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Abstract—Capturing gait is useful for many applications,
including video-surveillance and medical purposes. The most
common sensors used to capture gait suffer from significant
drawbacks. We have therefore designed a new low-cost and non-
intrusive system to capture gait. Our system is able to track
the feet on the horizontal plane in both the stance and the
swing phases by combining measures of several range laser
scanners. The number of sensors can be adjusted according to the
target application specifications. The first issue addressed in this
work is the calibration: we have to know the precise location
of the sensors in a plane, and their orientations. The second
issue addressed is how to calculate feet coordinates from the
distance profiles given by the sensors. Our method has proven to
be robust and precise to measure gait abnormalities in various
medical conditions, especially neurological diseases (with a focus
on multiple sclerosis).

Index Terms—gait analysis, gait recognition, multiple sclerosis,
range laser scanners

I. INTRODUCTION

Capturing gait is useful for many applications, such as
person [1], gender [2f], or age [3] identification. Gait analysis
is also useful for medical purposes, since ambulation impair-
ment is a frequent symptom of a broad range of diseases,
including multiple sclerosis where quantitative evaluation of
gait performances is a good indicator of disease activity.

The most common sensors used to capture gait are cameras
(cf 141, 5], [6]), electronic walkways (such as the GAITRite
[7]), and motion capture systems (e.g. Coda Motion units
CX1 [8]]). All these systems present significative drawbacks
such as unreliability of the information obtained with color
cameras since it depends on lighting conditions. The GAITRite
system is expensive and provides only information regarding
the position of the feet in the stance phase. Motion capture
(mocap) systems are also expensive and require that the users
wear (active or passive) tags, which is not possible in most
applications.

We have designed a new system to capture gait. As feet
paths are highly informative for gait recognition [9] and most
of medical gait-based purposes, our aim is to determine the
position of the feet in real time. Each foot is considered as a
point in an horizontal plane, and the vertical movements are
ignored. Many useful informations may be easily extracted:
walking speed, distance between feet over time, swing phase
duration, gait asymmetry, etc.

We use several range laser scanners to analyze an horizontal
slice of the scene. Our platform is cheaper than existing motion
capture systems and GAITRites, is insensitive to lighting

Figure 1. Our feet tracker is based on the distance profiles provided by a
set of range laser scanners (e.g. BEA LZR-il100) placed in a horizontal plane.

conditions, and does not require the persons to wear any tag.
Moreover, it captures the feet positions in both the swing and
the stance phases.

The outline of this paper is as follows. Section [[I] describes
the selected sensors, their advantages, and their limitations. In
Section we detail how our system is calibrated: the precise
location of the sensors in a plane and their orientations are to
be determined. Section [[V] is devoted to the tracker itself: it
describes the way feet (i.e. ankle section plane) coordinates
are calculated from the depth profiles given by the sensors.
Section [V] focuses on the use of our tracker in a real medical
application. Finally, we give a short conclusion in Section

II. SENSORS

We use several range laser scanners to analyze an horizontal
slice of the scene. The number of sensors can be adjusted
according to the target application specifications. Using several
sensors allows us to reduce occlusions, or to cover a wider
area. The scanned plane is chosen to be located at 15cm
above the floor, which is right above the tibio-tarsal joint of
the ankle in a barefoot configuration for adult individuals in
stance phase, and remains above the maximal height reached
by the feet during the swing phase, allowing the range laser
scanners to track the feet even in the swing phase.

A. Selecting the sensors

In previous works [10], [11], we used the range laser
scanners BEA LZR-p200. Those sensors have been designed
to monitor a door of 4m wide and 4 m high, and therefore
their behavior is undefined when the distances to measure
exceed 41/2 = 5.65 m. For some applications, it is mandatory
to reach larger distances. For example, the 25 ft distance
(7.62m) is a common requirement for standardized tests
concerning multiple sclerosis. That is why, in this work, we
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have chosen another model of the same family: the BEA
LZR-i100 (see Figure [T). These have only a limit distance of
10v/2 ~ 14.14 m, which is large enough for most applications.

