EXTENSIONS AND RESTRICTIONS OF WYTHOFF'S GAME PRESERVING WYTHOFF'S SEQUENCE AS SET OF \mathcal{P} POSITIONS

Eric Duchêne (Univ. Lyon 1)
 Aviezri S. Fraenkel (Weizmann Institute, Rehovot) Richard J. Nowakowski (Dalhousie University, Halifax) Michel Rigo (University of Liège)

http://www.discmath.ulg.ac.be/
J. Combin. Theory ser. A. 117 (2010), 545-567
http://hdl.handle.net/2268/100440
LIAFA, Paris, October 21th, 2011

Wythoff's game or "Catching the queen"

W. A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907), 199-202.

RULES OF THE GAME

- Two players play alternatively
- Two piles of tokens
- Remove
- any positive number of tokens from one pile or,
- the same positive number from the two piles.
- The one who takes the last token wins the game (last move wins).

Set of moves : $\{(i, 0), i>0\} \cup\{(0, j), j>0\} \cup\{(k, k), k>0\}$

WYTHOFF'S GAME OR "CATCHING THE QUEEN"

Wythoff's game or "Catching the queen"

$(0,0),(1,2),(3,5),(4,7),(6,10), \ldots$
P-POSITION
A \mathcal{P}-position is a position q from which the previous player (moving to q) can force a win.

N-POSITION

A \mathcal{N}-position is a position p from which the actual player has an option leading ultimately to win the game.

Question : Are all positions \mathcal{N} or \mathcal{P} ?

Game GRaph

Initial position $\left(i_{0}, j_{0}\right)$, by symmetry, take only $(i \geq j)$

- Vertices : $\left\{(i, j), i \leq i_{0}, j \leq j_{0}\right\}$
- Edges : from each position to all its options :

$$
\begin{array}{l|lll|l}
i>0 & (i, j) & \rightarrow & (i-k, j) & k=1, \ldots, i \\
j>0 & (i, j) & \rightarrow & (i, j-k) & k=1, \ldots, j \\
i, j>0 & (i, j) & \rightarrow & (i-k, j-k) & k=1, \ldots, \min (i, j)
\end{array}
$$

GAME GRAPH

REMARK

Due to the rules, the game graph for Wythoff's game is acyclic.

THEOREM [BERGE]

Any finite acyclic diaranh has a unique kernel.
Moreover, this kernel can be obtained efficiently.
REMINDER/DEFINITION OF A KERNEL
A kernel in a araph $G=(V . E)$ is a subset $W \subseteq V$

- stable : $\forall x, y \in W,(x, y) \notin E$
- absorbing : $\forall x \in V \backslash W, \exists y \in W:(x, y) \in E$.

Game graph

REMARK

Due to the rules, the game graph for Wythoff's game is acyclic.

THEOREM [BERGE]

Any finite acyclic digraph has a unique kernel. Moreover, this kernel can be obtained efficiently.

REMINDER/DEFINITION OF A KERNEL

A kernel in a graph $G=(V, E)$ is a subset $W \subseteq V$

- stable : $\forall x, y \in W,(x, y) \notin E$
- absorbing : $\forall x \in V \backslash W, \exists y \in W:(x, y) \in E$.

GAME GRAPH

Bottom-Up approach from the sinks (they belong to the kernel because it is absorbing)

GAME GRAPH

Bottom-Up approach from the sinks (they belong to the kernel because it is absorbing)

$(0,0)$

GAME GRAPH

Bottom-Up approach from the sinks (they belong to the kernel because it is absorbing)

$(0,0)$

GAME GRAPH

Bottom-Up approach from the sinks (they belong to the kernel because it is absorbing)

$(0,0)$

GAME GRAPH

Bottom-Up approach from the sinks (they belong to the kernel because it is absorbing)

$(0,0)$

Game graph

For Wythoff's game, its game graph has a unique kernel K.

- stable : from a position in K, you always play out of K,
- absorbing : from a position outside K, you can play into K,
- $(0,0)$ has to belong to K, otherwise K won't be absorbing.

