Extensions and restrictions of Wythoff's game preserving Wythoff's sequence as set of ${\mathcal P}$ positions

Eric Duchêne (Univ. Lyon 1)
Aviezri S. Fraenkel (Weizmann Institute, Rehovot)
Richard J. Nowakowski (Dalhousie University, Halifax)
Michel Rigo (University of Liège)

http://www.discmath.ulg.ac.be/
J. Combin. Theory ser. A. 117 (2010), 545-567
http://hdl.handle.net/2268/100440

LIAFA, Paris, October 21th, 2011

W. A. Wythoff, A modification of the game of Nim, *Nieuw Arch. Wisk.* **7** (1907), 199–202.

RULES OF THE GAME

- Two players play alternatively
- Two piles of tokens
- Remove
 - any positive number of tokens from one pile or,
 - the same positive number from the two piles.
- The one who takes the last token wins the game (last move wins).

Set of moves : $\{(i,0), i>0\} \cup \{(0,j), j>0\} \cup \{(k,k), k>0\}$

 $(0,0),\; (1,2),\; (3,5),\; (4,7),\; (6,10),\; \dots$

P-POSITION

A \mathcal{P} -position is a position q from which the *previous* player (moving to q) can force a win.

N-POSITION

A \mathcal{N} -position is a position p from which the *actual* player has an option leading ultimately to win the game.

Question : Are all positions $\mathcal N$ or $\mathcal P$?

Initial position (i_0, j_0) , by symmetry, take only $(i \ge j)$

- ▶ **Vertices** : $\{(i,j), i \le i_0, j \le j_0\}$
- **Edges**: from each position to all its options:

$$\begin{array}{c|cccc} i > 0 & & (i,j) & \rightarrow & (i-k,j) \\ j > 0 & & (i,j) & \rightarrow & (i,j-k) \\ i,j > 0 & & (i,j) & \rightarrow & (i-k,j-k) \end{array} \right| \begin{array}{c} k = 1, \dots, i \\ k = 1, \dots, j \\ k = 1, \dots, \min(i,j) \end{array}$$

REMARK

Due to the rules, the game graph for Wythoff's game is **acyclic**.

THEOREM [BERGE]

Any finite acyclic digraph has a unique kernel. Moreover, this kernel can be obtained efficiently.

REMINDER/DEFINITION OF A KERNEL

A kernel in a graph G = (V, E) is a subset $W \subseteq V$

- ▶ stable : $\forall x, y \in W, (x, y) \notin E$
- ▶ absorbing : $\forall x \in V \setminus W$, $\exists y \in W : (x, y) \in E$.

REMARK

Due to the rules, the game graph for Wythoff's game is acyclic.

THEOREM [BERGE]

Any finite acyclic digraph has a unique kernel.

Moreover, this kernel can be obtained efficiently.

REMINDER/DEFINITION OF A KERNEL

A kernel in a graph G = (V, E) is a subset $W \subseteq V$

- ▶ stable : $\forall x, y \in W, (x, y) \notin E$
- ▶ absorbing : $\forall x \in V \setminus W$, $\exists y \in W$: $(x, y) \in E$.

For Wythoff's game, its game graph has a unique kernel *K*.

- ► stable: from a position in K, you always play out of K,
- ▶ absorbing : from a position outside K, you can play into K,
- ightharpoonup (0,0) has to belong to K, otherwise K won't be absorbing.

COROLLARY (FOR ANY IMPARTIAL ACYCLIC GAME)

The set of \mathcal{P} -positions is exactly the kernel K and all the other positions are \mathcal{N} -positions.

$\{\mathcal{P}\text{-positions}\}\supseteq K$

If p is a position in K, then it is a \mathcal{P} -position because there is a *winning strategy* outside K.

$\{\mathcal{P}\text{-positions}\}\subseteq K$

If p is a \mathcal{P} -position not in K, then there is a move from p to K, thus p is a \mathcal{N} -position!

For Wythoff's game, its game graph has a unique kernel K.

- ► stable : from a position in K, you always play out of K,
- ▶ absorbing : from a position outside K, you can play into K,
- ightharpoonup (0,0) has to belong to K, otherwise K won't be absorbing.

