A. LEJEUNE, S. PIERARD, M. VAN DROOGENBROECK, and J. VERLY. A new jump edge detection method for 3D cameras. In International
Conference on 3D Imaging (IC3D), Liege, Belgium, December 2011. http://hdl.handle.net/2268/103459

A NEW JUMP EDGE DETECTION METHOD FOR 3D CAMERAS

A. Lejeune, S. Piérard, M. Van Droogenbroeck, J. Verly

INTELSIG Laboratory, Montefiore Institute, University of Liege, Belgium

ABSTRACT

Edges are a fundamental clue for analyzing, interpreting, and
understanding 3D scenes: they describe objects boundaries.
Available edge detection methods are not suited for 3D cam-
eras such as the Kinect or a time-of-flight camera: they are
slow and do not take into consideration the characteristics
of the cameras. In this paper, we present a fast jump edge
detection technique for 3D cameras based on the principles
of Canny’s edge detector. We first analyze the characteris-
tics of the range signal for two different kinds of cameras:
a time-of-flight camera (the PMD[vision] CamCube) and the
Kinect. From this analysis, we define appropriate operators
and thresholds to perform the edge detection. Then, we present
some results of the developed algorithms for both cameras.

Index Terms— range image, 3D cameras, edge detection,
Canny, depth map, jump edge, Kinect, time-of-flight cameras

1. INTRODUCTION

Edge detection is one of the fundamental techniques in image
processing to extract features from an image. Generally, an
edge represents a discontinuity in the value of an image. For
grayscale images, under common assumption about the image
formation process, an edge may correspond to a discontinuity
in depth, surface orientation, reflectance or illumination [§].
With a depth map or a range image, the uncertainty about
the physical nature of the edge is lifted: we only have depth
discontinuities. In the literature, these edges are often called
jump edges. They are of particular importance since they cor-
respond to boundaries of surfaces and objects. In addition,
another type of edges is often defined for range images. These
edges correspond to the discontinuities in the first derivative,
or equivalently in the surface normals or in the surface orien-
tation. They are called roof or crease edges. In this paper, we
don’t consider this type of edges.

First, we briefly present existing edge detection methods
for range images and explain why they are not suited to the
cameras we consider. Then, we start from a standard method
of edge detection, the Canny edge detector, and adapt it to
our needs. We show that the assumption made on the noise
by Canny is no longer valid for range images. Then, we de-
rive a new edge detection operator that takes into account the
uncertainty related to any depth value. Finally, we present

(a) Depth map.

(b) Canny edge detector.

(c) Our edge detector.

Fig. 1: Comparison between Canny’s edge detector and our
edge detector on a depth map captured with the Kinect.

results for our new edge detector.

1.1. Related work

There already exist edge detection methods for range images.
They usually consider both jump and roof edges simultane-
ously. Most techniques try to fit a model on a substructure
of the image to accurately compute the derivatives. Parvin
et al. [10] fit a third-order polynomial on the neighborhood of
each pixel to compute the first and second derivatives. Jiang et
al. [5] split each line of the image into a set of quadratic poly-
nomials. Approaches using mathematical morphology opera-
tors have also been developed [1, 7]. More recently, Coleman
et al. [3] have developed a Laplacian operator for irregular
grids to extract edges in range images. A simple criterion
was used by Steder ef al. [11] for detecting jump edges only.
All these methods generally present good results on relatively
simple scenes.

However, all these techniques were designed and tested
for range images captured by laser ranging devices with no
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concern for real-time performance since the acquisition itself
is not in real-time. Also, they do not take into account the
differences between each acquisition techniques and how the
3D data is obtained. Recently, real-time 3D acquisition has
been made possible with time-of-flight cameras or the Kinect.

1.2. Canny’s edge detector

The basis of our algorithm is the procedure used for the com-
putation of Canny’s edge detector [2]. It is one of the most
successful algorithms developed for edge detection in grayscale
images. By assuming an additive white Gaussian noise in im-
ages, Canny derived an optimal operator for edge detection
that can be approximated by the derivatives of a Gaussian.
The method can be be summarized in four steps:

1. Noise reduction by smoothing the image.
2. Computation of the gradient.

3. Removal of non maximum values.

4. Hysteresis thresholding.

The two first steps implement a Gaussian derivative filter.
First, noise is reduced in the image by convolving it with a
Gaussian filter. Its standard deviation gy, 1S a parameter
of the method. Then, a derivative operator is applied to the
smoothed image I(x,y) for each axis. This yields the gra-
dient VI(x,y) at each pixel of the image. Any derivative
operator can be used, such as a central difference or a Sobel
operator.