COROLLARY (FOR ANY IMPARTIAL ACYCLIC GAME)

The set of \mathcal{P}-positio
and all the other po
$\{\mathcal{P}$-positions $\} \supseteq K$
If p is a position in K, then it is a \mathcal{P}-position
because there is a winning strategy outside K.
$\{\mathcal{P}$-positions $\} \subseteq K$
If p is a \mathcal{P}-position not in K, then there is a move from p to K, thus p is a \mathcal{N}-position!

Game GRaph

For Wythoff's game, its game graph has a unique kernel K.

- stable : from a position in K, you always play out of K,
- absorbing : from a position outside K, you can play into K,
- $(0,0)$ has to belong to K, otherwise K won't be absorbing.

COROLLARY (FOR ANY IMPARTIAL ACYCLIC GAME)

The set of \mathcal{P}-positions is exactly the kernel K and all the other positions are \mathcal{N}-positions.
$\{\mathcal{P}$-positions $\} \supseteq K$
If p is a position in K, then it is a \mathcal{P}-position because there is a winning strategy outside K.
$\{\mathcal{P}$-positions $\} \subseteq K$
If p is a \mathcal{P}-position not in K, then there is a move from p to K, thus p is a \mathcal{N}-position !

A USUAL PROOF TECHNIQUE

To prove that a given set S of positions is the set of \mathcal{P}-positions of a game, one shows that S is stable and absorbing with respect the game moves.

LINK WITH COMBINATORICS ON WORDS. . .

P-POSITION OF THE WYTHOFF' S GAME I
$\left(A_{n}, B_{n}\right)_{n \geq 0}=(0,0),(1,2),(3,5),(4,7), \ldots$

$$
\forall n \geq 0, \quad\left\{\begin{array}{l}
A_{n}=\operatorname{Mex}\left\{A_{i}, B_{i} \mid i<n\right\} \\
B_{n}=A_{n}+n
\end{array}\right.
$$

P-POSITION OF THE WYTHOFF'S GAME II

1	2	3	4	5	6	7	8	9	10	11	12	13	14	\cdots

P-POSITIONS OF THE WYTHOFF's GAME III

$$
\left(A_{n}, B_{n}\right)_{n \geq 0}=\left(\lfloor n \tau\rfloor,\left\lfloor n \tau^{2}\right\rfloor\right) .
$$

- A.S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly 89 (1982), 353-361.
- A.S. Fraenkel, Heap games, Numeration systems and Sequences, Annals of Combinatorics 2 (1998), 197-210.
- A.S. Fraenkel, The Raleigh Game, INTEGERS (2007).
- E. Duchêne, M.R., A morphic approach to combinatorial games: the Tribonacci case, RAIRO Theoret. Inform. Appl. 42 (2008), 375-393.
- E. Duchêne, M.R., A class a cubic Pisot unit games, Monat. für Math. 155 (2008), 217-249.

Different sets of moves / more piles

Different sets of \mathcal{P}-positions to characterize...

OUR GOAL / DUAL QUESTION

Consider invariant extensions or restrictions of Wythoff's game that keep the set of \mathcal{P}-positions of Wythoff's game unchanged.

Characterize the different sets of moves...
\downarrow
Same set of \mathcal{P}-positions as Wythoff's game

Definition, E. Duchêne, M. R., TCS 411 (2010)

A removal game G is invariant, if for all positions $p=\left(p_{1}, \ldots, p_{\ell}\right)$ and $q=\left(q_{1}, \ldots, q_{\ell}\right)$ and any move $x=\left(x_{1}, \ldots, x_{\ell}\right)$ such that $x \preceq p$ and $x \preceq q$ then, the move $p \rightarrow p-x$ is allowed if and only if the move $q \rightarrow q-x$ is allowed.

- Nim or Wythoff game are invariant games
- Raleigh game, the Rat and the Mouse game, Tribonacci game, Cubic Pisot games,... are NOT invariant

NON-INVARIANT GAME

Remove an odd number of tokens from a position (a, b) if a or b is a prime number, and an even number of tokens otherwise.

Very recently, Nhan Bao Ho (La Trobe Univ., Melbourne), Two variants of Wythoff's game preserving its \mathcal{P}-positions:

- A restriction of Wythoff's game in which if the two entrees are not equal then removing tokens from the smaller pile is not allowed.
- An extension of Wythoff's game obtained by adjoining a move allowing players to remove k tokens from the smaller pile and ℓ tokens from the other pile provided $\ell<k$.

