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Introduction
Up to now, self damping data generally comes from dynamic tests performed on test spans which length is of the order of some tens of meters. Those tests rely on the assumption that the conductor self damping changes the amplitude of incident and reflected travelling wave. In other words, there are no standing wave within a vibrating conductor and in practice, the amount of self damping is deduced from measurements of vibration amplitudes at adjacent “false vibration nodes”. The corresponding measurements require lots of dexterity and accuracy. 
This paper investigates the possibility of deducing the self damping properties of power line conductors from a series of tests performed quasi statically on a short prestressed conductor sample.

Data recorded by Godinas [1] on 4 m long prestressed conductor samples has been used as an input (the conductors used are made of aluminium alloy, type AMS). This data was obtained by applying a cyclic quasi-static bending moment in the middle of the conductor sample and recording the corresponding strains. The experiment was reproduced at several prestress levels.

A mining and analysis of this data has been performed so that in a first time the relationship between moment and curvature can be adequately defined. Then the corresponding internal work has been computed analytically (per integration). Finally a formulation for the self damping per unit length is proposed as a function of the antinode amplitude of vibration, frequency, conductor tension, bending stiffness, mass per unit length plus a special parameter called “b”. The latter parameter has the dimension of energy [J]. The corresponding results are found to be consistent with those deduced from the widely used “power law”, using Noiseux’s exponents [2, 3]. Also, a simplified version of the formula shows that the sensitivity of the self damping to the vibration amplitude, frequency and tension is comparable to that found by others authors using another self damping measurement technique [1], but with the difference that in this case, the exponents for frequency, amplitude and tension are integers, fully justified by the physics behind the phenomenon of damping. 

PRESENTATION OF THE EXPERIMENTS
Between 1994 and 1999, in the frame of ARC convention 94/99-176, research was carried out in the field of cable damping at University of Liège.

Experimental measurements of bending and damping properties of conductors were made by A. Godinas on 4 meter long cable samples. As described in [1], two aluminium alloy conductors were tested. In the frame of the present paper, the focus has been drawn on the larger one, AMS621 (section 620.9mm², 61 wires, 1.765kg/m, conductor diameter 32.4mm, wire diameter 3.6mm, RTS 199950N, Young's modulus 54000 N/mm²). A complete description of the test set-up can be found in [1]. The cable samples were fixed on a rigid test frame and pre-stressed at different tension values. During the tests, the cable motion took place in a horizontal plane. A coupling sleeve (which length is a=50mm and which is denoted “anchoring clip” in figure 1) is rigidly fixed on the conductor at mid length and a roller bearing is attached to it. A bending moment is applied at that location by means of a motor and the resulting bending rotation f is measured (figure 1).
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Figure 1: Experimental test set-up used by A. Godinas (left), AMS621, moment versus rotation angle curves computed from equation (1) for a tension equal to 10% RTS
Having noticed that the moment versus rotation angle curve follows an asymptote for high values of f, in [1], Godinas proposed to fit the moment versus rotation angle curve with the following equation:
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(1)
In the case of conductor AMS 621, the different coefficients proposed are: a=24, b=5, g=5.8, d=0.25. Note that equation (1) is written for a minimum rotation angle equal to zero and for a loading curve (as opposed to unloading). In case the minimum rotation angle is different from zero or in case of reverse loading, the axes and their origin need to be updated. 

During his experiments, Godinas also noticed that the shape of the moment versus rotation angle curves was not influenced by the loading speed [1]. As a direct consequence, the experiment is not dynamic dependent and can be performed with the load being applied almost statically. 
DEDUCING MOMENT VERSUS CURVATURE CURVES FROM EXPERIMENTAL MEASUREMENTS ON CONDUCTOR AMS621
As will be illustrated in the next section, in order to compute the energy dissipated along a vibrating conductor per integration, one has to know the relationship between moment and curvature. In the present case, the latter has been deduced using a non linear finite element model of the 4m long test span. For symmetry reasons, only half the test device has to be modelled. Applying the adequate bending moment value at the “anchoring clip” (see figure 1), the finite element simulation permits to deduce the beam bending stiffness which leads to the recorded rotation angle. It has been observed that:

· The computed rotation angle in the vicinity of the “anchoring clip” strongly depends on the bending stiffness near the “anchoring clip”,

· No significant change in the computed rotation angle is obtained varying the beam bending stiffness away from the “anchoring clip”,

· An average bending stiffness equal to 60% EImax permits to reproduce all rotation angles within our range of interest (Aeolian vibrations) with an error inferior to 10%. 