COROLLARY (FOR ANY IMPARTIAL ACYCLIC GAME)

The set of \mathcal{P} -positions is exactly the kernel K and all the other positions are \mathcal{N} -positions.

$\{\mathcal{P}\text{-positions}\}\supseteq K$

If p is a position in K, then it is a \mathcal{P} -position because there is a *winning strategy* outside K.

$\{\mathcal{P}\text{-positions}\}\subseteq K$

If p is a \mathcal{P} -position not in K, then there is a move from p to K, thus p is a \mathcal{N} -position!

A USUAL PROOF TECHNIQUE

To prove that a given set S of positions is the set of \mathcal{P} -positions of a game, one shows that S is stable and absorbing with respect the game moves.

P-POSITION OF THE WYTHOFF'S GAME I

$$(A_n, B_n)_{n \ge 0} = (0, 0), (1, 2), (3, 5), (4, 7), \dots$$

$$\forall n \ge 0, \quad \left\{ \begin{array}{l} A_n = Mex\{A_i, B_i \mid i < n\} \\ B_n = A_n + n \end{array} \right.$$

P-POSITION OF THE WYTHOFF'S GAME II

P-POSITIONS OF THE WYTHOFF'S GAME III

$$(A_n, B_n)_{n\geq 0} = (\lfloor n\tau \rfloor, \lfloor n\tau^2 \rfloor).$$

- A.S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly 89 (1982), 353–361.
- A.S. Fraenkel, Heap games, Numeration systems and Sequences, Annals of Combinatorics 2 (1998), 197–210.
- A.S. Fraenkel, The Raleigh Game, INTEGERS (2007).
- E. Duchêne, M.R., A morphic approach to combinatorial games: the Tribonacci case, RAIRO Theoret. Inform. Appl. 42 (2008), 375–393.
- ► E. Duchêne, M.R., A class a cubic Pisot unit games, *Monat. für Math.* **155** (2008), 217–249.

Different sets of moves / more piles

Different sets of \mathcal{P} -positions to characterize...

OUR GOAL / DUAL QUESTION

Consider invariant extensions or restrictions of Wythoff's game that keep the set of \mathcal{P} -positions of Wythoff's game unchanged.

Characterize the different sets of moves...

Same set of $\mathcal{P}\text{-positions}$ as Wythoff's game

DEFINITION, E. DUCHÊNE, M. R., TCS 411 (2010)

A removal game G is invariant, if for all positions $p=(p_1,\ldots,p_\ell)$ and $q=(q_1,\ldots,q_\ell)$ and any move $x=(x_1,\ldots,x_\ell)$ such that $x \leq p$ and $x \leq q$ then, the move $p \to p-x$ is allowed if and only if the move $q \to q-x$ is allowed.

- Nim or Wythoff game are invariant games
- Raleigh game, the Rat and the Mouse game, Tribonacci game, Cubic Pisot games,... are NOT invariant

NON-INVARIANT GAME

Remove an odd number of tokens from a position (a, b) if a or b is a prime number, and an even number of tokens otherwise.

Very recently, Nhan Bao Ho (La Trobe Univ., Melbourne), Two variants of Wythoff's game preserving its \mathcal{P} -positions:

- A restriction of Wythoff's game in which if the <u>two entrees</u> <u>are not equal</u> then removing tokens from the smaller pile is not allowed.
- An extension of Wythoff's game obtained by adjoining a move allowing players to remove k tokens from the smaller pile and ℓ tokens from the other pile provided ℓ < k.</p>

OUR GOAL / DUAL QUESTION

Consider invariant extensions or restrictions of Wythoff's game that keep the set of \mathcal{P} -positions of Wythoff's game unchanged.

- ► We characterize all moves that can be adjoined while preserving the original set of \mathcal{P} -positions.
- ► Testing if a move belong to such an extended set of rules can be done in polynomial time.

CANONICAL CONSTRUCTION [COBHAM'72]

Let $k \geq 2$. A sequence $x = (x_n)_{n \geq 0} \in A^{\mathbb{N}}$ is k-automatic IFF it is the image under a coding of an infinite word generated by a prolongable k-uniform morphism.