OUR GOAL / DUAL QUESTION

Consider invariant extensions or restrictions of Wythoff's game that keep the set of \mathcal{P}-positions of Wythoff's game unchanged.

- We characterize all moves that can be adjoined while preserving the original set of \mathcal{P}-positions.
- Testing if a move belong to such an extended set of rules can be done in polynomial time.

DURING OUR JOURNEY...

CANONICAL CONSTRUCTION [COBHAM' 72]

Let $k \geq 2$. A sequence $x=\left(x_{n}\right)_{n \geq 0} \in A^{\mathbb{N}}$ is k-automatic IFF it is the image under a coding of an infinite word generated by a prolongable k-uniform morphism.

EXAMPLE

Characteristic sequence of $\left\{n \mid \exists i, j \geq 0: n=2^{i}+2^{j}\right\} \cup\{1\}$

$$
g:\left\{\begin{array}{lll}
A & \mapsto & A B \\
B & \mapsto & B C \\
C & \mapsto & C D \\
D & \mapsto & D D
\end{array} \quad f:\left\{\begin{array}{rll}
A & \mapsto & 0 \\
B & \mapsto & 1 \\
C & \mapsto & 1 \\
D & \mapsto & 0
\end{array}\right.\right.
$$

$g^{\omega}(A)=A B B C B C C D B C C D C D D D B C C D C D D D C D D D D D D D \cdots$

$$
f\left(g^{\omega}(A)\right)=01111110111010001110100010000000 \cdots
$$

DURING OUR JOURNEY...

$f\left(g^{\omega}(A)\right)=01111110111010001110100010000000 \cdots$

$$
x_{n}=\tau\left(q_{0} \cdot \operatorname{rep}_{2}(n)\right)
$$

DURING OUR JOURNEY...

Canonical construction: (non-uniform) morphisms \rightarrow automata

$$
\varphi: a \mapsto a b c, b \mapsto a c, c \mapsto b
$$

$\varphi^{\omega}(a)=a b c a c b a b c b a c a b c a c b a c a b c b a b c a c b \cdots$
Consider the language $L=L(\mathcal{M}) \backslash 0\{0,1,2\}^{*}$.
Remark: Positions in $\varphi^{\omega}(a)$ are counted from 1.

Take the words of L with radix order (abstract system)
(a)

Not a "positional" system, no sequence behind.

EXAMPLE :

The 4th letter is a, it corresponds to $w_{3}=10$.
Since $\varphi(a)=a b c$, we consider $\left\{\begin{array}{l}w_{3} 0=100=w_{i} \\ w_{3} 1=101=w_{i+1} \\ w_{3} 2=102=w_{i+2}\end{array}\right.$ then the $(i+1)$ st, $(i+2)$ st, $(i+3)$ st letters are a, b, c.

$$
\operatorname{rep}_{L}(i):=w_{i}, \quad \operatorname{val}_{L}\left(w_{i}\right):=i
$$

PROPOSITION

Let the nth letter of $\varphi^{\omega}(a)$ be σ and w_{n-1} be the nth word in L. If $\varphi(\sigma)=x_{1} \cdots x_{r}$, then $x_{1} \cdots x_{r}$ appears in $\varphi^{\omega}(a)$ in positions $\operatorname{val}_{L}\left(w_{n-1} 0\right)+1, \ldots, \operatorname{val}_{L}\left(w_{n-1}(r-1)\right)+1$.

For Wythoff's game: Fibonacci word $\mathcal{F}, L=1\{01,0\}^{*} \cup\{\varepsilon\}$ and we get the usual Fibonacci system $\rho_{F}: \mathbb{N} \rightarrow L, \pi_{F}: L \rightarrow \mathbb{N}$.