The next step of the algorithm is to locate the pixels that
are maxima of the gradient magnitude ||V I(z,y)|| along the
gradient of the pixel itself and to mark those pixels as possi-
ble edges. This is called non-maximum suppression because
the algorithm eliminates edge points that aren’t maxima. The
last step, hysteresis thresholding, uses two thresholds over
the gradient magnitude to only select strong edges. The two
thresholds 7,5 < Tgyp are used sequentially. First, all max-
ima pixels that have a gradient magnitude over the biggest
threshold 7, are marked as edge pixels. Then, the algo-
rithm recursively selects all locations with a gradient mag-
nitude larger than 7, that are adjacent to an edge pixel as
edges themselves

A raw application of Canny’s algorithm on a range image
captured by a time-of-flight camera or a Kinect doesn’t yield
good results (see Figure 1). Indeed, the algorithm assumes
the same error distribution for every pixel in the image and 3D
images captured with these cameras have an error distribution
that changes with each pixel.

1.3. Overview of the proposed method

In this paper, given a range image D(x,y), we argue that the
two thresholds 7;, ¢ and 74, should be adapted according to

the uncertainty on ||V.D(x,y)||(which is related to the noise
level). Here, the uncertainty on a measurement is defined as
the standard deviation of the random variable that is sampled.
Within a grayscale image, this uncertainty is constant, but this
is not the case for range cameras. We propose to use two
adaptive thresholds defined as

!

Tinf Tinf T Q0| VD(z,y)|
/ _

Toup = Tsup T QO||VD(zy)||

where a is a parameter of the algorithm, and oy p(z,,)| 1S
the uncertainty on ||V D(x,y)|. However, in order to take
this uncertainty into account also in the non-maximum sup-
pression step of Canny’s algorithm, we prefer computing an
adapted value of the gradient magnitude instead of correcting
the thresholds

||VD(x7y)Hadapted = ||V‘D('r’y)|| - O‘UHVD(JE,ZI)H

To estimate the uncertainty on |V D(x,y)||, we start by
characterizing two typical range cameras (the Kinect and the
PMDJvision] CamCube) in Section 2. Then, in Section 3,
we show how 0|y p(a,y)| is computed as a function of the
uncertainty on the distance measurements.

2. SENSOR CHARACTERIZATION

Our goal is to determine the precision, or reciprocally the
standard deviation, of each measurement made by the cam-
eras. It is an important characteristic of the signal. It allow
us to develop a better criterion for detecting edges. In the
next two subsections, we briefly describe the acquisition pro-
cess of both cameras and derive approximate laws for how the
precision may vary inside a single range image.

2.1. Kinect

The Kinect can be seen as a stereoscopic camera. The part of
the device responsible for depth acquisition is composed of
an infrared illumination source and an infrared camera. The
emitted illumination pattern is considered as the right image
of a stereoscopic rig. The pattern provides a texture to every
surface present in the scene. It is a matter of computing cor-
respondences between the emitted pattern and its observation
to recover depth.

Assuming that the disparity is a random variable follow-
ing a normal distribution, Khoshelham [6] showed that the
standard deviation of the depth D for the Kinect is:

2
Okinect = "@kinectD ; (1)

where Kpinect 1S @ constant of proportionality which depends
on several camera parameters and the standard deviation of
the disparity.
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2.2. Time-of-flight cameras

A time-of-flight camera derives the depth from the time of
flight (round trip time) of an electromagnetic signal between
the camera and the scene. In our experiment, we have used
a PMD (Photonic Mixer Device) camera [12]. It works by
recovering the phase shift between the emitted signal, which
is modulated, and the received signal. These cameras provide
three channels:

e The distance d between the camera and the correspond-
ing point in the scene.

e The amplitude A, which measures the strength of the
signal used to compute d. The amplitude is an indicator
of the accuracy of the distance measurement.

e The intensity /, which measures the amount of light
received by the sensor. It is similar to a grayscale image
captured by a 2D camera.