EXAMPLE

Characteristic sequence of $\{n \mid \exists i, j \geq 0 : n = 2^i + 2^j\} \cup \{1\}$

$$g: \left\{ \begin{array}{ccc} A & \mapsto & AB \\ B & \mapsto & BC \\ C & \mapsto & CD \\ D & \mapsto & DD \end{array} \right. \qquad f: \left\{ \begin{array}{ccc} A & \mapsto & 0 \\ B & \mapsto & 1 \\ C & \mapsto & 1 \\ D & \mapsto & 0 \end{array} \right.$$

$$g^{\omega}(A) = ABBCBCCDBCCDCDDDBCCDCDDDDDDDD \cdots$$

 $f(g^{\omega}(A)) = 0111111011101000111010001000000 \cdots$

DURING OUR JOURNEY...

 $f(g^{\omega}(A)) = 011111110111010001110100010000000\cdots$

$$x_n = \tau(q_0 \cdot \text{rep}_2(n)).$$

DURING OUR JOURNEY...

Canonical construction: (non-uniform) morphisms \rightarrow automata

$$\varphi: \mathbf{a} \mapsto \mathbf{abc}, \ \mathbf{b} \mapsto \mathbf{ac}, \ \mathbf{c} \mapsto \mathbf{b}$$

 $\varphi^{\omega}(a) = abcacbabcbacabcbacabcbabcacb \cdots$

Consider the language $L = L(\mathcal{M}) \setminus 0\{0, 1, 2\}^*$.

Remark: Positions in $\varphi^{\omega}(a)$ are counted from 1.

Take the words of *L* with radix order (abstract system)

Not a "positional" system, no sequence behind.

EXAMPLE:

The 4th letter is a, it corresponds to $w_3 = 10$.

Since
$$\varphi(a) = abc$$
, we consider
$$\begin{cases} w_30 = 100 = w_i \\ w_31 = 101 = w_{i+1} \\ w_32 = 102 = w_{i+2} \end{cases}$$
then the $(i + 1)$ st, $(i + 2)$ st, $(i + 3)$ st letters are a, b, c .

200

$$\operatorname{rep}_{L}(i) := w_{i}, \quad \operatorname{val}_{L}(w_{i}) := i$$

PROPOSITION

Let the *n*th letter of $\varphi^{\omega}(a)$ be σ and w_{n-1} be the *n*th word in *L*. If $\varphi(\sigma) = x_1 \cdots x_r$, then $x_1 \cdots x_r$ appears in $\varphi^{\omega}(a)$ in positions $\operatorname{val}_L(w_{n-1}0) + 1, \ldots, \operatorname{val}_L(w_{n-1}(r-1)) + 1$.

For Wythoff's game: Fibonacci word \mathcal{F} , $L=1\{01,0\}^* \cup \{\varepsilon\}$ and we get the usual Fibonacci system $\rho_F: \mathbb{N} \to L$, $\pi_F: L \to \mathbb{N}$.

COROLLARY

- If the *n*th letter in \mathcal{F} is a $(n \ge 1)$, then this a produces through φ a factor ab occupying positions $\pi_F(\rho_F(n-1)0)+1$ and $\pi_F(\rho_F(n-1)1)+1$.
- ▶ If the *n*th letter in \mathcal{F} is b ($n \ge 1$), then this b produces through φ a letter a occupying position $\pi_F(\rho_F(n-1)0) + 1$.

$$\operatorname{rep}_{L}(i) := W_{i}, \quad \operatorname{val}_{L}(W_{i}) := i$$

PROPOSITION

Let the *n*th letter of $\varphi^{\omega}(a)$ be σ and w_{n-1} be the *n*th word in *L*. If $\varphi(\sigma) = x_1 \cdots x_r$, then $x_1 \cdots x_r$ appears in $\varphi^{\omega}(a)$ in positions $\operatorname{val}_L(w_{n-1}0) + 1, \ldots, \operatorname{val}_L(w_{n-1}(r-1)) + 1$.