The selected sensors are adequate for measuring distances
with a high precision, without any reflector. They are small,
and easy to place in various environments. Note that the risk
of interference between sensors is negligible, and therefore it
is safe to use several sensors to scan the same plane.

The sensors measure distances in 274 directions spanning
96°, in a plane, at 15 H z. Their resolution is 1 mm. In practice,
we observe a temporal variation of a few millimeters, and
seldom a few centimeters, on the acquired distances. It should
be noted that the sensors are strongly disturbed by highly
reflective materials such as metal, and black materials (in the
infrared band). It should also be noted that at discontinuities,
the sensors provide a random measure between the minimum
and the maximum distance. Therefore, the sensors may see
points where there is no object in the scene (these points
are named outliers in the following). Robustness to outliers
is therefore mandatory.

B. Behavior in dynamical scenes

The field of view of 96° is obtained thanks to an internal
rotating mirror. As the mirror has to turn 48° to cover the 96°,
a frame is acquired in &.70 5 ~ 9ms.

An object of 10cm (i.e. the typical size of a leg) located
at 1m from the sensor is viewed inside of a 5.7° large
angle, and therefore in %7-L-l-s ~ 0.52778ms. For a
walking speed of 5km/h, the maximal speed of the feet is
approximately 16 km/h. In consequence, a foot can move by
0.52778 1600000~ ().235 cm during the data acquisition. As
this displacement is negligible, the selected sensors are quick
enough to track feet with high precision.

However, it should be stressed that there exist no ways to
synchronize the sensors. With multiple sensors, merging the
information provided by the sensors is required. Unfortunately,
there may be a temporal gap of %5 s between the data to be
fused. For a walking speed of 5 km/h, this is equivalent to an
uncertainty of 29.6 cm on a foot position in the worst case.
Clearly, this source of uncertainty is dominant. Note however
that this uncertainty is only along the path followed by the
foot.

C. Towards a simple model of the sensors

In this paper, we assume that the sensors are punctual. This
implies that the 274 lines-of-sight are concurrent and that
the intersection point is located in the sensor. Under these
assumptions, the distance measured between the sensor and a
visible point of the scene is the distance between the point
and the aforementioned intersection. It follows that, to obtain
the coordinates of the 274 points seen by a sensor, a simple
polar to cartesian transform suffices.

III. THE CALIBRATION PROCEDURE

The goal of the calibration procedure is to determine the
precise location of the sensors in the room, and their orien-
tations. This knowledge is mandatory to fuse the information

provided by different sensors. Of course, this procedure has to
be done only once, after the installation of the sensors in the
room. In this section, we present a semi-automatic calibration
procedure.

It should be stressed that the calibration has to be very
accurate. An error of 0.075° on the orientation of a sensor
has for consequence an error of 1cm on the location of a
point seen at 7.62m. A well designed calibration procedure
is therefore needed.

A. Description of our calibration procedure

In the proposed procedure, a cylinder is successively placed
in the room at a few places. Each sensor has its own lo-
cal cartesian coordinate system. Each time the cylinder is
displaced, its center coordinates are estimated in the local
coordinate system of each sensor.

The passage from one local coordinate system to another
is done by a transformation composed of translation and
rotation. The calibration is equivalent to determining these
transformations. The cylinder has to be placed a least at two
different locations, but repeating the operation a dozen of
times, to take advantage of the least squares error reduction
mechanism, helps to improve the calibration. Note that there
is no need to increase the number of locations if the number of
sensors increases. Also, we assume that the cylinder is visible
to all sensors.

Let (C3,;,C5;) be the coordinates of the cylinder in its i-th
position expressed in the local cartesian coordinate system of
sensor s. If, in the local cartesian coordinate system of sensor
0, the sensor s is located at (Ai, A;) and is looking in the
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As this system is overconstrained when the cylinder is placed
more than two times, the solution has to be determined in the
least-squares sense.