The depth precision depends on a multitude of factors includ-
ing the depth, the surface orientation, and reflectance proper-
ties. Nevertheless, Frank et al. [4] propose a good approxi-
mation of the standard deviation of a distance measurement,
expressed as

1
O camcube (d) = Rcamcube Za (2)

where Kcameube 18 @ constant of proportionality. The preci-
sion increases with the amplitude of the signal. It should be
noted that, for short distances or with long integration time,
the measurements are also unreliable because of a saturation
effect in the sensor. The integration time of the camera must
be chosen accordingly to the considered application so that
the amplitude is maximized without any saturation effect. It
must be noted that the amplitude is inversely proportional to
the squared depth for the same surface properties and orienta-
tion.

2.3. Edge characterization

Jump edges represent depth discontinuities. Depending on
the method used to capture 3D information, an edge can have
different physical meanings. Indeed, each range image pixel
corresponds to a solid angle. Thus, the real surface repre-
sented by a single pixel depends on the depth and orientation
of the surface itself. According to the method used to cap-
ture the 3D information, the depth can be sampled on a single
point of the solid angle or averaged over the whole surface.
So, if a depth discontinuity is present inside the solid angle
corresponding to a pixel, its depth may be a mixture of the
depth from both sides of the edge. Moreover, the farther the
scene is, the larger the surface over which the depth is aver-
aged will be.
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Fig. 2: 8x8 pixels around an edge for the (a) Kinect and (b)
PMD[vision] CamCube. (c) and (d) are plots of the depth
values in a single row perpendicular to the edge, in the vicinity
of the edge of a range image of each camera.

We have observed that the PMD[vision] CamCube time-
of-flight camera displays noisy jump edges with pixels sam-
pled from both sides of the physical edge. On the other hand,
the Kinect gives clean edges. This means that the discontinu-
ity in depth is always located between two pixels and does not
spread over several intermediate pixels. An example of jump
edges for both cameras is shown in Figure 2.

3. JUMP EDGE DETECTION

Since the error on depth may vary for each pixel, we have to
adapt a step in Canny’s procedure. The depth values are only
used during the second step, the gradient computation. So,
we adapt the gradient magnitude to the level of uncertainty of
the depth values used to compute it. To achieve this, we de-
rive an upper bound on the standard deviation of the gradient
magnitude and define a new adaptive gradient magnitude.

Let D be a range image and D(x,y) denote the depth
at location (x,y). We denote the image derivatives along its
first and second coordinates as D, (z,y) and Dy (z,y). The
gradient is defined by VD(z,y) = (Dz(z,y), Dy(x,y)) and
its magnitude by the Euclidean norm:

IVD(, )l = /D2(x,9) + D2(x,y). )

To shorten notations, we will skip the coordinates (z,y)
of the pixel unless there is a possible ambiguity. In the follow-
ing developments, we assume that pixel values are correlated
(p = 1) if pixels are located on the same surface and indepen-
dent (p = 0) if pixels are separated by a jump edge.



A. LEJEUNE, S. PIERARD, M. VAN DROOGENBROECK, and J. VERLY. A new jump edge detection method for 3D cameras. In International
Conference on 3D Imaging (IC3D), Liege, Belgium, December 2011. http://hdl.handle.net/2268/103459

For now, let us assume that the standard deviation of the
derivatives, op, and op,, are known. Their covariance is
equal to zero since the derivatives in the two orthogonal direc-
tions are independent. Therefore, we can express the standard
deviation of the gradient magnitude as [9]:

o _ |owvDIff , , [2IVDIf
VD] an D, aDy D,
with
O|VD|| _ Ds
oD, VDI

So, we obtain

o|vp| < 0jvp|
_ |Dzlop, +|Dylop,
IVD|

To simplify the developments in the following, we use
the upper bound aﬁ‘v Dl instead of the standard deviation of
the gradient magnitude o v p| The standard deviation of the
derivatives depends on the operator used to compute them.
This operator is usually a linear combination of the values of
the pixel and of some neighbors. Using the general equation