For Wythoff's game: Fibonacci word \mathcal{F} , $L=1\{01,0\}^* \cup \{\varepsilon\}$ and we get the usual Fibonacci system $\rho_F: \mathbb{N} \to L$, $\pi_F: L \to \mathbb{N}$.

COROLLARY

- ▶ If the *n*th letter in \mathcal{F} is a $(n \ge 1)$, then this a produces through φ a factor ab occupying positions $\pi_F(\rho_F(n-1)0)+1$ and $\pi_F(\rho_F(n-1)1)+1$.
- ▶ If the *n*th letter in \mathcal{F} is b ($n \ge 1$), then this b produces through φ a letter a occupying position $\pi_F(\rho_F(n-1)0) + 1$.

REMINDER ON FIBONACCI NUMERATION SYSTEM

Fibonacci sequence : $F_{i+2} = F_{i+1} + F_i$, $F_0 = 1$, $F_1 = 2$ Use greedy expansion, ..., 21, 13, 8, 5, 3, 2, 1

E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, *Bull. Soc. Roy. Sci. Liège* **41** (1972), 179–182.

In fact, this is a special case of the following result.

THEOREM [A. MAES, M.R. '02]

The set of S-automatic sequences is exactly the set of morphic words.

Take any regular language with radix order \oplus DFAO

$$i$$
 0 1 2 3 4 5 6 7 8 9 ··· $\operatorname{rep}_{S}(i)$ ε a b aa ab bb aaa aab abb bbb ···

 $01023031200231010123023031203120231002310123010123\cdots$

n	1	2	3	4	5	6	7	8	9	10	11	12	
	а	b	а	а	b	а	b	а	а	b	а	а	
A_i	1		3	4		6		8	9		11	12	
B_i		2			5		7			10			
$\rho_F(n-1)$	ω	_	10	100	101	1000	1001	1010	10000	10001	10010	10100	

P-POSITIONS OF THE WYTHOFF'S GAME IV

For all $n \ge 1$, we have

$$A_n = \pi_F(\rho_F(n-1)0) + 1$$

 $B_n = \pi_F(\rho_F(A_n-1)1) + 1.$

MORE?

Can we get a "morphic characterization" of the Wythoff's matrix?

Let's try something...

and the coding

$$\mu: e, g, j, l \mapsto 1$$
, $a, b, c, d, f, h, i, k, m \mapsto 0$

O. Salon, Suites automatiques à multi-indices, *Séminaire de théorie des nombres*, Bordeaux, 1986–1987, exposé 4.

SHAPE-SYMMETRIC MORPHISM [A. MAES '99]

If P is the infinite bidimensional picture that is the fixpoint of φ , then for all $i, j \in \mathbb{N}$, if $\varphi(P_{i,j})$ is a block of size $k \times \ell$ then $\varphi(P_{j,i})$ is of size $\ell \times k$

sizes: 1, 2, 3, 5

$\cdots \mapsto$	а	b	i	i	m	i	m	İ	
	С	d	е	h	d	h	d	h	
	i	j	i	f	b	i	m	i	
	i	m	k	İ	m	g	b	İ	
	h	d	С	h	d	h	d	е	$\rightarrow \cdots$
	i	m	i	ı	m	i	m	i	
	h	d	h	С	d	h	d	h	
	i	т	İ	İ	j	İ	m	İ	

size: 8,...

$MORPHISMS \rightarrow AUTOMATA$

We can do the same as for the unidimensional case : Automaton with input alphabet

$$\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

$$\varphi(r) = \begin{bmatrix} s & t \\ u & v \end{bmatrix}, \quad \begin{bmatrix} s & t \\ u & v \end{bmatrix}, \quad \begin{bmatrix} s & t \\ u & v \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} s & t \\ u & v \end{bmatrix}$$

we have transitions like

$$\begin{array}{ccccc}
\begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{array} & \xrightarrow{\mathbf{S}}, & r \xrightarrow{\begin{pmatrix} 1 \\ 0 \\ \end{array}} & \underbrace{\mathbf{t}}, & r \xrightarrow{\begin{pmatrix} 0 \\ 1 \\ \end{array}} & \underbrace{\mathbf{u}}, & r \xrightarrow{\mathbf{t}} & \mathbf{v}.$$

We get (after trimming useless part with four states)

This automaton accepts the words

$$\begin{pmatrix} 0 w_1 \cdots w_\ell \\ w_1 \cdots w_\ell 0 \end{pmatrix} \text{ and } \begin{pmatrix} w_1 \cdots w_\ell 0 \\ 0 w_1 \cdots w_\ell \end{pmatrix}$$

where $w_1 \cdots w_\ell$ is a valid *F*-representation ending with an <u>even</u> number of zeroes.