In practice, we manage to ensure that the cylinder is the
only moving object in the scene during calibration. We apply a
background subtraction to the signal provided by each sensor,
in order to filter out the static elements of the scene and to keep
only the points corresponding to the cylinder. To decrease the
sensitivity to outliers, our implementation uses the RANSAC
algorithm to obtain robust circle fits.

The remainder of this section is devoted to the comparison
of four circle fitting procedures (three well known and a new
one), and to the selection of the best one. In our case, the data
points are sampled along a small arc of circle.
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B. Circle fitting methods

Let (z1,91), (z2,Y2), ... (Zn,yn) be the points by which
we want to get a circle of radius R and center (C,Cy)
to pass trough. The key to a solution consists in finding an
optimization criterion that leads to equations easy to solve.
For example, the least squares criterion

2

minizn; <\/(x —Co)+ (g — Cy)° - R) 3)

is difficult to handle since it leads to a nonlinear problem that
has no closed form solution (with iterative methods, one is
faced with questions related to convergence, plateaus, valleys,
and to the initial guess). Surprisingly, fitting a circle to a cloud
of points is a difficult problem. A entire book devoted to the
subject has been published recently [12].

1) KASA’s method: Instead of the criterion (3), KAsA
proposed in [[13]] to use the criterion

mini ((xi — )+ (g — Cy)° — R2)2 @)
i=1

Both criterions (3) and (@) are equivalent if there exists a
circle passing through all points. However, the solution may
be different if the observations are noisy. If R is an unknown,
KASA’s criterion is easier to deal with, because it leads to a
unique and explicit solution. We denote the centered moments:

o = 3 (@) (5= " ®

ab = — i~ i —
s

where z =1 3" 2, and § = L Y"1 | y; are the coordinates
of the gravity center of the cloud of points. With KASA’s
criterion, the optimal center of the circle is given by

. 1 pro2(p30 + pa2) — pan (pos + po1)

2 f20H02 — M3
C, = g+ %Mzo(,uo:s + po1) — ,u112(u30 + pi2) e
2002 — H11

2) Our method: KASA’s criterion with R known: If the
radius is known, then the optimal center corresponding to
KASA’s criterion may differ because we cannot write anymore

0

EEE:«%_CHMWM—QY—Rﬂ2=0 (8)

i=1
Without loss of generality, let’s assume that z = 0 and y = 0.
This can be obtain by translation the cloud of points if needed.
The center can be found by solving the following system.

22 (- G 4 (- 0~ B2)
% >l ((371 —Co) 4 (i — Cy)° - R2)2 =0
Co (Buao + po2 — R?) + C3 + C,C2 + Oy (2p11)
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At first sight, solving this system is difficult because the
equations are of the third order. Let’s assume that the distance

between the gravity center of the cloud and the center of the
circle is known, that is C2 + C’j = A, and using Cramer’s
rule,
c. = (M30+M12)(3M02+M20—32+A>—(H03+H21)(2H11)
T 7 (Bp2otpoz—R2+A)(Bpoztp20—R2+A)—4p2,
(H03+H21)(3H20+H02—R2+A)—(H30+H12)(2H11)
(Bp20+po2—R2+A) (Bpoz+p20—RZ+A)—4u3,

=

Ccy, =

Of course, the value of A has to be determined. This can be
done by checking that C? + C’g = A as assumed. With a few
simple algebraic manipulations, one can check that A is a root
of a fifth order polynomial

A° 4+ kgAY + ks A% + ko A2 + kA + ko =0 (10)

The values of kg, k1, ko, k3, and k4 are not given here due to a
lack of space, but can be easily computed. There are at most 5
solutions, and selecting the best one can be done using KASA’s
criterion. Only the positive roots should be considered, as A
is positive by definition. Note also that there exists always
at least one solution, even if the sample points are collinear,
because ko < (]

3) The methods of PRATT and TAUBIN: Instead of
parametrizing a circle with {C,, Cyy, R}, PRATT [[14] proposed
to use {A, B,C, D} such that the equation of the circle is

A2 +y*)+Br+Cy+D=0 (11)