Dy(x,y) = Z

(u,v)EN(5 )

Clu,v) D (u, v),

where N(; . is the neighborhood used to compute the deriva-
tive and c(,, ., the coefficients of the derivative operator, we
can compute an upper bound to its standard deviation (see the
appendix):

OD,(zy) < Z

(U, V) EN(z )

|C(u,v) | OD(u,v)- )

For example, for the forward difference,
Dy(z,y) = D(xz + 1,y) — D(z,y),

we have:
OD,(xy) = TD(a+1,y) T TD(xy)-

Now that we have derived a general upper bound for the
standard deviation of the gradient magnitude, we can use it to
adapt Canny’s hysteresis thresholding technique:

IVD|| > 7; + aoyvp i =inf,sup.

This criteria means that the gradient magnitude must be
larger than a threshold plus a certain amount of its standard
deviation to be an edge. From this expression, we define the
adaptive gradient magnitude:

VD] = VD[l - agyvp

adapted

In the last equation, we adjust the gradient magnitude ac-
cording to its standard deviation. In addition, we have intro-
duced another parameter in the method, o.. In the implemen-
tation, it also includes the proportionality constant x used in
Section 2 to define the standard deviation of the depth.

From this general procedure, we describe our edge de-
tection algorithm for the Kinect and PMD[vision] CamCube
cameras. We also make some observations on the data that
leads to simplification of the edge detector for the Kinect.

3.1. Kinect

As explained in Section 2.3, depth discontinuities in the im-
ages captured by the Kinect are clean. This means that we
can obtain a single high response in the gradient magnitude
by choosing the appropriate derivative operator. A forward or
backward difference operator yields a single high value at the
pixel preceding or following the edge. In our implementation
of the algorithm, we have used a forward difference. Using
such a simple derivative filter permits to compute the exact
position of the edge.

Using the derivatives, we compute the adaptive gradient
magnitude:

||VD(x’y)Hadapted = HVD(-Tyy)H
IND(z,y)| (1D (. y)| (D*(z,y) + D*(x + 1,y))

+|Dy(z,y)| (D*(z,y) + D*(z,y +1))) .

We have noticed that the non-maximum suppression step
is unnecessary with the Kinect. Indeed, the device is unable to
compute the depth on surface that have a high gradient. Thus,
using appropriate thresholds 7,y and 7., the pixels having
a gradient magnitude superior to them can be considered as
edge pixels. The suppression of this step speeds up the al-
gorithm as we avoid at least two comparisons for each pixel.
There is no need to apply any other noise reducing method
prior to the computation of the gradient. Its adapted version
is robust enough to avoid it.

3.2. Time-of-flight cameras

The edges are harder to detect with a time-of-flight camera.
The complete algorithm requires all the steps of Canny’s edge
detector. First, we smooth the range image with a Gaussian.
Then, we compute the derivatives with a central difference.
Thus, the adaptive gradient magnitude is given by:

||VD($7y)Hadapted = HVD(J:’ y)”

_m <|Dx(x’y)| <A(fﬁ - Ly A(lerLy))
el (3517 * 7))

l’,y_]-)
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The non-maximum suppression must be applied before
performing the hysteresis thresholding. The thresholds are
determined experimentally, according to the integration time
and the captured scene.

4. RESULTS

We would have compared our results with other methods or
evaluate it with a ground-truth but, to our knowledge, there
are no other publications or databases about edge extraction
dedicated to the kind of 3D cameras we have considered.
Therefore, we only provide qualitative results. In Figures 3
and 4, we show the results of our edge detector on an indoor
scene with a large range of depths. In Figures 5 and 6, our
algorithm is applied on another scene.

The extracted edges for both cameras reflect the properties
of each camera. With the Kinect, the edges follow exactly the
detected depth discontinuities as well as the area where the
device was unable to compute the depth (black zones in Fig-
ure 3a). It must be noted that, in these zones, the depth is
assumed to be zero and thus the standard deviation is also
equal to zero. On the contrary, the PMD[vision] CamCube
measures depth for every single pixel, some with less confi-
dence than others. We have shown that our criteria provides
good results with respect to the value of the amplitude image.
For example, in Figure 4a, despite having some very noisy
measurements (indicated by the red rectangle), the edges are
relatively well extracted.