· The conductor change in tension is worth less than 0.5% during the tests. 
The curvature is then deduced from the shape of the conductor in the vicinity of the anchoring clip. For the sake of commodity, a relationship between rotation angle and curvature has been deduced, using a dimensional analysis on the one hand and computation results on the other hand:
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where x is a coefficient,
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the characteristic length [m] and C the conductor curvature. For conductor AMS621, x is worth approximately 0.9. Introducing (2) into (1), one obtains the following relationship between moment and curvature: 


[image: image6.wmf]1

2

**

()[1exp(())]

EI

MEICNCN

N

d

d

axcbgxc

-

=+--






(3)

In order to respect the dimensional homogeneity of (3),
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, which amplitude is 1 and which units are [s²/(kg.m)] has been introduced. The dimensions of the other coefficients are
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. Equation (3) is dimensionally correct since the moment is in [kg.m²/s²] or Joules. 
A NEW FORMULATION FOR CONDUCTOR SELF DAMPING

According to Massonnet and Cescotto [4], the equality between internal work WI and external work WE is valid for any continuous system. It can therefore also be used for any continuous dissipative system, provided the load history is taken into account. 

Considering a dissipative beam under harmonic excitation, the energy dissipated along the beam during one cycle of vibration satisfies
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(4)
Where s is the curvilinear abscissa, P(t) is the vector of external forces and Δ(t) the vector of displacements (both P(t) and Δ(t) are a function of time).

In case the cyclic motion is a cyclic bending, equation (3) becomes
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(5)
One can deduce from (5) that the area within the M(χ) curve has a physical meaning: it is the energy dissipated per unit length and per vibration cycle in the dissipative beam [J/m]. Assuming a sinusoidal deflected shape for the vibrating conductor:
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(6)
where 
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is the wavelength [m]. 
 Let 
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, where A is in [kg.m²/s], C in [m], D in [kg.m/s²] and X in [1/m].
The following power series expansion of the exponential (which is valid for -( < x <( 
[image: image19.wmf]) can be applied to the exponential:


[image: image20.wmf]...

!

3

!

2

1

)

exp(

3

2

+

+

+

+

=

x

x

x

x











(7)
The value of (5) has been computed over half a wave length. No significant improvement or changes in the value is obtained using terms of higher order than 
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in the integrand, so that the integral value over half a wave length can be approximated by:
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The power dissipated per unit length PE [W/m] can be obtained multiplying (8) by
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(9)
Limiting the analysis to the terms up to the order 
[image: image25.wmf]3

c

D

in the integrand, equation (9) can be further simplified as follows
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(10)
The self damping power values computed using either (9) or (10) are illustrated in figure 2, at an amplitude fymax equal to 50mm/s. One can see that the results are very similar, almost at low frequency values. 
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Figure 2: Comparison of the self damping power computed from formula (9) and (10) at fymax=50mm/s. 
COMPARISON WITH OTHER RESULTS AVAILABLE IN THE LITERATURE
In the literature, the power dissipated per unit length of a conductor (
[image: image28.wmf]diss
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[W/m]) is often expressed empirically through a power law:
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where k is a proportionality factor depending on cable data. Several authors have proposed their best set of coefficients l, m and n. As an example, Noiseux proposes to use l=2.44, m=5.63 and n=2.76 [2,3]. The self damping evaluated with (9) for AMS621 has been compared to the self damping deduced from the power law with Noiseux's exponents at several tensions, frequencies and amplitudes. As can be seen in figure 2, there is a fairly good agreement between the curves, both in their trends and values. Just to give the reader another reference of comparison, the self damping power values computed from formula (9) taking another set of exponents may differ by an order of magnitude from those deduced with Noiseux’s exponents (e.g. taking Politecnico di Milano’s set of exponents: l=2.43, m=5.5, n=2 [3], self damping values of about one order of magnitude higher would be obtained). 
[image: image30.png]power [W/m]

10

20

AMS621, fymax=50mm/s

analytic order4 15%RTS
analytic order4 20%RTS
analytic order4 25%RTS
noiseux 15%RTS
noiseux 20%RTS
noiseux 25%RTS