Coroltary

- If the nth letter in \mathcal{F} is $a(n \geq 1)$, then this a produces through φ a factor ab occupying positions $\pi_{F}\left(\rho_{F}(n-1) 0\right)+1$ and $\pi_{F}\left(\rho_{F}(n-1) 1\right)+1$
- If the nth letter in \mathcal{F} is $b(n \geq 1)$, then this b produces through φ a letter a occupying position $\pi_{F}\left(\rho_{F}(n-1) 0\right)+1$

$$
\operatorname{rep}_{L}(i):=w_{i}, \quad \operatorname{val}_{L}\left(w_{i}\right):=i
$$

PROPOSITION

Let the nth letter of $\varphi^{\omega}(a)$ be σ and w_{n-1} be the nth word in L. If $\varphi(\sigma)=x_{1} \cdots x_{r}$, then $x_{1} \cdots x_{r}$ appears in $\varphi^{\omega}(a)$ in positions $\operatorname{val}_{L}\left(w_{n-1} 0\right)+1, \ldots, \operatorname{val}_{L}\left(w_{n-1}(r-1)\right)+1$.

For Wythoff's game: Fibonacci word $\mathcal{F}, L=1\{01,0\}^{*} \cup\{\varepsilon\}$ and we get the usual Fibonacci system $\rho_{F}: \mathbb{N} \rightarrow L, \pi_{F}: L \rightarrow \mathbb{N}$.

COROLLARY

- If the nth letter in \mathcal{F} is $a(n \geq 1)$, then this a produces through φ a factor ab occupying positions $\pi_{F}\left(\rho_{F}(n-1) 0\right)+1$ and $\pi_{F}\left(\rho_{F}(n-1) 1\right)+1$.
- If the nth letter in \mathcal{F} is $b(n \geq 1)$, then this b produces through φ a letter a occupying position $\pi_{F}\left(\rho_{F}(n-1) 0\right)+1$.

Reminder on Fibonacci numeration system

Fibonacci sequence : $F_{i+2}=F_{i+1}+F_{i}, F_{0}=1, F_{1}=2$
Use greedy expansion, ...,21, 13, 8, 5, 3, 2, 1

n	$\rho_{F}(n)$	n	$\rho_{F}(n)$	n	$\rho_{F}(n)$
1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182.

In fact, this is a special case of the following result.

Theorem [A. Maes, M.R. '02]

The set of S-automatic sequences is exactly the set of morphic words.

Take any regular language with radix order \oplus DFAO

i	0	1	2	3	4	5	6	7	8	9	\cdots
$\operatorname{rep}_{S}(i)$	ε	a	b	$a a$	$a b$	$b b$	aaa	$a a b$	$a b b$	$b b b$	\cdots

$01023031200231010123023031203120231002310123010123 \ldots$

n	1	2	3	4	5	6	7	8	9	10	11	12
	a	b	a	a	b	a	b	a	a	b	a	a
$\begin{aligned} & \hline A_{i} \\ & B_{i} \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12
$\rho_{F}(n-1)$	ω	-	은	은	둔	응	응	응	응	$\begin{aligned} & \bar{\circ} \\ & \hline \end{aligned}$	$\frac{0}{8}$	$\begin{aligned} & 8 \\ & \hline \stackrel{0}{\circ} \end{aligned}$

P-POSITIONS OF THE WYTHOFF's GAME IV

$$
\begin{aligned}
& A_{n}=\pi_{F}\left(\rho_{F}(n-1) 0\right)+1 \\
& B_{n}=\pi_{F}\left(\rho_{F}\left(A_{n}-1\right) 1\right)+1
\end{aligned}
$$

More?

Can we get a "morphic characterization" of the Wythoff's matrix ?

$$
\left(P_{i, j}\right)_{i, j \geq 0}=\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \\
\vdots & & & & & & & & & & & \ddots
\end{array}
$$

Let's try something...

$$
\begin{aligned}
& f \mapsto \begin{array}{|l|l|}
\hline g & b \\
\hline h & d \\
\hline
\end{array} \quad g \mapsto \begin{array}{|l|l|}
\hline f & b \\
\hline h & d \\
\hline
\end{array} \quad h \mapsto \begin{array}{|l|l|l|}
\hline i & m \\
\hline i & m \\
\hline h & d \\
\hline
\end{array} \\
& j \mapsto \begin{array}{|l|l|}
\hline k & m \\
\hline & c \\
\hline
\end{array} \\
& I \mapsto \begin{array}{|l|l|}
\hline k & m \\
\hline c & d \\
\hline
\end{array}
\end{aligned}
$$

and the coding

$$
\mu: e, g, j, l \mapsto 1, \quad a, b, c, d, f, h, i, k, m \mapsto 0
$$

O. Salon, Suites automatiques à multi-indices, Séminaire de théorie des nombres, Bordeaux, 1986-1987, exposé 4.

SHAPE-S YMMETRIC MORPHISM [A. MAES '99]