The PMD[vision] CamCube camera also has a physical
limitation on its maximum depth measurement. Typically, for
a 20 Mhz modulation frequency, the maximum range is 7.5 m.
Therefore, an edge may be detected at this distance. However,
it should be noted that our algorithm behaves as expected for
larger distances.

Typical execution time for our algorithm on a Intel Core
i7 processor is 15 us for the Kinect (640x480 pixels) and
7 us for the PMD[vision] CamCube (204 x 204 pixels) with
a Gaussian blur with a standard deviation of ogjer = 1.5.

5. CONCLUSION

We have developed a new jump edge detection algorithm for
3D cameras based on the properties of the devices. Our algo-
rithm is fast and its principle can be adapted to any other 3D
sensing device. The Kinect shows better properties than the
PMD[vision] CamCube camera for edge detection and thus,
its version of the algorithm is more efficient. We have in-
troduced an additional parameter, . It can be interpreted as
the constant of proportionality between the standard deviation
of the gradient magnitude and the values used to compute it
(squared depth for the Kinect and the amplitude inverse for
the PMD[vision] CamCube).

In this paper, we only have detected the jump edges and a
roof edge detection technique still needs to be developed for

these cameras.
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6. APPENDIX: STANDARD DEVIATION OF THE
DERIVATIVES

We define a derivative operator as

Dw(x,y): Z

c(u,'u)D(ua U)’

(u,v)EN(5 )
where
Clupw) <0 Yu < x
C(mﬂ,) =0
Cluw) =0 Yu > x

and N(, ) is a neighborhood around the pixel (z,y) that can
be divided between a left neighborhood and a right neighbor-
hood:

!
(if;) {(u,v) € Ngyylu < x}
righ

N(wg,,y)t = {(uw,v) €N ylu>a}.

Without making any assumptions, the standard deviation can
be expressed as [9]:

UzDz(w,y) = Z

(u,0)EN(5 4

Z Z C(u,w) C(m,n) P(u,v)(m,n)0 D(m,n)0 D(m,n)»
(u,v)EN(l.,y) (mﬂl)EN(w,y)
(m,m) ()

2 2
C(u,v) O'D(u,v) +

®)

where p(y )(m,n) is the correlation between the pixels (u, v)
and (m,n).

We will show that the standard deviation is maximum
when there is an edge at pixel (x,y) where we are comput-
ing the derivative. Under such circumstances, the correlation
between the pixels of the left neighborhood and the pixels
of the right neighborhood is zero: the pixels belong to dif-
ferent surfaces. Moreover, if we assume that the pixels of a
same surface are correlated (p = 1), the standard deviation
becomes

2

Clu,v) 9 D(u,v)

J%z(z»y) = Z

right
(u,v)€N<I7y)

X

left
(u,v)GN(m,y)

C(u,v)0 D(u,v) . (6
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(a) Depth map. (c) Color image of the scene.

Fig. 3: Example of edge detection for the Kinect (cfijer = 0, o = 0.004, 73,5 = 0.008, 75y = 0.03).

(a) Depth map (the red rectangle indicates a zone (b) Edges. (c) Amplitude image.
with high noise level).

Fig. 4: Example of edge detection for the PMD[vision] CamCube (0fijer = 1.5, & = 8, Tin s = 0.01, T4y, = 0.02, integration
time of 2 ms)
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(a) Depth map. (b) Edges. (c) Color image of the scene.

Fig. 5: Example of edge detection for the Kinect (cfijer = 0, v = 0.004, 75,7 = 0.008, 75, = 0.03).
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(a) Depth map.

T

(b) Edges.

(c) Amplitude image.

Fig. 6: Example of edge detection for the PMD][vision] CamCube (0fier = 1.5, ¢ = 6, iy = 0.01, T5yp = 0.03, integration

time of 1 ms).

Equation 6 contains all the terms of Equation 5 where
Cu,v)C(m,n) > 0. Equation 6 is thus a superior bound on
0D, (z,y)- By triangular inequality, we obtain Equation 4.
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