Such a characterization is well-known, but differs from the one we get previously...

REMINDER

For all $n \ge 1$, we have

$$A_n = \pi_F(\rho_F(n-1)0) + 1$$

 $B_n = \pi_F(\rho_F(A_n-1)1) + 1.$

It is hopefully the same, but why?

• First case : $\rho_F(n-1) = u0$

$$\rho_F(A_n) = \rho_F(\pi_F(\underbrace{\rho_F(n-1)0}_{u00}) + 1) = u01 \text{ no zero}$$

$$\rho_F(A_n - 1) = u00$$
 and

$$\rho_F(B_n) = \rho_F(\pi_F(\rho_F(A_n - 1)1) + 1) = u010$$
 one zero

• Second case : $\rho_F(n-1) = u01$

$$\rho_F(A_n) = \rho_F(\pi_F(\underbrace{\rho_F(n-1)0}_{u010}) + 1) = "u011" \dots$$

Normalize u011 or look for the successor of u010

Use the transducer (R to L) computing the successor [Frougny'97]

$$\rho_F(A_n - 1) = u010$$
 and

$$\rho_F(B_n) = \rho_F(\pi_F(\underbrace{\rho_F(A_n-1)1}_{u0101}) + 1) = "u0102" \dots$$

 $101 \rightarrow 1000$, 3 zeroes

$$\underbrace{x10(01)^n}_{u}$$
0101 $\rightarrow x101(00)^n$ 000 $2n+3$ zeroes, $n \ge 0$

$$1(01)^n 0101 \to 100(00)^n 000 \quad 2n+5 \text{ zeroes}, \ n \ge 0$$

Conclusion : " A_n even number of zeroes, B_n one more", OK

EXTENSION PRESERVING SET OF \mathcal{P} -POSITIONS

To decide whether or not a move can be adjoined to Wythoff's game without changing the set K of \mathcal{P} - positions, it suffices to check that it does not change the stability property K.

Remark: absorbing property holds true whatever the adjoined move is.

Consequence

A move (i,j) can be added IFF it prevents to move from a \mathcal{P} -position to another \mathcal{P} -position.

In other words, a necessary and sufficient condition for a move $(i,j)_{i< j}$ to be adjoined is that it does not belong to

$$\{(A_n-A_m,B_n-B_m): n>m\geq 0\}\cup\{(A_n-B_m,B_n-A_m): n>m\geq 0\}$$

Thanks to the previous characterizations of A_n , B_m ,

PROPOSITION

A move $(i,j)_{i < j}$ can be adjoined to without changing the set of \mathcal{P} -positions IFF

$$(i,j) \neq (\lfloor n\tau \rfloor - \lfloor m\tau \rfloor, \lfloor n\tau^2 \rfloor - \lfloor m\tau^2 \rfloor) \ \forall n > m \geq 0$$

and

$$(i,j) \neq (\lfloor n\tau \rfloor - \lfloor m\tau^2 \rfloor, \lfloor n\tau^2 \rfloor - \lfloor m\tau \rfloor) \ \forall n > m \geq 0$$

For all $i, j \ge 0$, $W_{i,j} = 0$ IFF Wythoff's game with the adjoined move (i,j) has Wythoff's sequence as set of \mathcal{P} -positions,

COROLLARY

Let $I \subseteq \mathbb{N}$. Wythoff's game with adjoined moves

$$\{(x_i,y_i):i\in I,x_i,y_i\in\mathbb{N}\}$$

has the same sequence (A_n, B_n) as set of \mathcal{P} -positions

IFF

$$W_{x_i,y_i} \neq 1$$
 for all $i \in I$.

