FO)
)2

for all x such that A(FO) x + b(FO) 6= 0.

The influence function is also available for multivariate
distributions.
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Asymptotic loss

Under optimality (FO), a measure of the expected increase
in error rate when estimating the optimal clustering rule from
a finite sample with empirical cdf Fn is

A-Loss = lim
n→∞

n EFO
[ER(Fn,FO)− ER(FO,FO)].

As in Croux et al. (2008) :

Proposition

Under some regularity conditions of the clusters centers
estimators,

A-Loss =
1
2

EFO
[IF2(X ;ER,FO)]
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Asymptotic loss

Proposition (Ruwet and Haesbroeck, 2011)

Under an optimal mixture of normal distributions, FN , with
µ = ∆/2 e1, the asymptotic loss of the generalized 2-means
procedure is given by

A-Loss =
∆

16σ3τ2 f0,1

(

∆

2σ

)

(

τ2[ASV(T21) + ASV(T11)

+ 2ASC(T11,T21)]

+ σ2[ASV(T12) + ASV(T22)− 2ASC(T12,T22)]
)

where ASV and ASC stand for the asymptotic variance and
covariance of their component (at the model distribution).
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Graph of the asymptotic loss
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Asymptotic relative classification efficiencies

A measure of the price one needs to pay in error rate for
protection against the outliers when using a robust
procedure instead of the classical one is

ARCE(Robust,Classical) =
A-Loss(Classical)
A-Loss(Robust)

.
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Asymptotic relative classification efficiencies

A measure of the price one needs to pay in error rate for
protection against the outliers when using a robust
procedure instead of the classical one is

ARCE(Robust,Classical) =
A-Loss(Classical)
A-Loss(Robust)

.

More generally, the ARCE of a method (Method 1) w.r.t.
another one (Method 2) is given by

ARCE(Method 1,Method 2) =
A-Loss(Method 2)
A-Loss(Method 1)

.
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ARCE of 2-medoids w.r.t. 2-means
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ARCE of classification procedures w.r.t.
2-means
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Intuitive definition

The breakdown point (BDP) is the minimal fraction of
outliers that needs to be added (addition BDP) or replaced
(replacement BDP) in order to destroy completely the
estimator, i.e. to get an estimation

at infinity (Hampel, 1971);

at the bounds of the support of the estimator (He and
Simpson, 1992);

which is restricted to a finite set while it could lie in an
infinite set without contamination (Genton and Lucas,
2003);

...
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BDP of the error rate of the generalized
2-means

Let the observation x of the training sample (Fε,x ) tend to
infinity

⇒ It becomes the center of a cluster with this observation
only even if Ω(x) = x (García-Escudero and Gordaliza,
1999);

⇒ One entire group of the test sample (F ) is badly
classified while the other is well classified;

⇒ ER(Fε,F ) = π1 or ER(Fε,F ) = π2 for any sample;

⇒ ER has broken down in the sense of Genton and Lucas
(2003);

⇒ The BDP of the ER is 1/n which tends to zero as
n → ∞.
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The trimming approach

Idea: Delete extreme observations!
Problem: How can we detect extreme observations?
Solution: Impartial trimming

k the fixed number of clusters;

α ∈ [0, 1[ the trimming size;

Xn = {x1, . . . , xn} ∈ R
p a dataset that is not

concentrated on k points after removing a mass equal
to α;

Optimization over partitions R = {R1, . . . ,Rk} of
{1, . . . , n} with ⌈n(1 − α)⌉ observations;
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The generalized trimmed k -means method
Cuesta-Albertos et al., 1997

The clusters centers (T n
1 , . . . ,T

n
k ) are solutions of the

double minimization problem

min
R

min
{t1,...,tk}⊂Rp

∑

xi∈R

Ω

(

inf
1≤j≤k

‖xi − tj‖
)

;

The classification rule:

x ∈ Cn
j ⇔

{

‖x − T n
j ‖ = min1≤i≤k ‖x − T n

i ‖

x ∈ R
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Properties of the generalized trimmed 2-means

García-Escudero and Gordaliza, 1999

Bounded IF whatever Ω;

Better breakdown behavior.

Ruwet and Haesbroeck (unpublished result)

If the Conjecture also holds for the generalized trimmed
2-means, this procedure is optimal under the model FO.
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Problem of all "k -means type" procedures
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The TCLUST procedure
García-Escudero et al., 2008

Optimization also over the scatter matrices Sn
j and the

weights pn
j such that

∑k
j=1 pj = 1;

Maximization of

k
∑

j=1

∑

i∈Rj

log
(

pjϕ
(

xi ;Tj ,Sj
))

where ϕ is the pdf of the Gaussian distribution;

Eigenvalues-ratio restriction:

Mn

mn
=

maxj=1,...,k maxl=1,...,p λl(Sj)

minj=1,...,k minl=1,...,p λl(Sj)
≤ c

for a constant c ≥ 1 and where λl(Sj) are the
eigenvalues of Sj , l = 1, . . . , p and j = 1, . . . , k .
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Improvement with the TCLUST procedure
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Current and future work

Robustness properties of the TCLUST procedure:

The influence function (Ruwet et al., Submitted)

The breakdown behavior

???
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