This parameterization allows to describe circles as well as lines
(with A = 0). In some cases, only a small arc of the circle
is observed and it is hazardous to estimate the radius and to
decide on which side of the cloud the circle is. In those cases,
some people (e.g. [12]]) prefer to fit a line instead of a circle.
The criterion related to this parameterization is

minZ(A (27 +v7) +Bxi+0yi+D)2 (12)
i=1

Because the parameters {A, B,C, D} are defined up a scale
factor, and to avoid the trivial solution A = B=C = D =0,
one has to add a constraint. It can be showed that KASA’s
criterion is equivalent to this one with the constraint A = 1.
PRATT [14] used the constraint B2 + C? — 4AD = 1 which
has the advantage of ensuring that B? + C? —4AD > 0 (this
is required for circles). TAUBIN [15] proposed

4 (A (27 +y?) + Ba; + Cy; + D)
i=1

+(B*+C*—44AD) = 1 (13)

Other constraints have also be proposed by Gander [16] and
Nievergelt [17], but we will not consider them in this paper.

C. Selection of the circle fitting method

We evaluated the four above-mentionned methods (KASA,
KAsA with R known, TAUBIN, and PRATT) by simulation.
For the methods of PRATT and TAUBIN, we have used the
publicly available implementation of the author of [IZE

The polynomial takes a negative value for 3 = 0, and a positive infinite
one for 8 = 4o00. Therefore, there is at least one root between 0 and +oo.
Zhttp://www.math.uab.edu/~chernov/cl/MATLABcircle.html
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Figure 2. The mean distance between the estimated center of the calibration
cylinder and its true center, as a function of the noise level u. The red,
green, and blue curves correspond respectively to a calibration cylinder with a
diameter of 30 cm, 40 e¢m, and 50 cm. These results show that the fit method
introduced in this paper (solving KASA’s criterion with R known) outperforms
the other ones (the methods of KASA, TAUBIN and PRATT).

A cylinder is placed randomly, and fully included in the
visual field of the sensor. It is separated from the sensor by a
distance between 50 cm and 10m. A noise was simulated on
the distances measured by the virtual sensor: each measure-
ment is corrupted independently of the others, and the noise
is distributed uniformly on the[—w, u] interval. Therefore, we
assume that the distance measures are unbiased. We observe
the mean error, i.e. the mean distance between the estimated
center of the calibration cylinder and its true center. We want to
select the fitting method with the lower mean error. The mean
error depending on the noise level is depicted in Figure [2]

Note that KASA’s method is known to be highly biased
when a small arc is sampled. This bias is difficult to compen-
sate, because it depends on the noise level, and the sensors
are insufficiently characterized to predict the noise level.

Our experiments have shown that KASA with R known is
the fitting method that is best suited to our particular case.
KASA with R known is less sensitive to noise than KASA.
The methods of PRATT and TAUBIN are almost equivalent,
and are unable to cope with important noise (whether one
uses a SVD or Newton’s method). The reason is probably
that fitting lines as well as circles in a bad idea in our case
because C, = —% and Cyy = —%. Therefore, if the fitting
method prefers a line, estimating C, and C, is impossible
since A = 0. This conclusion stands in deep contrast with the
one of [12], which stated that the methods PRATT and TAUBIN
are theoretically preferable to KASA’s one, as a general rule.

D. Remark: application to robotics

Fitting circles of known radius to points sampled along
a small arc is a problem often encountered in robotics. For
example, in [[18], a mobile robot should interact with known
objects that have a cylindrical base. The sensor is a range laser
scanner or a 3D camera, and therefore the localization of the
objects is equivalent to the estimation of the object center from

Figure 3.
bottom right one: (1) the model of the empty scene, i.e. the background (2)
the points seen by all sensors (3) the result of the background subtraction (4)
after the convolution with a gaussian kernel (5) after local maxima search (6)
the final result of the tracker.

The different steps of our method. From the top left picture to the

a set of points sampled along an arc of circle. This is exactly
the same problem we are facing here. In [18] the circle is
fitted with KASA’s method; we know now that it is not the
best choice and that using KASA’s criterion with R known
would be a lot more precise.