If P is the infinite bidimensional picture that is the fixpoint of φ, then for all $i, j \in \mathbb{N}$, if $\varphi\left(P_{i, j}\right)$ is a block of size $k \times \ell$ then $\varphi\left(P_{j, i}\right)$ is of size $\ell \times k$

sizes : 1, 2, 3, 5

$\cdots \mapsto$| a | b | i | i | m | i | m | i |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c | d | \mathbf{e} | h | d | h | d | h |
| i | \mathbf{j} | i | f | b | i | m | i |
| i | m | k | i | m | \mathbf{g} | b | i |
| h | d | c | h | d | h | d | \mathbf{e} |
| i | m | i | \mathbf{l} | m | i | m | i |
| h | d | h | c | d | h | d | h |
| i | m | i | i | \mathbf{j} | i | m | i |

size : 8,...

MORPHISMS \rightarrow AUTOMATA

We can do the same as for the unidimensional case :
Automaton with input alphabet

$$
\begin{gathered}
\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\} \\
\varphi(r)=\begin{array}{|l|l|}
\hline s & t \\
\hline u & v \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline s & \mid \\
\hline u & \text { or } s \\
\hline
\end{array}
\end{gathered}
$$

we have transitions like

$$
r \xrightarrow{\binom{0}{0}} s, \quad r \xrightarrow{\binom{1}{0}} t, \quad r \xrightarrow{\binom{0}{1}} u, \quad r \xrightarrow{\binom{1}{1}} v
$$

We get (after trimming useless part with four states)

This automaton accepts the words

$$
\binom{0 w_{1} \cdots w_{\ell}}{w_{1} \cdots w_{\ell} 0} \text { and }\binom{w_{1} \cdots w_{\ell} 0}{0 w_{1} \cdots w_{\ell}}
$$

where $w_{1} \cdots w_{\ell}$ is a valid F-representation ending with an even number of zeroes.

Such a characterization is well-known, but differs from the one we get previously...

REMINDER

For all $n \geq 1$, we have

$$
\begin{aligned}
& A_{n}=\pi_{F}\left(\rho_{F}(n-1) 0\right)+1 \\
& B_{n}=\pi_{F}\left(\rho_{F}\left(A_{n}-1\right) 1\right)+1
\end{aligned}
$$

It is hopefully the same, but why ?

- First case : $\rho_{F}(n-1)=u 0$

$$
\rho_{F}\left(A_{n}\right)=\rho_{F}(\pi_{F}(\underbrace{\rho_{F}(n-1) 0}_{u 00})+1)=u 01 \text { no zero }
$$

$\rho_{F}\left(A_{n}-1\right)=u 00$ and

$$
\rho_{F}\left(B_{n}\right)=\rho_{F}(\pi_{F}(\underbrace{\rho_{F}\left(A_{n}-1\right) 1}_{u 001})+1)=u 010 \text { one zero }
$$

- Second case : $\rho_{F}(n-1)=u 01$

$$
\rho_{F}\left(A_{n}\right)=\rho_{F}(\pi_{F}(\underbrace{\rho_{F}(n-1) 0}_{u 010})+1)=" u 011^{\prime \prime} \ldots
$$

Normalize $u 011$ or look for the successor of $u 010$

Use the transducer (R to L) computing the successor [Frougny'97]

$\rho_{F}\left(A_{n}-1\right)=u 010$ and

$$
\rho_{F}\left(B_{n}\right)=\rho_{F}(\pi_{F}(\underbrace{\rho_{F}\left(A_{n}-1\right) 1}_{u 0101})+1)=" u 0102^{\prime \prime} \ldots
$$

$$
101 \rightarrow 1000, \quad 3 \text { zeroes }
$$

$$
\underbrace{x 10(01)^{n}}_{u} 0101 \rightarrow x 101(00)^{n} 000 \quad 2 n+3 \text { zeroes, } n \geq 0
$$

$$
\underbrace{1(01)^{n}}_{u} 0101 \rightarrow 100(00)^{n} 000 \quad 2 n+5 \text { zeroes, } n \geq 0
$$

Conclusion : " A_{n} even number of zeroes, B_{n} one more", OK

EXTENSION PRESERVING SET OF \mathcal{P}-POSITIONS

To decide whether or not a move can be adjoined to Wythoff's game without changing the set K of \mathcal{P} - positions, it suffices to check that it does not change the stability property K.
Remark : absorbing property holds true whatever the adjoined move is.