Are we done? Complexity issue

We investigate tractable extensions of Wythoff's game, we also need to test these conditions in polynomial time. And the winner can consummate a win in at most an exponential number of moves.

MANY "EFFORTS" LEAD TO THIS

For any pair (i,j) of positive integers, we have $W_{i,j} = 1$ if and only if one the three following properties is satisfied:

- $(\rho_F(i-1), \rho_F(j-1)) = (u0, u01)$ for any valid F-representation u in $\{0, 1\}^*$.
- $(\rho_F(i-2), \rho_F(j-2)) = (u0, u01)$ for any valid F-representation u in $\{0, 1\}^*$.
- $(\rho_F(j-A_i-2), \rho_F(j-A_i-2+i)) = (u1, u'0)$ for any two valid *F*-representations u and u' in $\{0, 1\}^*$.

MORPHIC CHARACTERIZATION OF W... IN PROGRESS

and the coding ν : $a, b, c, d, e, i, j, k, l, n, o, p, q, r <math>\mapsto$ 0 $f, g, h, m, s, t, u, v, w, x, y, z <math>\mapsto$ 1.

Corresponding automaton

SOME OF THE MACHINERY BEHIND

LEMMA

Let \mathcal{F}_n be the prefix of \mathcal{F} of length n. For any finite factor *bua* occurring in \mathcal{F} with |u|=n, we have $|u|_a=|\mathcal{F}_n|_a$ and $|u|_b=|\mathcal{F}_n|_b$.

EXAMPLE

Take u = aabaab, bua of length 8 starts in \mathcal{F} from position 7. $\mathcal{F}_6 = abaaba$ is a permutation of u.

$$\mathcal{F}=\underbrace{abaaba}_{\mathcal{F}_6}\underbrace{bua}_{u}$$
baabaabaaba \cdots

Proof: algebraic

LEMMA

Let $n \ge 1$ be such that $B_{n+1} - B_n = 2$. Then $\rho_F(B_n - 1)$ ends with 101.

Proof : Morphic structure of ${\mathcal F}$

PROPOSITION

$$\{(A_j - A_i, B_j - B_i) \mid j > i \ge 0\} = \{(A_n, B_n) \mid n > 0\}$$
$$\cup \{(A_n + 1, B_n + 1) \mid n > 0\}$$

Proof : Density of the $\{n\tau\}$'s in [0,1]

LEMMA

Let $u1 \in \{0,1\}^*$ be a valid *F*-representation. If $\rho_F(\pi_F(u1) + n)1$ is also a valid *F*-representation, then

$$\pi_F(\rho_F(\pi_F(u1) + n)1) = \pi_F(u00) + \pi_F(\rho_F(n-1)0) + 4.$$

Otherwise, $\rho_F(\pi_F(u1) + n)1$ is not a valid *F*-representation and

$$\pi_F(\rho_F(\pi_F(u1) + n)0) = \pi_F(u00) + \pi_F(\rho_F(n)0) + 2.$$

Proof : Morphic structure of ${\mathcal F}$

THEOREM

Let i, j be such that $A_i - B_i = n > 0$. We have

$$B_i - A_i = B_i + A_n + 1.$$

CONCLUDING RESULT

THEOREM

There is no redundant move in Wythoff's game. In particular, if any move is removed, then the set of \mathcal{P} -positions changes.

AN OPEN PROBLEM

- Sprague-Grundy function Mex(Opt(p)) for Nim is 2-regular (i.e., finitely generated 2-kernel)
- so what for Wythoff's game ?

	0	1	2	3	4	5	6	7	8	9	• • •
0	0	1	2	3	4	5	6	7	8	9	• • •
1	1	2	0	4	5	3	7	8	6	10	
2	2	0	1	5	3	4	8	6	7	11	
3	3	4	5	6	2	0	1	9	10	12	
4	4	5	3	2	7	6	9	0	1	8	
5	5	3	4	0	6	8	10	1	2	7	
6	6	7	8	1	9	10	3	4	5	13	
7	7	8	6	9	0	1	4	5	3	14	
8	8	6	7	10	1	1	5	3	4	15	
9	9	10	11	12	8	7	13	14	15	16	
:											٠