IV. THE FEET TRACKER

The most straightforward methodology to track the feet
consists in building a localization map (c¢f [10]), filtering
uninteresting static objects (chairs, tables, ...) by using a
background subtraction algorithm (such as [19]]), and isolating
the feet by a connected components analysis (such as [20]).
However, the technique proposed in [10] to combine the
information provided by several range laser scanners assumes
that the observed scene is nearly static, and that the sensors
don’t see outlier points. Unfortunately, this is not the case,
so we propose a new method. Its main steps are depicted in

Figure

A. Locating the feet

Each sensor sees a cloud of points in the horizontal plane.
Thanks to the calibration, these clouds can be superimposed,
and merged. From the resulting cloud, we have to estimate a
set of two points that are the centers of each foot (or leg).

We apply a background subtraction to the signal provided
by each sensor, in order to filter out the static elements of
the scene and to keep only the points corresponding to the
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Figure 4. The theoretical error on the feet positions. The unit chosen to

express the distances and o is such that the diameter of the leg is D = 1.
These curves have been obtained by simulation in noise-free conditions, with
uniform and dense sampling.

feet. Then, the remaining points are convolved with a gaussian
kernel of standard deviation o (i.e. a gaussian is placed at
each each point, and they are summed). We expect to have, in
most cases, the two largest local maxima where the feet are.
We do not provide any output if there is less than two local
maxima, or if they are spaced more than it is possible. This
method is robust to outliers, and therefore a simple background
subtraction method suffices.

The standard deviation o is the only parameter that has
to be chosen. For the sake of theory, let’s assume that the
horizontal section of the feet are circles, and that they are
uniformly sampled. Let’s denote D the diameter of the feet.

We want to get a local maximum per foot. If there was only
one foot in the scene, it can be showed that o should be larger
than % if the sensors see only two points of the feet, or larger
than 0.36 D if the sensors see a lot of points. Now, consider
two feet. If o is too large, there is a risk to observe only one
maximum for both feet. The fact that we observe one or two
maxima depends on the distance between the feet, on D and
on o. This relation is depicted in Figure i} We consider that, in
the worst case, D = 14 ¢m (with trousers) and that only two
points are seen by foot. Accordingly, we chose o = % =Tcm.
According to Figure 4] we expect our localization procedure
to fail if the distance between the centers of the legs is less
than 14 x 1.4428 ~ 20 cm and to give a biased result if the

distance is less than 14 x 2 ~ 28 cm.

In future work, we would like to improve the localization
procedure in order to obtain an unbiased feet position estimate,
and to be able to localize the feet even if there are close.
Some ideas are (i) to correct the estimate thanks to the known
relation between the estimated inter-feet distance and its true
value, or (ii) to use a gaussian ring kernel instead of the
gaussian one, or (iii) to use machine learning principles.
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Figure 5. @, (¢) is the signed area of the blue triangle.

B. Tracking the feet

At this point, we have a couple of points at each frame. In
this step, we would like to cluster all the points in two classes,
in order to obtain a trajectory for each foot.

At the time this paper is written, we minimize the total
length of the two trajectories. This criterion leads to excellent
results when the observed person walks along a line. However,
from time to time we observed that when the person turns
quickly, the trajectories may cross. This is probably due to
an insufficient acquisition rate (15 H z). This kind of problem
also arises with a tandem gait walk. In future work, we plan
to improve the technique used to track the feet, perhaps using
a Kalman filter.

C. Identifying the feet

We know the position of both feet over time, but we still
need to determine which foot is the left one, and which one is
the right one. The only clue available is the motion direction.
Therefore, it is impossible to correctly identify the feet if the
observed person moves in reverse. Let’s denote (z¢(t),y¢(t))
the coordinates of the foot “f” at time ¢. The following quantity

L] walt) ma(t+1) Sl
Cab(t) = 5| yalt) walt+1) wOFp(t+) (14)
1 1 1

is positive if the foot “a” is on the right of the foot “b”
between the times ¢ and ¢+ 1, and | D, (¢)] is a certainty factor
(the geometrical meaning of ®,;(t) is depicted in Figure [3)).
Therefore, letting T' be the total walk duration,

T-2

D [@1a(t) = Py (£)] < 0

t=0

(15)

if the trajectory number 1 corresponds to the left foot. We
expect this criterion to be suitable, not only for straight paths,
but also for any path (such as an o-shaped path or an co-shaped
path).