Consequence

A move (i, j) can be added IFF it prevents to move from a \mathcal{P}-position to another \mathcal{P}-position.

In other words, a necessary and sufficient condition for a move $(i, j)_{i<j}$ to be adjoined is that it does not belong to

$$
\left\{\left(A_{n}-A_{m}, B_{n}-B_{m}\right): n>m \geq 0\right\} \cup\left\{\left(A_{n}-B_{m}, B_{n}-A_{m}\right): n>m \geq 0\right\}
$$

Thanks to the previous characterizations of A_{n}, B_{m},

Proposition

A move $(i, j)_{i<j}$ can be adjoined to without changing the set of \mathcal{P}-positions IFF

$$
(i, j) \neq\left(\lfloor n \tau\rfloor-\lfloor m \tau\rfloor,\left\lfloor n \tau^{2}\right\rfloor-\left\lfloor m \tau^{2}\right\rfloor\right) \forall n>m \geq 0
$$

and

$$
(i, j) \neq\left(\lfloor n \tau\rfloor-\left\lfloor m \tau^{2}\right\rfloor,\left\lfloor n \tau^{2}\right\rfloor-\lfloor m \tau\rfloor\right) \forall n>m \geq 0
$$

For all $i, j \geq 0, W_{i, j}=0$ IFF Wythoff's game with the adjoined move (i, j) has Wythoff's sequence as set of \mathcal{P}-positions,

$$
\left(W_{i, j}\right)_{i, j \geq 0}=\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & \mathbf{1} & 0 & \\
0 & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \\
0 & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \mathbf{1} & \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & \\
0 & 0 & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & \\
0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \\
0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \\
\vdots & & & & & & & & & & & \ddots
\end{array}
$$

COROLLARY

Let $I \subseteq \mathbb{N}$. Wythoff's game with adjoined moves

$$
\left\{\left(x_{i}, y_{i}\right): i \in I, x_{i}, y_{i} \in \mathbb{N}\right\}
$$

has the same sequence $\left(A_{n}, B_{n}\right)$ as set of \mathcal{P}-positions
IFF
$W_{x_{i}, y_{i}} \neq 1$ for all $i \in I$.

ARE WE DONE ? Complexity issue

We investigate tractable extensions of Wythoff's game, we also need to test these conditions in polynomial time. And the winner can consummate a win in at most an exponential number of moves.

MANY "EFFORTS" LEAD TO THIS

For any pair (i, j) of positive integers, we have $W_{i, j}=1$ if and only if one the three following properties is satisfied:

- $\left(\rho_{F}(i-1), \rho_{F}(j-1)\right)=(u 0, u 01)$ for any valid F-representation u in $\{0,1\}^{*}$.
- $\left(\rho_{F}(i-2), \rho_{F}(j-2)\right)=(u 0, u 01)$ for any valid F-representation u in $\{0,1\}^{*}$.
- $\left(\rho_{F}\left(j-A_{i}-2\right), \rho_{F}\left(j-A_{i}-2+i\right)\right)=\left(u 1, u^{\prime} 0\right)$ for any two valid F-representations u and u^{\prime} in $\{0,1\}^{*}$.

MORPHIC CHARACTERIZATION OF $W . .$. IN PROGRESS

$$
\begin{aligned}
& f \mapsto \begin{array}{|l|l|l|l|}
\hline g & b \\
\hline y & b \\
\hline o & t \\
\hline
\end{array} \quad h \mapsto \begin{array}{|c|c|c|}
\hline z \\
\hline c \\
\hline
\end{array} \quad i \mapsto \begin{array}{|l|l|}
\hline o & d \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x \mapsto \begin{array}{|l|l|}
\hline z & n \\
\hline c & d
\end{array} \quad y \mapsto \begin{array}{|l|l|}
\hline g & b \\
\hline o & d \\
\hline
\end{array} \quad z \mapsto \begin{array}{|l|l|}
\hline x & n \\
\hline c & t \\
\hline
\end{array}
\end{aligned}
$$

and the coding $\nu: a, b, c, d, e, i, j, k, l, n, o, p, q, r \mapsto 0$ $f, g, h, m, s, t, u, v, w, x, y, z \mapsto 1$.