30 40 50 60
frequency [HZz]

/70



[image: image31.png]power [W/m]

10

20

AMS621, fymax=200mm/s

analytic order4 15%RTS
analytic order4 20%RTS
analytic order4 25%RTS
noiseux 15%RTS
noiseux 20%RTS
noiseux 25%RTS

30 40 50 60
frequency [HZz]

/70




Figure 2: Comparison of the self damping power computed from formula (9) and from the power law (11), using Noiseux’s exponents (l=2.44, m=5.63, n=2.76). The left figure relates to fymax=50mm/s and the right one to fymax= 200mm/s. 
A NEW METHOD TO DEDUCE CONDUCTOR SELF DAMPING
As illustrated in a previous section, knowing M(
[image: image32.wmf]c

,N) (see e.g. equation 3), permits to deduce the self damping per unit length within a vibrating conductor, whatever its Aeolian vibration amplitude or frequency. Also, according to Godinas [1], this loading curve is not dynamic dependent. 

Given these two facts, the measurement of both the conductor self damping properties could be considerably simplified: 
· the loading curves could be measured almost statically,

· provided the maximum Aeolian curvature level is reached during the tests, only one curve per tension level is required or, as an alternative, an expression giving M(
[image: image33.wmf]c

,N) can be deduced from a few curves at different realistic tension levels (e.g. 15, 20, 25 and 30% RTS),
Note that such measurements also give access to information on the conductor variable bending stiffness, which is in fact the slope of the M(
[image: image34.wmf]c

) curve.

Let us now review the test method in itself. The test frame on which the conductor is tensioned could be the same as in Godinas's experiments (figure 1). It is certainly advised to perform the tests within a tension range in agreement with reality (15-30%RTS). For each tension value, loading cycles covering the amplitude range 0<
[image: image35.wmf]c
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<0.1 should be conducted (Aeolian vibration do fall within this amplitude range).
The following improvements could advantageously be implemented:
· collect additional information on the cable deflection,

· increase the sampling frequency, in particular where important changes in the M(
[image: image36.wmf]c

) curve slope are expected, i.e. at the smallest values of 
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,
· record the conductor tension during the tests.

CONCLUSIONS
A formulation for the self damping per unit length has been deduced from the measurements performed by Godinas [1]. It gives the power dissipated within a vibrating conductor as a function of some fit parameters (γ,δ), the antinode amplitude of vibration, frequency, conductor tension, bending stiffness, mass per unit length plus another special parameter called β .
The latter parameter has the dimension of an energy [J]. Together with the conductor characteristic length 
[image: image38.wmf]m
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, tension and amplitude of strain (curvature in the case of a vibrating conductor), it characterizes the area of the hysteretic moment versus curvature curve. The proposed formula therefore has a solid physical basis: the area within the M(
[image: image39.wmf]c

) curve is the energy dissipated per unit length and per cycle due to transverse vibrations of a prestressed beam. 
The computed self damping values agree well with the values deduced from the widely used power law, using e.g. Noiseux’s exponents, but with the difference that the dimensional homogeneity of the proposed formula is respected. 
A simplified version of the formula shows that the sensitivity of the self damping to the vibration amplitude, frequency and tension is comparable to that found by other authors, using another measurement technique called ISWR (see e.g. [3]), but with the difference that in this case, the exponents for frequency, amplitude and tension are integers, fully justified by the physics behind the phenomenon of damping. 

The perspective shown by this paper is the following: knowing the conductor properties and the shape of some moment versus curvatures cycles, the proposed complete formula would permit to estimate the conductor self damping in any kind of vibration frequency or amplitude without any dynamic testing. This would also permit to avoid any dynamic side effect due to non linearities. 
A new method is proposed to assess the self damping power of a conductor in the last section of the paper. Its main advantage is the simplicity to collect information. As an example, with the widely used ISWR method, based on the measurement of vibration amplitudes at “nodes” and antinodes, a fine tuning of eigen modes is required, as well as accurate measurement of the amplitudes at vibration “nodes”, which are barely worth a few micrometers. 
Also, with the new proposed method, the self damping measurements can be performed quasi statically, which permits to limit any undesirable dynamic effect, for example the impact of changes in tension on vibration amplitudes. 
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