V. APPLICATION TO NEUROLOGICAL DISEASE ANALYSIS

Gait disorders measurement and quantification is of the
utmost importance in the follow-up and therapeutic decision-
making process of numerous medical conditions (whether
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Figure 6.
of the four sensors (obtained by calibration), a 25 ft straight path, and the
previously estimated feet positions. On the left hand side, the observed person
has a normal gait, and on the right hand side, he has an ataxic gait. Such
pathologies can be easily detected and measured with our method. A few full
videos are available at http://www.ulg.ac.be/telecom/vgaims/.

Screenshots of our software. Upper images display the position

orthopaedic, rhumatologic, pediatric, cardiorespiratory, or neu-
rologic). For example, in the field of multiple sclerosis, a com-
mon neurological disease where gait is frequently impaired,
change in walking performances can lead to significative
therapeutic modifications [21].

However, the current available tools measuring gait dysfunc-
tion suffer from various limitations [22] and are completely
blind to certain important gait features, such as ataxia, sym-
metry of the feet paths and individual feet walking speed,
freezing of gait, etc, that are only qualitatively described in the
neurological examination. The feet tracker developed in this
work allows one to easily capture these features in a simple
way, and at low cost (see Figure [6).

A dozen of videos demonstrating our results are avail-
able at http://www.ulg.ac.be/telecom/vgaims/. Qualitatively,
our method is robust and precise. It is clear beyond the
traditional measurement of global walking speed, and its
use can be extended to measure more subtle and specific
gait abnormalities. However, the questions of precision and
accuracy are still problematic, because of the intrinsic lack of
ground-truth data in this specific field.

VI. CONCLUSION

We have developed a new platform to capture gait, and a
dedicated calibration procedure. It is a non-intrusive and low-
cost platform. It has proven to be suitable for medical pur-
poses, and we think that it can be used for other applications
like automatic person identification.

REFERENCES

[1] N. Boulgouris, D. Hatzinakos, and K. Plataniotis, “Gait recognition: a
challenging signal processing technology for biometric identification,”
IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 78-90, November
2005.

[2] X. Li and S. Yan, “Gait components and their application to gender
recognition,” IEEE Transactions on Systems, Man, and Cybernetics —
FPart C: Applications and Reviews, vol. 38, no. 2, pp. 145-155, March
2008.

[3] J. Lu and Y.-P. Tan, “Gait-based human age estimation,” IEEE Transac-
tions on Information Forensics and Security, vol. 5, no. 4, pp. 761-770,
December 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

O. Barnich and M. Van Droogenbroeck, “Frontal-view gait recognition
by intra- and inter-frame rectangle size distribution,” Pattern Recognition
Letters, vol. 30, no. 10, pp. 893-901, July 2009.

B. McDonald and R. Green, “A silhouette based technique for locating
and rendering foot movements over a plane,” in International Conference
on Image and Vision Computing, Wellington, New Zealand, November
2009, pp. 385-390.

E. Stone, D. Anderson, M. Skubic, and J. Keller, “Extracting foot-
falls from voxel data,” in International Conference of the Engineering
in Medicine and Biology Society (EMBC), Buenos Aires, Argentina,
August-September 2010, pp. 1119-1122.

U. Givon, G. Zeilig, and A. Achiron, “Gait analysis in multiple sclerosis:
Characterization of temporal-spatial parameters using gaitrite functional
ambulation system,” Gait & Posture, vol. 29, no. 1, pp. 138-142, 2009.
C. Schwartz, B. Forthomme, O. Briils, V. Denoél, S. Cescotto, and
J. Croisier, “Using 3D to understand human motion,” in Proceedings
of 3D Stereo MEDIA, Ligge, Belgium, December 2010.

