Small Sample Size Capability Index for Assessing Validity of FNRS

 Analytical MethodsE. Rozet1, B. Boulanger ${ }^{2}$, E. Ziemons 1, R.D. Marini 1, Ph. Hubert
Eric.Rozet@ulq.ac.be
${ }^{1}$ Analytical Chemistry Lab., University of Liège, Liège, Belgium.
${ }^{2}$ Arlenda s.a., Liège, Belgium.

SIMULATIONS RESULTS

From the Figures 1a to 1f, it can be seen that the probability to exceed the true capability value (defined by the triangle in continuous line of Figures $1 \mathrm{a}-1 \mathrm{f}$) by using the Cpk index is almost 50%, whatever the true capability value and whatever the sample size used in the method validation. Indeed the isoprobabilty curve (dashed line of Figures 1a-1f) that is almost exactly on the region which defines methods with known true Cpk value is the isoprobability curve of 50%.
By opposition when using Cpk-tol, Figures 1a to 1 f show that the probability to exceed the true capability value is extremely low as the closest isoprobablity curve to the region defining methods with true capability indices of $1,1.33$ or 2 is the 10% one. Therefore there is only about 10% probability to declare a method capable when in reality it is not, i.e. the costumer risk is about 10% using such a capability index compared to the 50% risk observed for the classical Cpk index.
The core problem when using capability indices in validation studies is the lack of sufficient data to estimate precisely the mean and standard deviation of the analytical method. In order to circumvent this and to take into account the uncertainty of the analytical method mean and standard deviation when computing Cpk, the use of tolerance interval should be preferred

Additionally, the estimation of the mean and standard deviation of analytical methods should be made following the statistical model representing the way experiments have been performed. Method validation experiments or method transfer experiments are following a hierarchical or stratified sampling scheme that should be taken into account when computing analytical mean results and standard deviation and therefore to compute capability indices. For these stratified random sampling schemes commonly encountered during methods validations or transfers, a β-expectation tolerance intervals formula is given by Mee [1]:

$$
\begin{equation*}
[L, U]=\left[\hat{\mu}-k_{E} \hat{\sigma}_{I P} ; \hat{\mu}+k_{E} \hat{\sigma}_{I P}\right] \tag{Eq.1}
\end{equation*}
$$

$$
\text { where } k_{E}=t_{(d f,(1+\beta) / 2)} \sqrt{1+\frac{J \hat{R}+1}{J I(\hat{R}+1)}}
$$

$$
\text { with } d f=\frac{(\hat{R}+1)^{2}}{\frac{\left(\hat{R}+\frac{1}{I}\right)^{2}}{J-1}+\frac{\left(1-\frac{1}{I}\right)}{J I}}
$$

$$
\text { and } \quad \hat{R}=\frac{\hat{\sigma}_{B}^{2}}{\hat{\sigma}_{w}^{2}}
$$

$\mathrm{t}(\mathrm{df}, \gamma)$ is the $\gamma^{\text {th }}$ percentile of a Student distribution with df degrees of freedom and $\hat{\mu}$ is the estimated mean of the results. The intermediate precision variance can be estimated using: $\hat{\sigma}_{I P}^{2}=\hat{\sigma}_{B}^{2}+\hat{\sigma}_{W}^{2} . \hat{\sigma}_{B}^{2}$ is the run-torun or series-to-series variance and $\hat{\sigma}_{W}^{2}$ is the within-run or repeatability variance obtained with random one way ANalysis Of Variance (ANOVA) methodology [2]. J is the number of series performed and I the number of replicates per series.
The modified capability index proposed, Cpk-tol, is thus based on these tolerance intervāls and is computed as it follows:
$C p k-t o l=\min \left[\frac{U S L-\hat{\mu}}{\left.t_{(d f,}(1+\beta) / 2\right) \sqrt{1+\frac{J \hat{R}+1}{J I(\hat{R}+1)}} \hat{\sigma}_{I P}}, \frac{\hat{\mu}-L S L}{t_{\left(d f,\left({ }^{(1+\beta)} / 2\right)\right.} \sqrt{1+\frac{J \hat{R}+1}{J I}(\hat{R}+1)} \hat{\sigma}_{I P}}\right]$

The Cpk index is computed with 3 at the denominator meaning that for a centred process the maximum fraction of non conforming result is about $2,700 \mathrm{dpm}$ (precisely 2,699.796 dpm). In order to keep this same theoretical coverage of the distribution used with the Cpk index (i.e. $\pm 3 \sigma$), the probability β of the Cpk-tol index is fixed to 0.9973 .

SIMULATIONS

Independent validation results were generated from the random one-way ANOVA model described below:

$$
X_{i j}=\delta+\phi_{B}+\varepsilon_{W} \quad \text { Eq. } 3 .
$$

where $X_{i j}$ is the result of the $j^{\text {th }}$ measurement in series $\mathrm{i}, \delta=\mu_{\text {Lab }}-\mu_{T}$ is the bias between the true (or reference or nominal) value of the result (μ_{\top}) and the average value of the results of the laboratory $\left(\mu_{\text {Lab }}\right), \phi_{B}$ is the between series random effect supposed to be normally distributed $N\left(0, \sigma_{B}^{2}\right)$ and ε_{W} is the within-series (or repeatability) random error supposed to be independent and normally distributed $N\left(0, \sigma_{w}^{2}\right)$.
[1]. R.W. Mee, Technometrics 26 (1984) 251.
[2]. Searle S.R., Casella. G. and McCulloch C.E., Variance components (1992), Wiley.