Corresponding automaton

SOME OF THE MACHINERY BEHIND

LEMMA

Let \mathcal{F}_{n} be the prefix of \mathcal{F} of length n.
For any finite factor bua occurring in \mathcal{F} with $|u|=n$, we have $|u|_{a}=\left|\mathcal{F}_{n}\right|_{a}$ and $|u|_{b}=\left|\mathcal{F}_{n}\right|_{b}$.

EXAMPLE

Take $u=$ aabaab, bua of length 8 starts in \mathcal{F} from position 7 . $\mathcal{F}_{6}=$ abaaba is a permutation of u.

$$
\mathcal{F}=\underbrace{a b a a b a}_{\mathcal{F}_{6}} \overbrace{\underbrace{\text { aabaab }}_{u}}^{\text {bua }} a b a a b a b a a b a \cdots
$$

Proof : algebraic

LEMMA

Let $n \geq 1$ be such that $B_{n+1}-B_{n}=2$. Then $\rho_{F}\left(B_{n}-1\right)$ ends with 101.

Proof: Morphic structure of \mathcal{F}

PROPOSITION

$$
\begin{gathered}
\left\{\left(A_{j}-A_{i}, B_{j}-B_{i}\right) \mid j>i \geq 0\right\}=\left\{\left(A_{n}, B_{n}\right) \mid n>0\right\} \\
\cup\left\{\left(A_{n}+1, B_{n}+1\right) \mid n>0\right\}
\end{gathered}
$$

Proof : Density of the $\{n \tau\}$'s in $[0,1]$

LEMMA

Let $u 1 \in\{0,1\}^{*}$ be a valid F-representation. If $\rho_{F}\left(\pi_{F}(u 1)+n\right) 1$ is also a valid F-representation, then

$$
\pi_{F}\left(\rho_{F}\left(\pi_{F}(u 1)+n\right) 1\right)=\pi_{F}(u 00)+\pi_{F}\left(\rho_{F}(n-1) 0\right)+4
$$

Otherwise, $\rho_{F}\left(\pi_{F}(u 1)+n\right) 1$ is not a valid F-representation and

$$
\pi_{F}\left(\rho_{F}\left(\pi_{F}(u 1)+n\right) 0\right)=\pi_{F}(u 00)+\pi_{F}\left(\rho_{F}(n) 0\right)+2
$$

Proof: Morphic structure of \mathcal{F}

THEOREM

Let i, j be such that $A_{j}-B_{i}=n>0$. We have

$$
B_{j}-A_{i}=B_{i}+A_{n}+1
$$

Concluding result

THEOREM

There is no redundant move in Wythoff's game. In particular, if any move is removed, then the set of \mathcal{P}-positions changes.

AN OPEN PROBLEM

- Sprague-Grundy function $\operatorname{Mex}(\operatorname{Opt}(p))$ for Nim is 2-regular (i.e., finitely generated 2-kernel)
- so what for Wythoff's game ?

	0	1	2	3	4	5	6	7	8	9	\cdots
0	0	1	2	3	4	5	6	7	8	9	\cdots
1	1	2	0	4	5	3	7	8	6	10	
2	2	0	1	5	3	4	8	6	7	11	
3	3	4	5	6	2	0	1	9	10	12	
4	4	5	3	2	7	6	9	0	1	8	
5	5	3	4	0	6	8	10	1	2	7	
6	6	7	8	1	9	10	3	4	5	13	
7	7	8	6	9	0	1	4	5	3	14	
8	8	6	7	10	1	1	5	3	4	15	
9	9	10	11	12	8	7	13	14	15	16	
\vdots											\ddots

A. S. Fraenkel, the Sprague-Grundy function for Wytoff's game, TCS'90