A. Switor’lski, A. Polariski, and K. Wojciechowski, “Human identification
based on gait paths,” in Advances Concepts for Intelligent Vision Systems
(ACIVS), ser. Lecture Notes in Computer Science, J. Blanc-Talon,
R. Kleihorst, W. Philips, D. Popescu, and P. Scheunders, Eds., vol. 6915.
Gent, Belgium: Springer, August 2011, pp. 531-542.

S. Piérard, V. Pierlot, O. Barnich, M. Van Droogenbroeck, and J. Verly,
“A platform for the fast interpretation of movements and localization of
users in 3D applications driven by a range camera,” in 3DTV Conference,
Tampere, Finland, June 2010.

O. Barnich, S. Piérard, and M. Van Droogenbroeck, “A virtual curtain for
the detection of humans and access control,” in Advanced Concepts for
Intelligent Vision Systems (ACIVS), Part II, Sydney, Australia, December
2010, pp. 98-109.

N. Chernov, Circular and linear regression: fitting circles and lines by
least aquares, ser. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability. USA: CRC Press, 2011, vol. 117.

I. Kasa, “A circle fitting procedure and its error analysis,” IEEE
Transactions on instrumentation and measurement, vol. IM-25, no. 1,
pp. 8-14, March 1976.

V. Pratt, “Direct least-squares fitting of algebraic surfaces,” in Proceed-
ings of the 14th annual conference on Computer graphics and interactive
techniques (SIGGRAPH), vol. 21(4), July 1987, pp. 145-152.

G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with applications to edge and
range image segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 13, no. 11, pp. 1115-1138, November 1991.
W. Gander, G. Golub, and R. Strebel, “Least-squares fitting of circles
and ellipses,” BIT Numerical Mathematics, vol. 34, no. 4, pp. 558-578,
1994.

Y. Nievergelt, “Hyperspheres and hyperplanes fitted seamlessly by
algebraic constrained total least-squares,” Linear Algebra and its Ap-
plications, vol. 331, pp. 43-59, 2001.

M. Greuter, M. Rosenfelder, M. Blaich, and O. Bittel, “Obstacle and
game element detection with the 3d-sensor kinect,” in Research and
Education in Robotics - EUROBOT 2011. Springer, 2011, vol. 161,
pp. 130-143.

O. Barnich and M. Van Droogenbroeck, “ViBe: A universal background
subtraction algorithm for video sequences,” IEEE Transactions on Image
Processing, vol. 20, no. 6, pp. 1709-1724, June 2011.

F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Computer Vision and Image
Understanding, vol. 93, no. 2, pp. 206-220, February 2004.

A. Goodman, T. Brown, L. Krupp, R. Schapiro, S. Schwid, R. Cohen,
L. Marinucci, and A. Blight, “Sustained-release oral fampridine in
multiple sclerosis: a randomised, double-blind, controlled trial,” The
Lancet, vol. 373, no. 9665, pp. 732—738, February 2009.

R. Phan-Ba, A. Pace, P. Calay, P. Grodent, F. Douchamps, R. Hyde,
C. Hotermans, V. Delvaux, I. Hansen, G. Moonen, and S. Belachew,
“Comparison of the timed 25-foot and the 100-meter walk as perfor-
mance measures in multiple sclerosis,” Neurorehabilitation and neural
repair, vol. 25, no. 7, pp. 672-679, September 2011.


http://www.ulg.ac.be/telecom/vgaims/
http://www.ulg.ac.be/telecom/vgaims/

	Introduction
	Sensors
	Selecting the sensors
	Behavior in dynamical scenes
	Towards a simple model of the sensors

	The calibration procedure
	Description of our calibration procedure
	Circle fitting methods
	Kåsa's method
	Our method: Kåsa's criterion with R known
	The methods of Pratt and Taubin

	Selection of the circle fitting method
	Remark: application to robotics

	The feet tracker
	Locating the feet
	Tracking the feet
	Identifying the feet

	Application to neurological disease analysis
	Conclusion
	References

